
Island Grammars in ASF+SDF

Erik Post, 2007

Master’s Thesis in Computer Science
University of Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Programming Research Group
Supervisor: Prof Dr P. Klint

Erik Post
epost@science.uva.nl
Summer 2007

”Don’t let it end like this. Tell them I said something.”

— last words of Pancho Villa (1877-1923)

i

.

This thesis is dedicated to the loving memory of my father.

ii

.

Abstract

In this thesis we discuss the development, implementation and application of
island grammars, implemented in the ASF+SDF Meta-Environments’s Modular
Syntax Definition Formalism (SDF). We provide an overview of related work
on the subject, and attempt to answer the following questions, namely: how
suitable are they, how may we develop them and what improvements might
be made to ASF+SDF? In particular, we present some non-trivial example
grammars, suggest new disambiguation constructs, and detail certain efficiency
optimizations to the implementation of the SGLR parser.

Contents

Contents i

Preface iii
Foreword . iv
Acknowledgements . iv
Document structure . v

1 Introduction 2
1.1 Preliminaries . 2
1.2 Why generic language technology? 4
1.3 Why automated software analysis? 7
1.4 Why Island grammars? . 10
1.5 Why SDF? . 12

2 The ASF+SDF Meta-Environment 15

3 Related work 18

4 Research questions 20
4.1 Research Questions . 20

5 Lexical analysis case studies 22
5.1 Introduction . 22
5.2 Lexical analysis and regular expressions 22
5.3 Syntax recognition in GNU Emacs 23
5.4 Syntax recognition in KDE kate 24
5.5 Syntax recognition with Doxygen/Lex 26
5.6 Discussion . 29

6 Simple C island grammar 32
6.1 Introduction . 32
6.2 Requirements . 32
6.3 Design . 33
6.4 Results . 35
6.5 Discussion . 35

i

CONTENTS ii

7 Island grammar for C function calls 36
7.1 Introduction . 36
7.2 Requirements . 36
7.3 Implementation . 37
7.4 Results . 39
7.5 Discussion . 40

8 Fact extraction 42
8.1 Introduction . 42
8.2 Method . 43

8.2.1 ASF extractor . 43
8.2.2 Java extractor . 45

9 Validation 48
9.1 Introduction . 48
9.2 Method . 48
9.3 Results . 51
9.4 Discussion . 51

10 Implementation comparison 53
10.1 Introduction . 53

10.1.1 Full Grammar . 53
10.1.2 Varieties of the function call island grammar 53

10.2 Comparison . 55

11 Engineering advice 57
11.1 Introduction . 57
11.2 Signal sequences and catchers . 57
11.3 A typical step in the design process 58
11.4 Tolerance . 59
11.5 Correctness . 59
11.6 Compositionality . 60
11.7 Nested sorts . 60
11.8 Shortcuts . 61
11.9 Island/water ambiguities . 62
11.10Portability across languages . 63
11.11When to use island grammars . 65
11.12Miscellaneous points of advice . 66

12 Disambiguation 67
12.1 Introduction . 67
12.2 Existing disambiguation mechanisms 67

12.2.1 Prefer/avoid . 67
12.2.2 FilterPT . 69
12.2.3 Priorities . 69

12.3 Discussion . 70
12.3.1 A prefer-to filter . 71

CONTENTS iii

13 Lexical inheritance analysis 72
13.1 Introduction . 72
13.2 Definitions . 73
13.3 Example . 74
13.4 Results . 76
13.5 Discussion . 77

14 SGLR performance improvements 79
14.1 Introduction . 79
14.2 Methods . 80
14.3 Implementation . 82
14.4 Results . 84
14.5 Discussion . 84

15 Proposed improvements to the Meta-Environment 88
15.1 Information in MetaStudio . 88
15.2 Suggested new features . 90
15.3 Other . 92

16 Conclusions 94
16.1 Summary . 94
16.2 Contributions . 95
16.3 Future work . 95

A Source Code 96
A.1 Comment extractor source code 96
A.2 Function call extractor . 102
A.3 Extractor using suckpt . 108
A.4 SuckPT . 110

B ASF+SDF Meta-Environment problems 114
B.1 Meta-Environment/MetaStudio issues 114
B.2 Documentation issues . 115

Bibliography 117

Preface

Foreword

The occasion of finishing this thesis stirs in my breast the great desire to say
many things. In this instance, however, my penchant towards being long-winded
is inhibited my apparently even greater (and perhaps more detrimental) inclina-
tion for doing everything at the latest possible instance. Writing this foreword,
I regret to note, is no exception, as the absolutely inert deadline for submission
of this thesis is mere hours away. Nonetheless, one must endeavour to keep
one’s spirits up; Proverbs 17:28 tells us that “Even a fool, when he holdeth
his peace, is counted wise: and he that shutteth his lips is esteemed a man of
understanding.” This provides at least some modest consolation (provided we
overlook the more than hundred pages that follow). All in all, we can skip right
to the acknowledgements without further ado. Enjoy reading!

— Erik Post, Wormer, 2007

Acknowledgements

I would like to thank the following people, listed, of course, in no particular
order: My mom and dad, for going to great lengths to support me. (Some
day I will pay back that laptop!) Wart van Zonneveld, for convincing me to
do Computer Science instead of Dutch Literature. (I will have your head for
that!) Bram Slinger, for all the great times, discussions, patience and music!
Sanja Marusic, for always making me laugh, and for the chopsticks and Cat
Stevens records and everything they represent. Anna den Enting for being her
wonderful self, and for her love and support. Krista van Dale, for being a scholar
and my guardian angel. Niels Lubbes, soon-to-be doctor of Computer Science,
for having shared my predicament for a considerable time. Miss Bo van der
Werff, for living in the same house with me for a couple of months that have
come to mean very much to me (and for apparently not wanting to smother
me with a pillow on account of them). Marcel Toele for ringing me up and
scaring the bejesus out of me with new thesis deadlines every so often. Inge
Huisman, for teaching me about singing and life. Simone de Vries for being
the most loyal of friends one could wish for, and telling me to get to work.
Paul Klint, for his sharp insights and the enthusiastic approach with which he
manages to encourage people such as myself to (actually) get things done; and
for his remarkable trait of managing to fit all of this and more into his tiny

iv

CONTENTS v

handheld digital agenda. Jurgen Vinju, for helping and inspiring me practically
every time our paths have crossed over the past 10 years. Brigitte at the Albert
Heijn in Wormerveer, for her almost otherworldly radiant smile on the many
days that she was (unknowingly) the only biped I talked to inbetween day-long
development and (re)writing sessions. Theo and Maarten at Jottem and Stef at
Business Event Studio. And of course Cat Stevens, Nick Drake, Deep Purple,
Bach, Chopin and all the rest. To all of you, and to all the people who are not
listed here and have put up with me locking myself inside my grotto for months
(though some will have rather enjoyed the serenity of it all): thanks!!!

Document structure

The research to which this document pertains started out, after much deliber-
ation, as an attempt to duplicate the functionality of Doxygen, a system for
automatic generation of documentation from source code, in ASF+SDF. Paul
Klint left it up to me to decide whether I would like to use full grammars or is-
land grammars in doing so. I thought at the time that it might be a good idea to
start out using island grammars to see what possibly interesting issues I would
stumble upon, and to use full grammars to the extent that they were available.
It soon turned out that the ‘issues’ concerning island grammars would consume
most of my time. It was then decided to change the focus of the research to
island grammars, and leave the Documentation issue as an aside.

Klint c.s. introduced the phrase ‘grammarware engineering’ as an emerging
discipline within software engineering warranting attention for all kinds of rea-
sons stipulated in [KLV05]. With this in mind, one of the aims of this research
project is to familiarize the reader with the field of island grammar engineering,
using SDF as a starting point. It does so by pointing to relevant research and
tools, highlighting features and problems, and providing engineering guidelines
for island grammar development.

In addition, common issues arising in island grammar development are dis-
cussed by means of examples, taken mainly from the development of an island
grammar with the purpose of identifying function calls in C (see chapter 7).

Furthermore, we provide an in-depth discussion of improvements that might
be made to the ASF+SDF Meta-Environment to facilitate the development and
applicatin of island grammars. The chapters are structured as follows:

Chapter 1 Introduces various concepts and technologies and makes the case
for using island grammars and SDF.

Chapter 2 Looks at a number of relevant components that make up the ASF+SDF
Meta-Environment, especially from a command line perspective.

Chapter 3 Presents a survey of existing literature and technology relevant to
the use and development of island grammars in SDF.

Chapter 4 Poses the research questions to be answered.

Chapter 5 Compares a number of existing lexical analyzers that are in widespread
use, focusing on their metasyntax and its effects on such properties as

CONTENTS 1

maintainability. These approaches are then compared to the island gram-
mar approach.

Chapter 6 Introduces a preliminary island grammar used to extract com-
ments, declarations and simple function calls from C code.

Chapter 7 Documents the development of a more complicated island grammar
aimed at identifying more complex function calls from C.

Chapter 8 Details the fact extraction performed using the island grammar
from the preceding chapter.

Chapter 9 Describes the validation of the facts extracted in the previous chap-
ter.

Chapter 10 Compares a number of varieties of the function call island gram-
mar developed in chapter 7.

Chapter 11 Discusses a number of observations and design issues that follow
from them in a general way, and presents development advice on these
issues where possible.

Chapter 12 Discusses island grammar-specific disambiguation issues and in-
troduces a new type of construct to facilitate this.

Chapter 13 Introduces a method for analyzing some of the lexical properties
of a language as they pertain to island grammar development.

Chapter 14 Proposes efficiency improvements to the Meta-Environment’s parser
(SGLR), which are specific to island grammars. The main idea is to com-
press irrelevant nodes in the syntax tree at parse-time to save space and
improve parser performance.

Chapter 15 Suggests a number of general and island grammar-specific im-
provements to the Meta-Environment that might prove useful to grammar
development in general and to that of island grammars in particular.

Chapter 16 Presents the conclusions of this research.

Appendix A Contains listings of source code to the programs and specifica-
tions developd as part of this research project.

Appendix B Discusses a number of problems encountered while using the
Meta-Environment.

Chapter 1

Introduction

1.1 Preliminaries

Context-free grammar can be defined as follows [Sud97]:

Definition A context-free grammar is a quadruple (V,Σ, P, Ŝ) where V is
a finite set of variables1 or sorts, Σ (the alphabet) is a finite set of terminal
symbols, P (the productions) is a finite set of rules such that P ∈ V × (V ∪Σ)∗,
and Ŝ is a distinguished element of V called the start symbol. The sets V and
Σ are assumed to be disjoint.

SDF, short for Syntax Definition Formalism, is a specification language for
the definition of context-free grammars. [Vis97b] In other words, SDF is a
syntax for defining syntaxes; this is often referred to as a metasyntax.

Productions are commonly written in the form A → w, meaning that a
variable A may be replaced by the sentential form w ∈ V × (V ∪ Σ)∗ in a
derivation step. SDF uses a reversed notation: w -> A instead of A → w (note
the different typefaces).

The set of context-free grammars is closed under union, also called com-
position. It is this important property that allows specifications written in
SDF to be modular, meaning that an SDF specification may include another
SDF specification.

Definition Given a context-free grammar G, the language of G, denoted
L(G), is the set {w ∈ Σ∗|Ŝ ∗⇒ w}. Here, the symbol ∗⇒ denotes a finite number
of applications of the production rules of G.

Definition A construct of interest, or COI for short, is a language construct
we would like to recognize so we can perform analyses or transformations on
it. We distinguish between constructs of primary interest, also called primary
COI’s, and secondary constructs of interest, aka secondary COI’s. The former
kind are the constucts we are interested in for their own sake. The latter kind
covers those COI’s that are not interesting per se, but because the recognition
of primary COI’s relies on them in some way. The constructs in which we are
not interested are imaginatively called uninteresting constructs.

1Variables are also called nonterminals

2

CHAPTER 1. INTRODUCTION 3

Constructs of interest can also be classified as follows:

• A valid surrounding construct is a construct that may contain a cer-
tain other construct. For example, expressions can contain function calls.
Therefore, expressions are valid surrounding constructs with respect to
function calls.

• A valid embedded construct is a construct that may appear as part of
another construct. Example: expressions may occur as the arguments of
a function call. Therefore, expressions are valid embedded constructs of
function calls.

• An invalid surrounding construct can not contain a given construct.
Example: comments and strings cannot contain function calls, and are
therefore invalid surrounding constructs for function calls.

• An invalid embedded construct, analogously, can not be contained
within a given other construct.

Island grammars are special purpose grammars, that is: they are specified
with a given task in mind, in the light of which certain constructs are constructs
of interest and others are not. An island grammar will typically define primary
COI’s in terms of detailed productions called island productions or, simply,
islands. The remaining constructs, including secondary COI’s, are specified in
as little detail as possible; preferably as water, whose syntax in most cases
described lexically. That being said, secondary COI’s may in some cases also
have to be specified in such detail that they should be considered islands. a
More formal definition of an island grammar is the following:

Definition An island grammar is a (possibly context-free) grammar G =
(V,Σ, P, Ŝ,W, I). Here, W ⊆ V is the set of water sorts and I ⊆ V is the set of
island sorts. Membership of the sets W and I is given by the indicator functions
χW : (V ∪ Σ) → {1, 0} and χI → {1, 0}

Specification of what the islands are and what the water is, i.e. defining
χW (v) and χI(v), in an SDF grammar, may be done by:

1. Naming sorts accordingly

2. Tagging productions or sorts with island/water attributes

3. Injecting sorts into other sorts which are marked as islands/water

Note that the indicator functions χW (v) and χI(v) formalizing these notions
do not rule out the possibility that a production or a sort is simultaneously water
and island. This is useful for example if we want to ignore (i.e. treat as water)
a given sort in some context, but not in others.

In contrast to island grammars, we also have full grammars, in which
all constructs are specified in detail. Examples of this are the PICO and C
grammars, which are distributed with the ASF+SDF Meta Environment.2

2Most island grammars mix a lexical and a syntactical analysis approach, with a preference
for the former. Water is generally specified as lexical syntax and has, as such, no hierarchic
structure. Islands are generally structured more like constructs in full grammars.

CHAPTER 1. INTRODUCTION 4

Suppose we had a language L, and we set out to create an island grammar Gi

that accepts L. Due to the liberal way in which water productions are usually
specified, L(Gi) will generally be a strict superset of L. This property associated
with island grammars is referred to as tolerance.

A string is said to be (syntactically) correct with respect to a grammar G
or the language L(G) if it can be derived from the start symbol of G in a finite
sequence of applications of the productions in G. A parser for a context-free
language L is said to accept a string s if s ∈ L(G).

The notion of correctness with respect to an island grammar, in addition
to its meaning as defined above, is defined as the degree to which it admits false
positives and false negatives with respect to its purpose, i.e. the recognition
of certain COI’s. False positives are substrings that are unintentionally (thus,
incorrectly, given the purpose of the grammar) identified as constructs of interest
by the parser. On the other hand, false negatives are strings that are actually
constructs of interest, but are not recognized as such (i.e. parsed as water) due
to an error in the specification.

Island grammars can generally rely less on syntactic context than full gram-
mars can for recognizing constructs. This is because the necessary detailed
knowledge of a language’s syntactic structure is simply not present in the is-
land grammar. To compensate for this, we rely on certain lexical properties of
our constructs of interest. Signal sequences are used for detecting constructs
of interest based on characteristic sequences of characters they may contain.
For example, a function call in C will contain parentheses, and a function def-
inition in Python will contain the string ‘function’. In order to prevent false
negatives, we can exclude such sequences from water sorts, thus preventing the
constructs containing them from being accidentally swallowed by overly toler-
ant water sorts. Excluding signal sequences from a water sort may initially
cause parse errors if the parser encounters an occurrence of such a sequence in
a term. To overcome this, we can specify catchers; productions intended for
‘catching’ signal sequences occuring outside of COI’s. Examples of this can be
found throughout this thesis, particularly in chapters 7 and ??.

Island grammars are particularly suitable for fact extraction. Then, the
island grammar is used to identify certain constructs of interest in a program
text.

The constructs of interest can be extracted from the source code and, for
example, stored in some representation relevant to the task at hand, thus ob-
taining extracted software facts.3

1.2 Why generic language technology?

Programmers find themselves faced with the role of translating real world knowl-
edge and problems into representations that a computer can process. There used
to be a time when the grass was green, and computer programmers earned their
wages by plugging cables into switchboards in all sorts of bewildering patterns.

3An example of a relevant storage format would be to store function definitions and the
calls occurring within them as tuples. Interpreted as an edge list, the vertices being the list of
all functions defined and called in a program, induces a directed graph (the call graph). More
on this in a subsequent section.

CHAPTER 1. INTRODUCTION 5

The subsequent development of punch cards — bits of cardboard that one
punches holes into representing machine code instructions — was considered an
important stride in usability. Nowadays, we have general-purpose programming
languages such as C, Java, Python and Haskell, as well as domain specific lan-
guages (DSL’s) which allow one to express a given problem to be solved in a
form that is amenable to the specific kind of problem.4 Table 1.1 lists some
examples, most of them widely used.

problem domain DSL
mathematics Mathematica, MatLab, SciLab
chemical reactions GasEl [BIK06]
music abc
business processes COBOL
formal grammars SDF, GNU Bison, ANTLR
markup HTML, LaTeX
graph drawing dot, part of GraphViz

Table 1.1: Some examples of Domain Specific Languages

This diversity of languages is, compared to the punch card days, great for the
end-user. However, while from his or her perspective we are moving ever further
away from nasty low-level interactions of plugging cables around to represent
the zeroes and ones of binary machine code instructions, at the end of the
day we will still need to have instructions translated to a computer-processable
format, if we want the computer to get anything done. Formal programming
and specification languages are the lubricant in this human-computer mismatch.

Listing 1.1 Hello world in the C programming language

1 /*

2 * This program prints Hello World!

3 */

4

5 #include <stdio.h>

6

7 int main(int argc , char *argv [])

8 {

9 printf("Hello , world!\n");

10 }

The figures show the source code of a small program (listing 1.1) written by
a human (i.e. myself) is translated to some intermediate formats (listings 1.2
and 1.3) by a compiler, before eventually ending up as a sequence of ‘zeroes
and ones’5 that the computer can execute. Each intermediate representation
format encodes at least the same information, possibly with some bits (such
as the comments between /* and */) left out that may be uninteresting to the
computer given its task of running the software.

So, in obtaining a machine-friendly representation of some problem from its
4It is a misconception that real hackers can sing baud straight into the mouthpiece.
5The figure corresponding to this representation is left to the reader’s imagination.

CHAPTER 1. INTRODUCTION 6

human-friendly description, we encounter the task of language analysis, typically
at many levels.

Formal languages allow us to express matters in intricate detail, which is
required for many problems and, hence, their solutions. Consider a description
such as: (x+5)3 . This is an example, and a very simple one, that immediately
clarifies why it would be preferable to have a formal language, such as that of
elementary algebra, so we can dispense with the very cumbersome and ambigu-
ous: “Take x, then add 5 to it, then raise to the power of three”. The analysis
of natural language, written or spoken, involves automatic language analysis
as well, which in many senses can be more complicated than their much more
structured formal counterparts.

Listing 1.2 Hello world translated to Linux/x86 assembly language
.file "test.c"
.section .rodata

.LC0:
.string "Hello, world!\n"
.text

.globl main
.type main,@function

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp
leave
ret

From the above, it follows that we need language analysis tools. Given
the complexity of some of the problems in the domain of automated language
analysis, we need strong theory, tools, paradigms, and generally anything we can
get our hands on. There are many, many formal languages in day-to-day use at
the moment. Some radically different from each other, while others are related
dialects of a common language. Differences notwithstanding, the purposes and
general structure of one language may be quite similar to that of others. This
similarity can be exploited by reusing analysis technology for one language in
analyzing others.

As an example, note that the assembly code in listing 1.2 is specifically
generated for the Intel-designed x86 family of processors, which are to be found
in most modern desktop and notebook computers. If we were to compile this
program on a computer whose processor belonged to IBM’s PowerPC or Sun’s
SPARC processor families, the generated code would look quite different (even
though the structure would be similar). So, what goes into a language analysis

CHAPTER 1. INTRODUCTION 7

tool at the front end in one language (a program written in C, in our example),
may come out at the back end in an different shape, depending on the purpose
of the language analysis (here, compilation to a certain processor’s machine
code). Two separate subtasks emerge from this: language analysis, which deals
with what a language looks like, and language processing, which in our example
means translation to machine code.

Many existing language analysis tools6 mix the description of what a lan-
guage looks like (called syntax), with descriptions of what it means; what to do
with it (called semantics). This makes a specification specific to both a given
language and a task. Reading such specifications can be a bit like reading two
books at the same time, and alternating between them every other sentence;
hopelessly confusing. This makes it difficult to develop and maintain them, and
to use them for other purposes than the one they were originally designed for.

Many tools, as if writing a language specification isn’t challenging enough
as it is, also lack features that enable reuse of specifications for languages that
are similar.

The similarities noted before may be exploited by flexible, decoupled tools
that separate such concerns as specification and processing, and provide features
to reuse technology for similar cases. Technologies that do this are referred to
as generic language technology.

Listing 1.3 Hello world in hexadecimal x86 machine code
00000000: 7f45 4c46 0101 0100 0000 0000 0000 0000
00000010: 0200 0300 0100 0000 9882 0408 3400 0000
00000020: 4807 0000 0000 0000 3400 2000 0700 2800
00000030: 1900 1800 0600 0000 3400 0000 3480 0408
00000040: 3480 0408 e000 0000 e000 0000 0500 0000
00000050: 0400 0000 0300 0000 1401 0000 1481 0408

1.3 Why automated software analysis?

“[The major cause of the software crisis is] that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, pro-
gramming has become an equally gigantic problem.”
— Edsger Dijkstra, The Humble Programmer (1972)

According to [Ben90], maintenance accounts for 70% of software budgets,
software comprehension and the impact assessment of change requests being
the two most expensive components [BA96]. How do we go about obtaining
such understanding of software systems to be maintained? Let’s try to answer
this question based on the examples given before.

While the machine code of listing 1.3 is very useful in that it constitutes a
working program that we can run on a computer, it is not the most suitable

6Lex, Flex, yacc, Bison, etc.

CHAPTER 1. INTRODUCTION 8

Figure 1.1: Robots in various stages of evolution and complexity. The suave
one on the right can be assumed to be orders of magnitude more complex in
terms of software, its source code running into hundreds of thousands or even
millions of lines.

format for humans to comprehend. The C source code in listing 1.1 looks a lot
better already, and some sense can be made of it even by non-programmers.

We can see line 9 saying printf, followed by the text we want to print.
Such a thing as printf is called a function in the C programming language and
in many other languages. Functions are bits of program code (subprograms)
that carry out a task specified by the programmer. Whenever this task needs
to be performed in the program, we invoke the function by making a function
call, such as to printf on line 9.

Typical software systems, unlike this simple example, may consist of hun-
dreds or even thousands of functions and function calls. Their interactions can
be quite difficult to follow by just looking at the source code. When trying
to understand such a complex system, a very common question is: what does
a certain function, say look_at(object), do exactly? Such questions are in
the domain of software comprehension, also called program understanding. The
question posed is really twofold: what sort of task does the function itself per-
form, and what is its place in relation to the other components in the system?

Such information can be expressed in software models. It can really help to
look at visual representations of which function calls which other functions, in
order get a feel for how a program is structured. Let’s consider an imaginary
robot brain as an example of a large and complex software system (see fig. 1.3).
An example of a software model is a function call graph, which lists the functions
in a system and tells us which (other) functions in the system they call (figure
1.2).

Software models are commonly produced by automatic analysis tools such as

CHAPTER 1. INTRODUCTION 9

function calls functions
look at(object) turn head()

recognize(object)
talk() think()
listen() think()
recognize() think()

Figure 1.2: Example software model: a function call table

Figure 1.3: Component decomposition view of a robot brain

Doxygen7 or Javadoc8. They analyze the source code and extract information
(software facts) from it. They then present the extracted information in various
forms; typically diagrams, tables and descriptions extracted from the code.

The extraction of facts from source code can be done in various ways. To
make sense of it, the extractor needs built-in knowledge about what source code
in the source language language looks like. This can be specified in the form of
a grammar ; a set of rules which describe exactly of what constructs a program
in this language may consist. Such grammars are usually very lengthy and quite
difficult to develop.

However, when we are looking only at a certain aspect of source code, such
as the function call relationships it exhibits, there are many other details that
we are not considering. Leaving out details about parts irrelevant to a given
view of a system is called abstracting away of information. This is a central
concept in software engineering, which allows humans to work on a complex
systems consisting of many thousands of operations without going potty.

Since we are only interested in some parts of the source code, such as function
7http://www.doxygen.org
8http://java.sun.com

CHAPTER 1. INTRODUCTION 10

calls, when we are producing diagrams for it such as figure 1.3, analyzing the
code requires only partial knowledge of the language that the code was written
in. This is where island grammars come in.

1.4 Why Island grammars?

Island grammars, unlike full grammars, do not describe the whole language,
with all of the constructs that may occur in it, in detail; they describe only a
part of the language, namely those constructs that we would like to extract from
the source code. In the robot brain example, this would amount to the (names
of) the functions being defined and called. Therefore, it would make sense to
define an island grammar that describes in (some) detail what function calls
and definitions look like (these would be our our islands), so we can extract
the names of function from them. We disregard the rest of the language as
uninteresting lexical fluff made up of random characters that we do not care
about (water).

Example island grammar Suppose we needed a grammar for the language
spoken on a typical farm. An SDF specification of a full grammar describing
this language could look something like this:

module FarmLifeFullGrammar

lexical syntax
[b][a]+[h] -> SHEEPWORD
[m][o]+ -> COWWORD

context-free syntax
(Sheepish | Cow | Pigese | Doggy)+ -> Conversation
SHEEPWORD -> Sheepish
COWWORD -> Cow
"oink" -> Pigese
"woof!" -> Doggy

A typical conversation in this language may look like this:

oink oink

module contains functions
motor control pick up(object)

walk()
turn head()

sensory look at(object)
listen()

speech talk()
cognition think()

recognize(object)

Figure 1.4: Software model showing which module contains which function

CHAPTER 1. INTRODUCTION 11

moooooooooooo
oink
baaah baaaaah
woof! woof!
mooo

Now suppose we were only interested in what sheep might say. We could
define an island grammar to capture only their utterances:

module FarmLifeIslandGrammar

lexical syntax
[b][a]+[h] -> SHEEPWORD
~[bah]+ -> WATER

context-free syntax
(Island | Water)+ -> Conversation
SHEEPWORD -> Sheepish
Sheepish -> Island
WATER -> Water

We can see that this grammar leaves out all the productions for the words
we are not interested in; they are captured by the generic Water sort instead,
which is defined as a series of any characters except those used in Sheepish. In a
real-world example, this type of definition may save many productions and re-
sult in quite a concise and economical grammar. Moreover, the island grammar
is tolerant : it allows a wider language than the one defined by the full grammar.
As such, it accomodates for dialects, e.g. muuuu instead of moooo (Scottish cows)
and even for constructs not found in the original language at all (e.g. cluck).
Now let’s take a look how the example conversation above would be parsed in
both our full grammar, on the left, and our island grammar on the right:

<Pigese> <Pigese>
<Cow>
<Pigese>
<Sheepish> <Sheepish>
<Doggy> <Doggy>
<Cow>

<WATER> <WATER>
<WATER>
<WATER>
<Sheepish> <Sheepish>
<WATER> <WATER>
<WATER>

As we can see, the island grammar results in a much less explicit parse;
it just identifies the constructs we need and ‘ignores’ the rest. Based on this
minimal grammar, we could for example build a program that extracts what
sheep say from a farm conversation. This principle also applies to programming
languages.

Another Example Moving on to a perhaps more interesting example, we will
take a look at some assembly language we might wish to capture grammatically.
See listing 1.4 for an example. Line 9 contains the instruction JSR, which is
short for ‘jump [to] subroutine’. The instruction JSR CHROUT tells the computer
to jump to the subroutine that starts at the memory address defined by the

CHAPTER 1. INTRODUCTION 12

sybol CHROUT. This is what a function call, referred to as ‘procedure call’ in
assembly languages, looks like in Commodore 64 assembly. We can define an
island grammar that identifies all JSR instructions and comments; see listing
1.5. This grammar is quite small, and leaves out all of the information that is
redundant for our purpose, i.e. the recognition of procedure calls.

Listing 1.4 Commodore 64 assembly (NMOS/CMOS 6502 processor family)

1 ; Print Hello , World!

2
3 .word $c000 ; file header

4 *=$c000 ; start address

5 MAIN: LDX #$00

6 Loop: LDA hello ,x

7 CMP #$00

8 BEQ Out

9 JSR CHROUT ; procedure call

10 INX

11 JMP Loop

12 Out: RTS ; return from subroutine

13
14 hello: .asc "Hello , World!"

15 .byt 13,0

Example applications We finish by listing a number of example applications
of island grammars:

• Extraction of specific constructs of interest such as symbol references. An
example of this is discussed in [Moo02].

• Extraction of code sections from mixed-language code such as HTML/JSP
[SCD03] pages or COBOL/CICS programs [SSV02].

• Deriving call graphs, described in this thesis from chapter 7 onwards.

• Extracting class hierarchies.

• Import tree recovery from build systems such as make, the GNU autotools
toolchain, Apache ant, cmake, etc.

• Simple pattern matching tasks.

1.5 Why SDF?

Performance SDF uses a scannerless GLR parser, based on an algorithm pro-
posed by Tomita [Tom85]. Several experiments comparing LL(n), Early
and GLR parsing have shown that ‘GLR is a far better choice for grammars
with local ambiguities, such as island grammars’ [Lee05]. In chapter 14 we
discuss this in more detail, and provide some performance improvements
to the SGLR parser.

CHAPTER 1. INTRODUCTION 13

Application range SDF lends itself to the convenient specification of a wide
variety of languages. It can accept the entire class of context-free lan-
guages, whereas many other parser generators are, by contrast, restricted
to some subclass of context-free languages. Yacc for instance only accepts
LALR(1) grammars.

Modularity As mentioned, SDF supports the entire class of context-free lan-
guages. Because this class is closed under composition, SDF specifications
can be combined to form new (composite) specifications. SDF specifi-
cations can therefore be modularaized, and import other specifications,
which greatly facilitates reuse and flexibility.

Separation of concerns An SDF grammar and the code that operates on
the constructs recognized by this grammar are strictly separated. This
results in a very clean, flexible and reusable grammar definition compared
language definition formalisms such as Lex and Yacc (see also section 5.5).

As a result, we can more or less plug and play with modules such as
Comments, Strings, etc. (An important question in the context of island
grammars however, is to what degree we can make use of this modularity
feature, since island grammars are not closed under composition; see the
research questions in section 4.1.)

These advantages make the Meta-Environment particularly well suited for
application in mixed-language environments: the combination of a single anal-
ysis backend with different language frontends (specified as SDF grammars)
allows one to analyze or transform constructs of the same nature in source files
across many languages.

Furthermore, the ASF+SDF Meta-Environment consists of a growing num-
ber of tools useful for reverse engineering, a notable current addition being
RScript [Kli05], which allows us to query extracted software facts by means of
a relational calculus.

Also, the Meta-Environment provides an IDE called MetaStudio, which
makes experimentation and interactive development easier. The 2.x version is
written in Java and offers syntax-directed editing, some nice tree visualization
capabilities, and more.

These advantages do come at a cost however: parsing languages defined by
SDF specifications using SGLR is inherently slower that the more ‘simplistic’
approaches, but often there is no real choice in the matter sinces the latter do
not scale well to large, complex or heterogeneous problems, in which case having
a somewhat slow solution may be a relatively small inconvenience.

CHAPTER 1. INTRODUCTION 14

Listing 1.5 Island grammar for procedure calls in NMOS/CMOS 6502 family
of processors found in the Commodore 64, Atari and Apple II among others.

%% NMOS/CMOS 6502 assembly language

module IslandGrammarAssembler

imports Layout

exports

sorts Program FunCall

context-free start-symbols Program

hiddens

sorts ProcCall IntCall JumpTarget

P DIGITS HexInt WATER Water COMMENT

ID LABEL Label

exports

lexical syntax

[0-9]+ → DIGITS

~[\ \t\n\;]+ → WATER

[\;]~[\n]* → COMMENT

[A-Za-z][A-Za-z0-9]+ → ID

[\ \t]*ID[\ \t]*[\n] → LABEL

lexical restrictions

DIGITS -/- [0-9]

WATER -/- ~[\ \t\n\;]

COMMENT -/- ~[\n]

ID -/- [A-Za-z0-9]

context-free syntax

Water → JumpTarget

%% JSR: jump subroutine

’JSR ’ caller:JumpTarget → ProcCall {prefer}

’JSR ’ → Water {reject}

ProcCall → FunCall

ID → Label

WATER → Water

LABEL → P {prefer}

LABEL → Water {reject}

Water → P {avoid}

COMMENT → P

FunCall → P {prefer}

P+ → Program {avoid}

Chapter 2

The ASF+SDF
Meta-Environment

Introduction The ASF+SDF Meta-Environment is a platform for interactive
program analysis and transformation. It features:

• A modular context-free syntax definition formalism called SDF

• A term-rewriting language called ASF (Algebraic Specification Formalism)
which enables the analysis and transformations of parse trees and custom
data structures

• An IDE called MetaStudio in which we can edit and test SDF and ASF
specifications and terms

• A parser and a parser generator

• Many other tools

While most tools are accessible from the command line, the MetaStudio IDE
hides all the command line nitty gritty behind a nice Java-based GUI, which
couples the various components by means of the ToolBus interconnection archi-
tecture. The ATerms data format is used for efficient interchange of structured
data. [BJKO00]. We concentrate on the command line view of the system here.

There may be several reasons for wanting to access their functionality through
the command line. For instance, some of the tools listed here are not accessible
through the IDE. Other features are buggy in the 2.0RC2 release when used
via the IDE. Furthermore, the command line allows for batch processing and
connection to external components.

Command line architecture Most tools will tell you their basic usage when
invoked with the -h switch. They input from stdin and to stdout (and stderr) by
default. The trees, which are represented as ATerms, can be displayed in textual
format by using the -t switch with most tools, as applicable. For a summary of
tool functionality, please consult the table of figure 2.2.

Some usage examples follow. Parsing the term “Donald Duck” over an SDF
grammar MyGrammar.sdf :

15

CHAPTER 2. THE ASF+SDF META-ENVIRONMENT 16

Figure 2.1: The MetaStudio IDE in the heat of the action

tool use
pt-dump Generates parse table from SDF
sglr Parses input terms over a language, outputs a parse tree1

filterPT Disambiguates by minimizing/maximizing occurrences of a given sort
addPosInfo Adds position info (line, column) to all nodes in a parse tree
implodePT Outputs trees in several levels of verbosity, e.g. ASTs
suckpt Extracts subtrees from a parse tree2

asfe Applies ASF equations to a parse tree

Figure 2.2: Some important tools in the Meta-Environment toolbox

CHAPTER 2. THE ASF+SDF META-ENVIRONMENT 17

pt -dump -m MyGrammar -o MyGrammar.tbl

cat "Donald Duck"| sglr -p MyGrammar.tbl

Rendering a tree as a graph can be done as follows:

cat "Donald Duck" | sglr -p MyLanguage.tbl \

| tree2graph \

| graph2dot \

| dot -Tps > myPicture.ps

Figure 2.3: Architecture of Meta-Environment command line tools

Chapter 3

Related work

Much of the work on SDF island grammars focuses on COBOL. For example:
[Moo02][KL03][?], etc. The Free University of Amsterdam (VU Amsterdam) has
a research group that does a lot of COBOL research using ASF+SDF technology.
The Software Improvement Group, a commercial spinoff from the CWI research
institute co-founded by Paul Klint, is a name that also frequently occurs in
relation to the topic [Ver00][Lee05].

In [Deu99] we can read about a 600 KLOC legacy COBOL system (Pen-
sionFund) that has been subjected to automatic documentation extraction. It
is rather sparse in the example department, as it lists only a single 15-line SDF
example. It mentions how island grammars facilitate parsing of vendor-specific
language extensions.

Ernst-Jan Verhoeven has developed a COBOL island grammar in SDF [Ver00]
that was meant to allow convenient source model extraction. It was intended
as a possible replacement for the lexical analyzer used in the Software Improve-
ment Group’s SAT (Software Analysis Toolkit). This includes a tool called
DocGen (short for Documentation Generator) which at that time used a lexical
fact extractor written in PERL. Open questions: annotation with position in-
formation slows parsing down to a point beyond feasibility for real-time parses.
How can this be remedied? He also points out some issues with ASF+SDF, and
concludes that the COBOL island grammar that came out of his research still
had too many problems to be used in the field.

Rob van der Leek has apparently picked up where Verhoeven left off. Among
other things, he developed the tool filterPT as part of his MSc graduation
research [Lee05]. I stumbled upon his thesis by accident via google, months
after I had started developing an island grammar without his tool filterPT
at my disposal. This tool is now part of the ASF+SDF Meta-Environment.
In his thesis, he also discusses a hybrid lexical/syntactical approach to fact
extraction called ’partial tokenization’. This is a multi-stage analysis. In the
first pass, the source code is scanned lexically to locate possible constructs of
interest, disregarding contextual information. In the second pass, the source
code is again inspected using an island grammar to classify the context in which
the suspected construct of interest appears, thereby eliminating false positives.
Since the possible constructs of interest are tokenized in the first pass, the island
grammar does not have to do this and will be less complex. He introduces ESDF,
which amounts to SDF extended with a ‘regular syntax’ section, to facilitate

18

CHAPTER 3. RELATED WORK 19

this partial tokenization.
He also discusses the use of Schroedinger tokens (which are not currently

supported by SDF, which has a scannerless GLR parser). These are generated
by a scanner encountering ambiguous tokens. These tokens lift some of the
burden of lexical analysis from the parser. He concludes that the performance
increase is a modest (constant) 10% and does not lead to a significant reduction
in parsing complexity.

Fuzzy parsing is mentioned in [Kop97], which distinguishes two types. The
first is a probabilistic technique from computational linguistics. The second is
a method of parsing in which a parser gets its input from a scanner. The parser
remains idle upon encountering, say, a water token. The token scanned, then,
would not be included in the parse tree. An application of this, which I refer to
as partial parsing, is discussed in chapter ??.

The development and fundamentals of SDF, SDF2 and SGLR parsing are
discussed in [Rek92] and [Vis97]. ASF, in conjunction with SDF, offers term-
rewriting based analyses and transformation of source code. Generic type-safe
traversal functions, a relatively recent extension to ASF, is discussed in [BKV02]
and [Vis02]. In the paper [BKMV03], an application of ASF is discussed in the
semantic disambiguation of parse forests. This allows us to rewrite ambiguity
nodes in parse trees by means of the amb() constructor function.

It is difficult, if not impossible, to establish whether an island grammar
performs exactly as intended. The behaviour we would like to see is for it
to recognize all constructs of interest in the source code (no false negatives),
and to identify no other strings as constructs of interest (no false positives).
Klusener and Lämmerl [KL03] get around this problem by starting with a full
baseline grammar for VS COBOL II, and using its productions for deriving
island grammars (or tolerant grammars as they call it) from it as needed. In
this way, they gain some of the benefits of using island grammars, such as
tolerance and terseness, while being able to ensure their correct behaviour. (Of
course, the absence of an available baseline grammar is often the problem that
suggests using island grammars in the first place, but still their paper provides
interesting insights into many relevant topics.)

Klint [Kli05] discusses a methodology and implementation for analyzing ex-
tracted software facts, called RScript. It offers a convenient abstraction of soft-
ware facts in the form of so called Rstores, and allows one to process these using
a relational calculus. The provided tooling is to become part of the ASF+SDF
Meta Environment.

Another attractive set of tools for parse tree analysis and transformation is
Stafunski [LV03]. From the paper’s abstract: “Strafunski is a Haskell-centred
software bundle for implementing language processing components - most no-
tably program analyses and transformations. Typical application areas include
program optimisation, refactoring, software metrics, software re- and reverse en-
gineering. Strafunski started out as generic programming library complemented
by generative tool support to address the concern of generic traversal over typed
representations of parse trees in a scalable manner. Meanwhile, Strafunski also
encompasses means of integrating external components such as parsers, pretty
printers, and graph visualisation tools.”

Stratego, which supports SDF through a toolset called XT, implements
enables language analysis based on rewriting with programmable strategies.
[BKVV06]

Chapter 4

Research questions

4.1 Research Questions

Island grammars, by any account, cannot be considered a celebrity subject
software engineering. A Wikipedia search1 on the topic returns a hit to the
Ipswich Grammar School, but nothing particularly relevant to the search term.
At the start of this research project, Paul Klint expressed his suspicion that
their usefulness may be limited, especially with respect to their lack of closure
under composition, but the subject was apparently still too scarcely researched
to make such assessments with any degree of certainty.

Much of the prior research on island grammars and ASF+SDF, amongst
which a number of MSc theses, has focused on the recognition of language con-
structs that are fairly easily defined, such as high-level constructs (e.g. function
definitions in C) or constructs wit a flat syntactic structure (e.g. variable oc-
curences). This thesis aims to investigate how suitable island grammars are for
more involved tasks, such as the identification of nested or recursive constructs,
often using C function calls as a representative example.

Also, some problems with ASF+SDF have been pointed out in the literature
and by some of my own experiments, and I will attempt to present solutions to
some of them.

1. How do SDF island grammars relate to existing research, methodologies
and technologies.

2. How can we implement non-trivial construct recognition and fact extrac-
tion tasks using island grammars? To what extent are island grammars
viable as a lightweight approach to grammar development?

3. What notations and techniques does ASF+SDF currently provide that
may be of use in the specification of island grammars? What modifications
or extensions would facilitate their development and application?

4. What can we do to improve the efficiency of parsing terms over an island
grammar? What are possible optimizations? What language features may
improve performance?

1Search was erformed on June 20, 2007.

20

CHAPTER 4. RESEARCH QUESTIONS 21

5. Which factors contribute to the reusability of island grammars? Can we
still write modular specifications, despite their lack of closure under com-
position? Do island grammars facilitate language-parametric fact extrac-
tion?

Chapter 5

Lexical analysis case studies

5.1 Introduction

In this chapter we shall take a look at some real-world examples of automated
software analysis using approaches other than island grammars. This should
help to answer the question whether there are any benefits to using island gram-
mars, compared to lexical approaches. We will focus on their metasyntax, which
is a key factor in the following areas:

• Correctness

• Robustness

• Maintainability

• Reusability

5.2 Lexical analysis and regular expressions

Context-free grammars allow us to specify recursion. This is needed to ex-
press sorts in terms of themselves, as is the case with arithmetic expressions for
example:

context-free syntax
Expr "+" Expr -> Expr
Expr "-" Expr -> Expr
Expr "*" Expr -> Expr
Expr "/" Expr -> Expr

The specification of the sort on the right hand side includes itself in the
left hand side. Lexical analysis is based on regular expressions, in which we
cannot express recursion (or nesting) in such a way. To get around this, we
would need to resort to code which explicitly maintains some state informa-
tion. Lex allows us to include C code do such things. However, introducing
general-purpose imperative programming language features into the equation,
as opposed to declarative programming, reduces the maintainability and veri-
fiability of a specification. The term ‘specification’ is perhaps also a little out

22

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 23

of place in this context, since such a specification is really more an imperative
program with declarative elements.

5.3 Syntax recognition in GNU Emacs

Emacs is a text editor that has been around since the seventies. Its core function-
ality is written in C, mostly for efficiency reasons. The rest is written in a LISP
variety called ELISP, short for Emacs Lisp. The name Emacs is an acronym
of Editor MACroS, indicating the prominence of LISP ‘macros’ throughout the
program.

We will look at how realtime syntax highlighting is achieved in ELISP. Emacs
knows about a number of built-in syntax classes, such as:

syntax class denoted by
whitespace characters ‘ ’
open parenthesis characters ‘(’
close parenthesis characters ‘)’
string quotes ‘”’
comment starters ‘<’
comment terminators ‘>’

We can use the following Elisp expression to mark “ ” as whitespace. (The
question mark is used to indicate that the following character is the character
to be put into the given class.)

;; Put the space character in class whitespace.

(modify-syntax-entry ?\ " ")

In addition to these syntax classes, there are a number of ‘flags’, which are
really additional syntax classes:

syntax flag meaning
1 1st character of a two-character comment start sequence
2 2nd character a two-character comment start sequence
3 1st character of a two-character comment end sequence
4 2nd character of a two-character comment end sequence

Most of these flags have been introduced to describe multi-character com-
ment delimiters. An example of their use:

;; Mark ‘/’ as:

;; - a punctuation character ,

;; - the first character of a start-comment sequence ,

;; - and the second character of an end-comment sequence.

(modify-syntax-entry ?/ ".13")

Examples:

;; Put the space character in class whitespace.

(modify-syntax-entry ?\ " ")

=> nil

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 24

;; Make ‘$’ an open parenthesis character ,

;; with ‘^’ as its matching close.

(modify-syntax-entry ?$ "(^")

=> nil

;; Make ‘^’ a close parenthesis character ,

;; with ‘$’ as its matching open.

(modify-syntax-entry ?^ ")$")

=> nil

;; Make ‘/’ a punctuation character ,

;; the first character of a start-comment sequence ,

;; and the second character of an end-comment sequence.

;; This is used in C mode.

(modify-syntax-entry ?/ ".13")

=> nil

An obvious problem with Emacs’ syntax recognition mechanism is that the
notation is very complicated. This problem is exacerbated by the mechanism’s
reliance on properties inherited from existing (standard) syntax descriptions.
So in order to reliably define a new syntax recognition scheme in this way, we
would first have to be able to understand (i.e. read) the existing ones.

In addition, the syntax recognition of several languages has problems with
certain types of constructs, which is evident from incorrect highlighting. For
example, the following PERL code applies a regular expression pattern match
(the code /["]/) to a built-in variable.

if (/["]/) {
...

}

The double quote is apparently taken to be a string opener, since the code
from the quote onwards is incorrectly coloured, which can remedied by putting
additional double quotes in so that their number is even. This is typical of the
kind of problems that regular expression matching has. Another example of the
same nature is the use of (an uneven number of) dollar signs within a verbatim
environment in Emacs’ Latex highlighting mode. The highlighter should ignore
dollar signs appearing in the context of such the verbatim construct, but fails
to do so because of its lacking awareness of syntactic structure.

5.4 Syntax recognition in KDE kate

Kate is a text editor that is part of KDE (the K Desktop Environment). This
GPL-licensed project is, along with Gnome, one of the two main open source
desktop environments in widespread use on Unix. With its 4.0 release planned
for the autumn of 2007, which will run natively on Apple’s Mac OS X and
Microsoft Windows, it is likely to become even more widespread.

KDE’s architecture is highly componentized, and the kate package provides
text editing functionalities, amongst which syntax highlighting, to many other
applications that make use of its library. KDevelop for example, a feature rich
multi-language IDE for KDE, uses it as its default text editor component.

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 25

Figure 5.1: syntax highlighting in KDE’s editor kate

Kate has separate syntax definition files for each language or language family.
It uses these to highlight syntax and to enable code folding. Here, we will take
a look at the file cpp.xml1 displayed in part in listing 5.1.

Kate’s C++ highlighter does not recognize and highlight function calls or
expressions. Some excerpts of a Kate C++ syntax highlighting file follow. It
has been edited for brevity and clarity in places.

First of all, we spot a variety of ‘Contexts’ with familiar names; Normal,
Commentar1, Commentar2, Define. Let’s take a look at the definition for the
context Normal (lines 10-17). This is the default context; text is in the Normal
context unless specified otherwise. It contains rules for deciding what to do when
scanning certain characters. Line 11 says that if we scan a single ‘#’-character
while in this context, we should change the current context to Preprocessor. A
context change is achieved through the syntax context="NameOfNewContext"
or lineEndContext="NameOfNewContext".

Context can be nested; returning to the parent context is done by context="#pop".
Note the automaton-like behaviour. Also note that this notation allows for
context-free behaviour, as contexts may be recursively nested.

We can more or less work out what’s going on by studying the specification
in listing 5.1 for a while, which is a big improvement over the Emacs case. It
should be noted that syntax highlighting improves the readability of the above
specification considerably. However, although the above type of specification
may suffice for this particular type of task, being the syntax highlighting of
C++ code, there are some inherent problems with its readability.

For example, state transistions, highlighting properties and language speci-
fication are intermixed. This lack of separation of concerns reduces readability.
In addition, the specification is rather verbose. The specification for comments
listed above, for instance, is only a part of what the entire specification con-

1Located in /home/erik/.kde/share/apps/katepart/syntax/cpp on my Kubuntu Linux
system.

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 26

tains. If we look at a C/C++ block comment of the form /* ... */, called
Commentar2 in the specification above, we can see that the opening delimiter /*
is specified in the context Normal, whereas the closing delimiter */ is specified
in the context Commentar2. I have put them close together in the excerpt above,
but they might be (and, in fact, are) quite far apart in the actual specification.

5.5 Syntax recognition with Doxygen/Lex

Doxygen is a program that can automatically generate documentation from
source code. Documentation consists of hyperlinked descriptions of classes,
methods, functions, etc, and of their interrelationships. This may be in the form
of textual descriptions, call graphs, browsable module overviews, etc. Source
code is annotated with special markup inside of comments. Such an annotated
comment is bound to a construct immediately preceding or following it. In this
example, the parameters of a C function declaration are annotated:

/*!

* \param x base

* \param y exponent

* \return x^y

*/

int multiply(int x, int y);

Doxygen supports C, C++, Objective C, C#, Java, PHP and IDL natively,
and some other languages through a mechanism of input filters. In order to
parse languages with a non-C-like syntax, one has to resort to rewriters that
preprocess the source code and transform it into a more C-like form. This can
be quite complicated for languages with a radically different syntax (such as
functional ones). This is one reason that Doxygen is not very useful for such
languages.

Doxygen can export to e.g. Latex and HTML, as well as to the intermediate
XML and perlmod formats. The XML format is intended as an intermediate
representation from which all other types of output (HTML, Latex, DocBook,
manpages, etc.) are to be generated, thus enabling the decoupling of the for-
matting of the documentation from its extraction. This is presently not the
case, however. Generation of output formats is not done from XML, but is
hardcoded directly into the output generator modules . The XML is available
for developers to write custom tools around, but Doxygen itself does not make
use of it (see figure 5.2).

Integration of these paths has been a stated development goal for some time,
but is inhibited by several reasons; notably the lack of separation of concerns,
which makes modularization hard. (For instance, part of the parsing happens
in the documentation generators.)

The main part of Doxygen’s language recognition and extraction, for all di-
rectly supported languages, is done in the monolithic 4997-line Lex specification
scanner.l. It defines a scanner that analyzes the input files and produces an
AST-like tree of entries containing properties of the constructs scanned.

The specifications for several languages are mixed into a single file, along
with additional C++ code that allows recognition of more complicated con-

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 27

Figure 5.2: Simplified Doxygen architecture. The blue bubble is the monolithic
parser. Input and output intended for the end-user is pink.

structs, such as K&R function declarations.2 In addition, state information and
updating of entries in the resulting syntax tree is also explicitly done in C++
code that is part the specification.

The following code excerpt from scanner.l shows how a fragment of the lan-
guage definition (<OldStyleArgs>[,;]) is mixed with C++ code, which itself
deals with multiple concerns at once. I have added indentation and comments
for clarity:

<OldStyleArgs >[,;]

{

QCString oldStyleArgPtr;

QCString oldStyleArgName;

/* process K&R agruments */

splitKnRArg(oldStyleArgPtr ,oldStyleArgName);

/* update AST information */

QCString doc ,brief;

if (current→ doc!= docBackup)

{

2128 lines of C++ code in scanner.l are needed to deal with K&R style function definitions
(the functions checkForKnRstyleC(), splitKnRArg() and addKnRArgInfo()).

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 28

doc=current→ doc.copy();

current→ doc=docBackup;

}

if (current→ brief!= briefBackup)

{

brief=current→ brief.copy();

current→ brief=briefBackup;

}

/* process K&R agruments */

addKnRArgInfo(oldStyleArgType+oldStyleArgPtr ,

oldStyleArgName ,brief ,doc);

current→ args.resize (0);

if (* yytext ==’;’) oldStyleArgType.resize (0);

}

This is a comparatively simple excerpt from the Lex specification. Getting
an idea of what the language to scan looks like by looking at this specification
is rather a challenge. (The sparse use of comments does not alleviate this
much.) Consequently, locating points where modification would have to be
done, should the need arise, would be difficult; predicting what the effect of a
given modification would be even more so.

Doxygen lists as possible improvements for future versions3 4:

• Use one scanner/parser per language instead of one big scanner.

• Move the first pass parsing of documentation blocks to a separate module.

• Parse defines (these are currently gathered by the preprocessor, and ig-
nored by the language parser).

• Add support to parse/document other languages. Suggested are: Perl,
Ruby, Flex, Yacc, SQL, Visual Basic, Fortran, Matlab, Verilog, VHDL,
Bash shell scripts.

• Add support for new output formats. Suggested are: XHTML, SGML,
DocBook, Framemaker.

Since the language definition is hardcoded into the program in the form of a
Lex specification, any additions or modifications to the recognized languages re-
quire at least a (re)compilation of the program. So, in order to extend Doxygen,
one must be a developer with thorough knowledge of Lex and C++, and be fa-
miliar with the fairly obfuscated internals of scanner.l and the other Lex C++
files that constitute Doxygen; rather a lot to ask from would-be contributors,
one might say.

The complexity and overlapping concerns explained above mean that Doxy-
gen’s language analysis functionality is difficult to maintain. It requires a lot of
specific knowledge about the programming languages covered by it, at the very
least.

If we compare this to an SDF specification, in which definitions for several
distinct languages can be modularized, and the definition of the language can

3http://www.stack.nl/∼dimitri/doxygen/arch.html
4http://www.stack.nl/∼dimitri/doxygen/todo.html

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 29

be clarified by descriptive sort names, as opposed to obfuscated by interspersing
it with Lex/C++ code, it becomes clear that SDF offers great advantages over
Lex in this respect. Some documentation generators have already been produced
using SDF, such as xDoc [Ver04], which uses SDF to generate language parsers,
and Stratego/XT to perform further analysis.

5.6 Discussion

Lexical analysis is highly tolerant; whereas a parser needs to process the entire
source text, lexical analysis will just happily detect the patterns it knows in
the text without compaining about its well-formedness. This allows for features
such as kate’s almost instant syntax highlighting, even for large source files.
In principle, we only have to highlight (up to) the visible sections of the code.
Advantages notwithstanding, we have noted a number of drawbacks common to
lexical approaches:

• The language specification’s notation is often quite difficult to grasp (kate,
Doxygen, Emacs)

• We must explicitly specify state transitions (kate, Doxygen)

• We must explicitly update additinal context-dependent variables such as
insidePHP, insideJava, insideTryBlock, etc. (Doxygen)

• Hacks are required to deal with analysis of difficult constructs, such as
K&R function declarations (Doxygen)

• Code that processes the tokens scanned is intermixed with the specification
of the language itself (Doxygen).

• Updating of DFA state is intermixed with language specification (kate,
Doxygen)

All in all, the developer is required to manually help craft the parse table
when using these lexical tools, while SDF does this automatically, resulting in
a much more readable (and therefore better maintainable) specification.

SDF is by definition about separation of concerns; it can describe the struc-
ture of a (formal) language, and nothing more. Processing its output (syntacti-
cally structured representations of source code) is left to other tools. Mappings
from the parse tree or AST to software facts can be specified declaratively in
separate components. In Doxygen, they are programmed imperatively by ma-
nipulating C++ data structures from inside the Lexer, such as Doxygen does.

The ability to connect powerful generic language analysis and transformation
tools in a pipeline, such as SDF + ASF + RScript + some visualization compo-
nent, provides us with the means for very powerful analysis or transformation
across a wide range of languages. The increased proliferation of tools that sup-
port SDF as a language specification format, such as the Meta-Environment,
Stratego/XT and Strafunski, etc, seems to spell a bright future for actual, work-
ing, widely available generic language technology tools. A tightly coupled mono-
lithic and non-interactive system like Doxygen is bound to lose out against these,
eventually. However, SDF and ASF have a number of issues, elaborated on in

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 30

chapter B.1, which should probably be solved before they can be expected to be
generally taken up in the world outside of university-trained specialists. (There
is a slight irony perhaps in the fact that, while Doxygen has had modularization
of their parser component on their todo-list for quite some time, creators of such
toolsets as the Meta-Environment and Strafunski rely on a mix of separate doc-
umentation tools (Doxygen, Javadoc and Haddock) themselves for generation
of their API documentation.)

CHAPTER 5. LEXICAL ANALYSIS CASE STUDIES 31

Listing 5.1 Source code excerpt of kate’s C++ syntax highlighter specification
in file cpp.xml

1 <list name="types">

2 <item> auto </item>

3 <item> bool </item>

4 <item> char </item>

5 <item> double </item>

6 ...

7 </item>

8
9 <contexts >

10 <context attribute="Normal Text" lineEndContext="#stay" ↙

name="Normal">

11 <DetectChar attribute="Preprocessor" context="↙

Preprocessor" char="#" firstNonSpace="true" />

12 <Detect2Chars attribute="Comment" context="Commentar 1"↙

char="/" char1="/"/>

13 <Detect2Chars attribute="Comment" context="Commentar 2"↙

char="/" char1="*" beginRegion="Comment"/>

14 ...

15 </context >

16
17 <context attribute="Comment" lineEndContext="#pop" name="↙

Commentar 1">

18 <DetectSpaces />

19 <IncludeRules context="## Alerts" />

20 <DetectIdentifier />

21 </context >

22
23 <context attribute="Comment" lineEndContext="#stay" name=↙

"Commentar 2">

24 <DetectSpaces />

25 <Detect2Chars attribute="Comment" context="#pop" char="↙

*" char1="/" endRegion="Comment"/>

26 <IncludeRules context="## Alerts" />

27 <DetectIdentifier />

28 </context >

29
30 <context attribute="Preprocessor" lineEndContext="#pop" ↙

name="Define">

31 <LineContinue attribute="Preprocessor" context="#stay"/↙

>

32 </context >

33 </contexts >

Chapter 6

Simple C island grammar

6.1 Introduction

In this chapter, the development of a relatively simple island grammar for C is
documented. Firstly, this serves as an introduction to the implementation of
SDF island grammars, pointing out some common issues. Secondly, it provides
a basis for the development of a more complex island grammar in the following
chapter. As an example, we will take the following C source code:

/**
* doxy comments
*/

int b;

int f()
{

g();
bla; /* this comment is ignored */
h();

}

The idea is to extract the comments, declarations and definitions, which are
prerequisites for automatically generating documentation from the source code.

6.2 Requirements

• Parse ANSI C

• Identify comments as constructs of interest

• Recognize function declarations and definitions (ANSI C style, no K&R)

• Recognize stand-alone, unnested function calls

• Parse but ignore global variable and type declarations

32

CHAPTER 6. SIMPLE C ISLAND GRAMMAR 33

• Allow unambiguous parse by SGLR, without the need for external post-
parse filters

Preprocessor directives are ignored. Strictly speaking, they are not part of
the C language itself; they are expanded by a macro preprocessor, and this
expanded form of the source code (without preprocessor directives) is fed to the
compiler.1

6.3 Design

High level structure The top level syntax of a C program is the globals
section. This section contains the function declarations and definitions we aim
to recognize:

Program

Global*

FunDef FunDecl

These constructs typically look something like this:

... Id "(" ParamList ")" ";" -> FunDecl

... Id "(" ParamList ")" CompoundStat -> FunDef

The sort CompoundStat represents the ‘compound statement’, also called
‘block statement’. Loosely speaking, it is a list of statements enclosed in curly
braces “{” and “}”. We now define a water sort so that we may ignore what-
ever is in between function definitions and function declarations in the globals
section. This gives rise to the following basic grammar structure:

Program

Global*

IslandGlobal

FunDef FunDecl

WaterGlobal

Statement separation Consider again the basic form of a function defini-
tion given above. In order to parse a function definition, we must know where
its opening and closing braces are. However, compound statements may also
contain braces, for example as part of a string, array initializer, or nested com-
pound statement. This in turn necessitates the definition of some of the internal

1Individual compilers may deviate from this scheme of dealing with preprocessor directives,
as some directives may be used to pass arguments to the compiler.

CHAPTER 6. SIMPLE C ISLAND GRAMMAR 34

structure of compound statements, which as we noted are basically made up of
statements.

language construct terminated by
statement ‘;’
compound statement ‘}’
goto label ‘:’
case, default (part of switch) ‘:’
comment ‘*/’ or newline

Table 6.1: Statement terminators in C

Most statements in C are terminated by a semicolon “;”. However, any of
the constructs from table 6.1 may occur as part of a compound statement, and
not all of them end on a semicolon. Therefore, we cannot simply specify a
compound statement of code as being a list of statements separated by “;” (a
semicolon). To help ensure the proper recognition of individual statements, we
consider the statement separator “;” to be a signal sequence, a characteristic
local syntactic feature of statement separation. In order to ensure that it is not
accidently recognized as water, we explicitly exclude it from the definition of
the sort WaterStat. Simple statements are covered by the production:

WATER* ";" -> WaterStat {prefer}

C has a number of ways in which a compound statement can occur: as
autonomous statements, or as an embedded part of other statements, such as if-
else blocks. We can circumvent the need to explicitly specify all such statement
types (if, for, while, switch, do ... while, etc.) in detail by defining a
generic statement:

WATER* CompoundStat -> WaterStat {avoid}

With this single generic production, an if statement will be parsed as follows:

if (...) {
...

}

WaterStat*

if (...) {...}

The production also covers constructs more complicated constructs such as
do {...} while (...), and as such saves a lot of specific productions. Here is
an example of how it breaks such statements down into separate WaterStat ’s:

for (a; b; c) {
...

}

WaterStat*

for (a; b; c) {...}

CHAPTER 6. SIMPLE C ISLAND GRAMMAR 35

Figure 6.1: Import tree for the comment island grammar

do {
...

} while (...)

WaterStat*

do {...} while (...)

6.4 Results

The source code for the extractor is listed in section A.1. Application to the
example C code given in the introduction section of this chapter results in the
following output (which based on Doxygen’s XML output format:

<comment >

* doxy comments

</comment >

<memberdef kind="variable">

<type>int </type>

<name>b</name>

</memberdef >

<funbody >

<funcall caller="g">g</funcall >

<ignoredstatement />

<funcall caller="h">h</funcall >

</funbody >

6.5 Discussion

We have seen that we can specify separate water sorts on different levels of
the the grammar’s syntactic hierarchy. This isolation reduces the risk of pos-
sible clashes, confining the effects of water sorts to their respective modules.

CHAPTER 6. SIMPLE C ISLAND GRAMMAR 36

This increases the possibilities for compositionality of the grammar, a property
discussed in more detail in chapter 11.

On the level of statements, we have seen how signal sequences (i.e. the semi-
colon) were used to help enforce the recognition of individual statements. This
was done by excluding the signal sequence from the water sort WaterStat. This
will cause the parser to generate a parse error upon encountering such a se-
quence, unless it occurs as part of a specified construct (i.e. island).

Chapter 7

Island grammar for C
function calls

7.1 Introduction

This chapter deals with a more complex example of an island grammar, one
that identifies function calls in C. As we argued in the introductory chapters,
the function call extraction has many useful applications, their visual rendering
as call graphs being just one. Also, in order to get at the function calls in a C
program, we must descend several levels of nested constructs, which makes the
problem interesting from a syntactic analysis perspective. The design and de-
velopment of a function call grammar poses a number of questions fundamental
to the topic of developing island grammars. To name a few: what constructs
will we define in detail, and which ones do we leave as water? How can we make
constructs of interest stand out from surrounding water?

7.2 Requirements

If we want to be able to determine not only which functions are called, but also
which functions call them, we will have to define function definitions (FunDef)
in such a way that we can tell from which function a given function call stems.
Function definitions and declarations are also used to validate the extracted
calls later on. Our requirements then are:

• Identify function calls

• Identify function declarations and function definitions

• Recognize ANSI C style function declarations and definitions (no K&R)

• Definition should be minimal in terms of the number of explicitly defined
constructs and complexity and (less importantly) in terms of number of
productions, number of sorts and lines of code.

• Preferably, allow unambiguous parsing, if possible without resorting to
post-parse filters external to SGLR

37

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 38

Expr

Id = Expr

Id

y

= Expr

NatCon

3

* FunCall

f(x)

Figure 7.1: Parse tree of an expression containing a function call

7.3 Implementation

Function declarations, which are mapped to the sort FunDecl, and function
definitions, mapped to FunDef, are both top-level constructs; they occur in
derivations from the start symbol Program within a few derivation steps. Their
specification is fairly straightforward, and can be found in the source code in
section A.2.

When extracting function calls, we must ask ourselves: in which contexts
can function calls (the sort FunCall) occur?

1. As a stand-alone statement (the sort Stat)

2. Inside (non-constant) expressions (the sort Expr)

Recognition of a FunCall as a stand-alone statement among other statements
is not particularly difficult, given a correct definition of FunCall, which is also
straightforward:

Id "(" {Expr ","}* ")" -> FunCall

In fact, (1) is merely a special case of (2) since an expression by itself, and
consequently a function call too, constitutes a valid statement. The second case
is quite involved however.

Although we are not interested in expressions per se, they are important
in the sense that they are a context in which function calls might appear. An
example of this is the expression: y = 3 * f(x). A typical parse tree for such
an expression over a full grammar is depicted in fig. 7.1. Expressions themselves
may occur in many contexts; the table in figure 7.1 lists some of them. There
exist a number of possible strategies for recognizing function calls. In decreasing
order of structural preciseness, we have:

1. Recognize function calls as part of Expr, where Expr may occur only in
prescribed contexts, such as assignment statements.

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 39

2. Recognize function calls as part of Expr, where Expr islands may be ran-
domly scattered through function bodies otherwise defined as water. In
particular, statements are not recognized as separate entities.

3. Recognize (compound) statements as composed of either water or Expr,
in which FunCalls may reside.

4. Recognize function calls anywhere, except in explicitly defined contexts in
which they may not appear, such as comments and strings.

Stat contains nested Stat?
if (Expr) Stat yes
else if (Expr) Stat yes
while (Expr) Stat yes
Id = Expr no
Expr ? Expr : Expr no
return Expr no

Table 7.1: Some contexts in which Expr may occur

Approach number (2) is risky; if Expr ’s are not sufficiently well-defined,
the parser may interpret something that is supposed to be an Expr as water
instead. Suppose for the sake of argument that we had accidentally omitted
the rule Expr "?" Expr ":" Expr -> Expr. Now, our parser would fail to
recognize any subterm containing this operator as an expression. This implies
that any FunCalls occurring in our unrecognized Expr will also not be properly
recognized and, hence, will be missed by the extractor. So, approach (2) may
result in false negatives.

Another argument for defining Expr ’s explicitly: when recognizing function
calls, we would like to know at what symbol the FunCall starts, but also where
it ends. In C, they end on) (a closing parenthesis). However, arguments to
a function may be complex expressions themselves, consisting of string literals,
bracket expressions, typecasts and whatnot. In particular, they may contain
commas and parentheses, which complicates the recognition of the Expr ’s in
our definition of FunCall, and therefore of FunCall itself:

myfun("(\(()(\")"); /* which ")" closes the FunCall? */

So Expr ’s are valid embedded constructs with respect to FunCall ’s, and in
order to recognize them we must consider all these factors. Here are some
examples of invalid surrounding constructs:

char *s = "myfun()"; /* string, not a FunCall */
/* myfun */ /* comment, not a FunCall */

These constructs have been defined in the island grammar through produc-
tions of a chiefly lexical nature. Our island grammar relies on string literals to
disqualify certain substrings as possible FunCall ’s, and to swallow parentheses
not belonging to a function call.

The implementation of approach (3) is discussed in section 10.1.2. Regarding
(4), it can be said that specifying the locations of possible function calls by

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 40

defining where they can not occur runs somewhat counter to the customary
ways of thinking about language design. Grammars of this type are sometimes
called lake grammars, and even though the approach is interesting, it has been
left unimplemented due to time constraints.

In order to be able to properly handle all of the issues mentioned in an
intuitive manner that also provides some confidence in the correctness of the
resulting grammar, I have chosen to start out by implementing approach (1).
That means we will only recognize function calls as part of Expr ’s, and Expr ’s
may only occur in prescribed valid contexts.

Signal sequences As in the previous chapter, we distinguish between several
source code levels, each of them with their own water sort. On the top level
of globals and function definitions, we have WaterGlobal, which excludes semi-
colons as signal sequences. At the function definition level, inside statements,
our signal sequences are semicolons, parentheses and curly braces, which are
excluded WaterStat as such.1

Restricting the effects of water sorts to their own modules increases the
compositionality of the grammar. It allows us to reuse, say, the module Stat,
without the risk of its water interfering with the rest of the grammar, provided
it is defined sufficiently restrictively.

Moreover, by preventing anything containing these characters from being
parsed as water, we guarantee that we won’t miss any possible function decla-
rations, definitions or calls. Thus, we favour false positives over false negatives;
the former can always be eliminated using semantic analysis, whereas the latter
amounts to irrecoverable information loss in the parsing stage. In doing so, we
also favour parse errors over false negatives, or to put it another way, correctness
over tolerance.

Function and method calls have similar syntax across many procedural, func-
tional, and other language families (C, Java, PHP, BASIC, Pascal, Python, etc):

f(..., ..., ...)

That is, an identifier followed by an opening parenthesis, followed by a
comma-separated argument list, followed by a closing parenthesis. However,
there are also languages such as LISP, Haskell or Matlab, which do not require
parentheses for function calls in all cases. So by disallowing parentheses and
such, we also favour correctness over language portability.

7.4 Results

The source code is listed in section A.2. We have defined the following con-
structs:

A simplified sorts graph of this grammar can be found in figure 7.2. Some
notes on this grammar:

1Excluding signal sequences from water sorts is especially useful during development, since
it alerts us to possible false negative in the grammar. At the end of the day, we will in principle
have explicity defined all constructs that may contain signal sequences in the form of islands
or catchers. While this may still allow for ambiguities around constructs concerning these
signal sequences, false negatives due to excessively tolerant water sorts are at least ruled out.
See also chapter 11.

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 41

Islands Water

function declarations builtin types
function definitions typedefs
function calls enums
expressions structs, unions
statements which might contain expressions∗

A handful of keywords, mainly for rejection purposes
goto labels, case statements, etc.

*) if, else, return, etc.

• The definition of the FunCall sort is reused to capture function attributes
in FunDef, which look something like this:
extern void *sbrk (intptr t delta) attribute ((nothrow))
This trick seems to work; very agile indeed.

• One of the two types of function pointer calls, which looks like this:
(*fptr) (x), is not recognized, but may be easily added because the
syntax is very similar to that of ordinary function calls. The other nota-
tion has exactly the same syntax as a regular function call and is therefore
recognized properly.

• Functions returning pointers are not recognized.

• The C-builtin sizeof() is recognized as a function.

• C++ and Doxygen type comments are currently broken: they cause parse
errors, while the island grammar from the preceding chapter did not.

7.5 Discussion

In order to be able to extract function calls, we have opted to define expressions,
strings, etc, to a fairly precise level. Water is used to capture such constructs as
function attributes and global variable declarations. In particular, structs and
unions are not explicitly defined, but we do have a basic definition for variable
declarations, required because they may contain expressions. It would not be
much work to extend this to cover all possible types of declarations in C. So, even
though this should strictly speaking be considered water, it is almost a precise
definition. The same applies to other water constructs used in our grammar.
They would not be very difficult to factor out, and indeed we have come close
to defining a full grammar for C.

The expression grammar is considerably large, and has been a focal point
of our development and disambiguation efforts. Some shortcuts were taken in
defining it. In particular, the priorities and associativities defined are partly
random and nonsensical in an artihmetical sense, and are intended purely for
disambiguation. Moreover, expressions are not type-aware in any way, meaning
that we can add integers to strings, and so on. Also, the definition of certain
constructs such as the array indexing operator are more liberal than in ANSI
C.

It has to be emphasized that a lot of the ‘shortcuts’ used, especially in the
expression grammar, caused parse errors and (unacceptable) ambiguities later

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 42

Program

Global*

IslandGlobal

FunDef

Stat*

WaterStat

¬[\ \ t \ n\; \{\} \ (\)]+

IslandStat

if(Expr) = Expr ...

FunDecl

WaterGlobal

¬[\ \ t \ n\;]+

Figure 7.2: Simplified grammar tree for the function call island grammar, show-
ing different water regions. Expr and FunCall ’s inclusion is cyclic (not shown).

CHAPTER 7. ISLAND GRAMMAR FOR C FUNCTION CALLS 43

on that would have warranted being more precise from an early stage, since
eliminating some of them turned out to be quite time consuming. This demon-
strates some of the difficulty of predicting the benefits of a ‘watery’ approach
to defining particular constructs.

Chapter 8

Fact extraction

8.1 Introduction

This chapter explains how the required software facts may be obtained from
source code using the grammars developed in the previous chapters. It outlines
a number of possible extraction toolchains using various technologies, and de-
scribes two of them in detail, namely one using ASF and another using a custom
Java extractor called suckpt.

Marking parse tree nodes for extraction SDF provides a number of con-
structs that may be used to mark subtrees intended for extraction. Consider
the following SDF production:

fname: Id "(" args: {Expr ","}* ")" -> FunCall {cons("Call")}

Given this rule, we could extract subtrees from the parse tree or AST based
upon sort name at the rhs (FunCall), the constructor function name (Call), or
one of the labels (fname or args). The recent addition of labels to SDF allows
us to refer to subsorts in a production by name, as opposed to, say, their order
of occurrence within the production. All of this provides us with a number of
convenient ways to perform language-independent extraction.

Subtree extraction There are several ways of extracting the relevant infor-
mation from a parse tree in ATerm format:

• → parse tree (XML) XPath−→ calls (XML)
xsltproc−→ HTML/DocBook/La-

tex/etc

• ASF−→ calls (ATerm) → calls (XML)
xsltproc−→ HTML/DocBook/Latex/etc

• → AST
Stratego/XT−→ calls

• ApiGen−→

• suckPT−→ calls

• Sdf2Haskell−→ AST (Haskell)−→ calls

44

CHAPTER 8. FACT EXTRACTION 45

The XPath approach is used in [Lee05]. Stratego/XT [BKVV06] is used in
xDoc [Ver04]. The Sdf2Haskell tool is part of the Strafunski toolset [LV03].
There also exists a Java visitor generator called JJForester, which can be used
to specify traversals over parse trees in Java.

We will be using suckpt, a program which has been developed in the course
of this research project and described in chapter 8.2.2. Using it, we can extract
subtrees from a parse tree based on the sort at the right hand side of their top
node.

8.2 Method

8.2.1 ASF extractor

Parse tree traversal by explicit term rewriting We can extract software
facts by parsing a source code text, traversing the resulting parse tree, and
extracting the desired information from the relevant nodes. We may also take
contextual information into account involving other nodes which are in some
way related.

ASF allows one to specify type-preserving transformations on parse trees.
We can do so by writing explicit equations for each type of node we would like to
traverse. For example, to traverse the parse tree of figure ?? in order to reach
a function call, we must must first traverse nodes of type Program, FunDef,
Stat and Expr. We may also have to define separate equations for the various
concrete syntax forms these sorts may take on. As an example, consider some
of the concrete syntax forms of a C-statement (Stat):

context-free syntax
"if" "(" Expr ")" Stat -> Stat
"while" "(" Expr ")" Stat -> Stat
"for" "(" Expr ";" Expr ";" Expr")" Stat -> Stat
"return" Expr -> Stat
{Expr ","}* -> Exprs
getExpr(Stat) -> Exprs

variables
"$Expr"[0-9]* -> Expr

equations
getExpr(if($Expr) $Stat) = $Expr
getExpr(while($Expr) $Stat) = $Expr
getExpr(for($Expr1;$Expr2;$Expr3) $Stat) = $Expr1, $Expr2, $Expr3
getExpr(if($Expr) $Stat) = $Expr

The point here is that in order to get at the expressions (Expr) contained
within such statements, we have to write a separate equation for every concrete
syntax form. This phenomenon may apply to many sorts on a traversal path1, so
the number of required (boilerplate) traversal equations may become unwieldy.

1Expressions themselves in particular have many many operators (+, -, *, /, etc.) which
would all require separate equations.

CHAPTER 8. FACT EXTRACTION 46

Also, more realistic examples of equations are generally much more complex
(and less readable) than the ones above.

In addition, the need to refer to concrete syntax in such equations means
the equations will break as soon as a non-compatible modification is made to
the concrete syntax. This is especially a nuisance during grammar development,
as this process usually involves many changes to the (concrete) syntax, which
would necessitate corresponding changes in the equations. It also limits the
portability of an ASF specification, since its dependence on the specifics of
concrete syntax ties it closely to a syntax specification for a certain language or
language dialect. In short, the process requires much boilerplate code, and is
both very laborious and error-prone.

Implicit term reriting by traversal functions Traversal functions auto-
mate the traversal of parse trees, eliminating the need for writing most of the
tedious boilerplate functions. ASF currently offers three types of traversal func-
tions [BKV02]:

1. A fold or accumulator. This is a type of higher-order function which ap-
plies a function f to a data structure s of sort S1 (which may be a parse
tree) and computes a return value, while leaving s unaltered.

f(S1, S2, ..., Sn) → S2 {traversal(accu, ...)}

The higher-order function is implicit in ASF, and we only have to supply
a system of equations for f , for example:

context-free syntax
Id* -> Symbols
f(Program, Symbols) -> Symbols {traversal(accu, ...)}
f(FunDecl, Symbols) -> Symbols {traversal(accu, ...)}
f(FunCall, Symbols) -> Symbols {traversal(accu, ...)}
f(FunDef, Symbols) -> Symbols {traversal(accu, ...)}

equations
f($FunDef, $Symbols) = getId($FunDecl) $Symbols
f($FunDecl, $Symbols) = getId($FunDecl) $Symbols
f($FunCall, $Symbols) = getId($FunCall) $Symbols

Upon evaluation of these equations, the parse tree is traversed automati-
cally, and the function f is applied to any nodes encountered during this
traversal that match the given definition.

2. A transformer of the form:

f(S1, ..., Sn) → S1 {traversal(trafo, ...)}

This may return a transformed version of its input data structure.

CHAPTER 8. FACT EXTRACTION 47

fProg(
int f1(void);
int f2(void)
{
g1();
f2();
if(g2(x) < 2) {
g3((g4));

}
}

,
)

fundecl(f1),
fundef(f2),
funcall(f2,g1),
funcall(f2,f2),
funcall(f2,g2),
funcall(f2,g3),
funcall(f2,g4)

Figure 8.1: Input (left) and output (right) of the ASF extractor.

3. An accumulating transformer, which returns a (possibly transformed) ver-
sion of its input data structure of type S1, as well as a computed value of
type S2:

f(S1, S2, ..., Sn) →< S1, S2 > {traversal(accu, trafo, ...)}

We can specify directives to guide traversal behaviour (top-down, bottom-
up, break, continue) in place of the three periods above.

The implementation of traversal functions used through the (graphical) MetaS-
tudio interface is currently buggy (see section B.1). Furthermore, MetaStudio’s
‘debug reduce’ function does not work. The command line version offers some
more verbose output, but it does not list, for instance, which nodes are vis-
ited during traversal and which rewrite rules are applied, so its helpfulness in
debugging ASF specifications is limited.

Implementation of the extractor Listing 8.1 shows the source code for
the function call extractor in ASF. Some example input and output is shown in
figure 8.1. In order to enable fact extraction from the command line, I have also
developed suckpt, described in section 8.2.2, as a separate command line tool.
This is convenient for both ad-hoc extractions and more systematic ones (see
section 9.2). In addition, its input trees do not necessarily have to be completely
well-formed. We can use one extractor to validate the other2.

8.2.2 Java extractor

Introduction Suckpt, short for suck-subtrees-from-a-syntax-tree, is the Java
program that allows one to specify a sort for which it will extract all occurrences
from a given syntax tree in a postorder traversal. It spits out the sucked subtrees
at the other end as a series of files containing parsetrees in ATerm format, having
the specified sort as their root node. See section A.4 for the source code.

Extraction with suckpt is done in several stages. First, we extract all Fun-
Decl ’s. From those, we extract Id ’s. We do the same for FunDef ’s, but from

2The Java extractor was originally created because of problems with getting traversal
functions to work.

CHAPTER 8. FACT EXTRACTION 48

Listing 8.1 Function call extractor in ASF using traversal functions

%% Function call extractor

%%

%% extracts:

%% - function declaration

%% - function definition

%% - function calls

equations

[] fProg($FunDecl ,$DList) = $DList ,fundecl(getId($FunDecl))

[] fProg($FunDef ,$DList)

= fFunDef($FunDef ,

$DList ,fundef(getId($FunDef)),

getId($FunDef))

[] fFunDef($FunCall ,$DList ,$Id) = $DList ,funcall($Id ,getId(↙

$FunCall))

%% the following functions operate on concrete C syntax

[] getId($Cruft? $Type? $Id ($ParamList) $FunAttr *;) = ↙

$Id

[] getId($Id ($ExprList)) = $Id

[] getId($Cruft? $Type? $Id ($ParamList) $CompoundStat) = ↙

$Id

them we also extract all FunCalls. For the source code of suckpt and the batch
extractor that invokes in, please consult section A.3. The staging described here
is reflected in the ASF extractor of the following section, which is much clearer
than the Java/bash extractor. Suckpt is invoked as follows:

java SuckPT PARSETREEFILE SORTNAME

On the command line, this may look something like:

generate parse table from SDF grammar module

pt -dump -m MyGrammar -o MyGrammar.tbl

parse a term over its language

output parse tree in textual ATerm format

sglr -lt -p MyGrammar.tbl -i MyTerm.trm -o MyTerm.tree.txt

extract subtrees for sort FunDef

subtrees are written to to FunDef.tree.txt .[0 -9]*

suckPT MyTerm.tree.txt FunDef

show text of parsed term

unparsePT FunDef.tree.txt.1

Since the extracted data are themselves parse trees, they may be manipu-
lated in ASF or SDF again, using the sort by which they were extracted as the
start symbol.

CHAPTER 8. FACT EXTRACTION 49

The suckpt program allows for ad-hoc tree traversals from the command line.
We don’t need to write an SDF and ASF specification for a traversal function,
and it can operate in batch mode.

An application of suckpt in the extraction and validation of function calls is
discussed in section 9.2. Another application of suckpt is may be the following.
Parse trees generally are huge; too large to conveniently view, process, print or
convert to some visual representation such as a JPEG image. With suckpt, we
can extract the subtrees we are interested in and operate on them instead of
the original huge tree.

Its functionality may be expanded by allowing where-clauses, so one could
specify to suck only those trees that are of sort FunDef and where, say, the Id
of the sucked FunDef equals ‘foo’. Also, support for some common traversal
strategies, such as ASF’s top-down, bottom-up and continue, may be imple-
mented.

At the moment, suckpt is implemented in such a way that the JVM has to
be restarted for every sucking operation. Since extracting function calls involves
extracting of FunDefs, FunDecls, FunDefs and Id ’s, a lot of sucking is going on,
and the function call extraction performed on parser.c was slow as molasses,
but optimizations might be made to remedy this with regards to restarting the
tool, disk I/O, not traversing subtrees of impossible ancestors, etc. Then again,
we might just use another tool altogether.

Implementation Suckpt performs a complete postorder traversal of a tree.
Upon visiting a node, it checks whether that node satisfies certain conditions.
If so, the subtree T rooted at that node is extracted. Nodes (ATerms) of the
following forms are recognized, while others are ignored:

1. parsetree(T, ...)

2. appl(prod([...], S, ...), T)

3. appl(list([...]), T)

Currently, the only condition implemented is that the context-free sort on
the right hand side S of the visited node has the exact name that we specify
(e.g. FunDef). While this suffices for our purposes, but adding conditions would
not be very difficult.

Chapter 9

Validation

9.1 Introduction

The calls extracted using our island grammar should be validated to ensure
their correctness, and that of the grammar itself and of the extractor used. The
present chapter describes how this is done. As a test case, we will use some of the
C source code for the SGLR parser, namely the file sglr/libsglr/parser.c.

9.2 Method

Recipe The parsing function π(s) maps the string s to its associated parse
tree p. Our extraction function εV (p) takes all occurrences of the sort V in p to
a set of subtrees P which have V at its root node. Our strategy for validating
function calls for a given source file f will be as follows:

1. Let s be the concatenation of the text of all files directly or indirectly
imported by f ; this collects the declarations for all functions callable from
f into a single string.

2. Obtain parse tree p = π(s).

3. Extract all subtrees pi from p where the sort at their root node is FunDecl,
giving P = εFunDecl(p).

(a) For every pi ∈ P , add the function fi whose declaration it represents
to the set D, which represents extracted function declarations and
definitions

4. Extract all subtrees pi from p where the sort at their root node is FunDef,
giving P ′ = εFunDef (p)

(a) For every pi ∈ P ′, add the function fi whose definition it represents
to the set D of extracted function declarations and definitions.

(b) For every pi ∈ P ′, extract FunCall’s, obtaining a set of function calls
Q = εFunCall(p)

i. for every pi ∈ Q, add the function fi whose call it represents to
the set C of extracted function calls.

50

CHAPTER 9. VALIDATION 51

5. Compute subset of validated calls Cvalid ⊆ C (see below)

Note that both C and D are unvalidated. However, it is assumed that they
are correct, which is a reasonable assumption since both function declarations
and function definitions are easy to recognize. Note that constructs recognized
incorrectly as calls may be inadvertently validated in case their Id happens to
match a symbol in C or D.

Collecting the declarations First, we need to gather together all the rele-
vant function declarations for the module in question into a single source file.
The ‘includes’ relation, as in source file a includes source file b, is a transitive
binary relation. Its transitive closure gives us all the files which may contain the
required function declarations and definitions that x can legally call. We can let
gcc’s1 preprocessor cpp work this out. It traverses the import tree, expanding
all occurrences of preprocessor macros, including # include directives. In doing
so, we obtain a single ‘bundle’ file that contains all the function declarations
and definitions with a command such as2:

cpp parser.c | grep -v -e "^#" > foo.c.expanded

Information about where the necessary header files are located in the filesys-
tem is generally recorded in a codebase’s build system configuration files. Such
descriptions are usually rather heterogeneous. I have manually gathered the
required paths from the makefile for libsglr.

Parsing and fact extraction For our parsing function π, we will of course
use the Meta Environment’s parser sglr. Its use is described in chapter 2. The
suckpt extraction approach described in section 8.2.2 provides us with the nec-
essary information to establish the calls relationship which we want to validate.

Validation We will check the extracted calls C against extracted declarations
and definitions D. More precisely, we will require the set of valid calls Cvalid to
be as follows:

Cvalid = {(f1, f2) ∈ C | f1 ∈ D} (9.1)

Here, f1 is the calling function and f2 is the function being called.3 Ex-
pressions such as this one map nicely to the functional programming language
Haskell. The following Haskell-program gives us the required set Cvalid:

validate :: Eq a => [(a,a)] → [a] → [(a,a)]

validate calls decls = [(f1,f2) | (f1,f2) <- calls , f2 ‘↙

elem ‘ decls]

1GNU Compiler Collection, formerly GNU C Compiler.
2NB: Function definitions, unlike function declarations, are generally not imported using

the #include directive.
3Note that this type of validation may eliminate hits that might be considered function

calls from a local syntactic viewpoint, even though strictly speaking, C requires them to be
declared or defined. Such hits are irrelevant for the purpose of generating call graphs though,
since if a function is neither declared nor defined, it can most certainly not be called.

CHAPTER 9. VALIDATION 52

The following Prolog-program gives us the same set:

valid(F1, F2) : −declared(F2), calls(F1, F2). (9.2)
setof(F1/F2, valid(F1, F2), L). (9.3)

SQL, like RScript [Kli05] is based on tuple relational calculus, and is there-
fore a good choice for performing analyses such as these, although more compli-
cated analyses are not so easily performed in it. The following SQL statement,
again, gives us the same set:

SELECT caller, called FROM calls WHERE called IN (9.4)
(SELECT name FROM decls); (9.5)

The extracted information is stored using sqlite, an SQL compliant RDBMS
that stores the data for a database in a single file. This is a very convenient tool
to use from the command line. This storage approach is also highly scalable,
since we may use any SQL-compliant RDBMS available. Using such a database
as a storage backend can help in performing batch extractions and analyses.
SWI-Prolog offers a bridge to SQL called PrologSQL that can translate Prolog
predicate calls to SQL statements. GNU Prolog offers a Prolog to C compiler.

Extracting the reference calls relation We extract the reference call graph
using gcc and a tool called egypt. This relies on RTL files produced by gcc to
generate a GraphViz dotfile which we can transform into a legible format using
the following bash script:

gcc -dr SOURCEFILE.c

egypt --include -external SOURCEFILE.c.00. expand \

| sed s/[[].*// | sed s/[-]\>/,/g | grep ","

There are several other more common tools for doing things such as these,
for example the Unix utility objdump. This can show symbols in an object file,
or even a disassembly from which we may then extract function calls which, as
we argue in section 11.10, is relatively straightforward.

Visualizing the calls I have used GraphViz to produce an example call
graph, which is shown in the following section, by means of the following code:

imgpath =/home/erik/afstuderen/thesis/images

g=call_graph_actor

rm ${g}.dot

echo "digraph funcalls {" >>${g}.dot

echo "SELECT * FROM calls WHERE called IN (SELECT name FROM↙

defs);" \

| sqlite CALLSDB | sed ’s/|/→ /’ \

| awk ’{printf "%s\n ",$1,$2 }’ \

| grep -i "actor" | sort | uniq >>${g}.dot

echo "}" >>${g}.dot

fmt="dia"

cat ${g}.dot | dot -T${fmt} > ${g}.${fmt}

CHAPTER 9. VALIDATION 53

Figure 9.1: Extracted call graph for function SG Actor()

9.3 Results

Since the dataset for parser.c would be rather costly in terms of dead trees,
I provide a small example dataset and its associated fact base in fig. ??. The
example code is a C rendition of the robot brain example of fig. 1.3. Results of
the actual validation can be summarized concisely, since there was disagreement
over only two ‘functions’; see table 9.1. Figure 9.1 shows an example call/called-
by graph for the function SG_Actor() in parser.c, rendered by GraphViz.

function island parser validator egypt/gcc
sizeof() + - -
get next token() + - -

Table 9.1: Disagreements on positives and negatives

9.4 Discussion

function reason grammar modification
sizeof() is a keyword treat specially (as keyword)
get next token() called via pointer Param may encapsulate FunDecl

Table 9.2: Explanation of validation results

Explanations of the results are summarized in table 9.2. Validation filtered
out the function calls sizeof() and get next token(). The former is a C
builtin which is invoked in a way that is syntactically equivalent to a call to
a function of arity 1. The latter is a legal function call by ANSI C. It was
filtered out by our validator because no corresponding function declaration or
definition was found in the source file or in any of the headers included. In re-
ality however it was declared, but through a syntactic construct not completely
covered by our island grammar, namely as a function pointer type parameter
to get next token()’s calling functions. This occurs in the following function
definition in parser.c:

token SG_NextToken(int(* get_next_token)(void))

{

...

c = get_next_token ();

...

}

CHAPTER 9. VALIDATION 54

Our syntax definition does define this type of parameter, but it is not injected
into the FunDecl sort, which explains its omission from the set of declarations
and definitions D. It is interesting to note that egypt/gcc also misses this type
of function call.

In short, the validator displays no unexpected behaviour (in a syntactic
sense), and the island grammar has generated no serious false positives. By
crossreferencing the extracted function calls with those extracted by egypt/gcc,
we have also established that there were no false negatives, apart from the
aforementioned get next token(). We therefore conclude with great confidence
that our island grammar and validator are correct. Any incompleteness may be
remedied in a straightforward way with one or a few elementary productions.

Chapter 10

Implementation comparison

10.1 Introduction

This chapter looks at three varieties of the function call grammar from chapter
7

10.1.1 Full Grammar

The first method we will look at is the C grammar that comes with SDF, in
particular the version that assumes the C preprocessor has been run on the
code. At the time of writing, this grammar had a number of problems that are
now reportedly solved:1

• The sort AbstractDeclarator is not defined by any production.

• Declarations from stdio.h cause parse errors.

• Consecutive strings constants (”...” ”...”), which occur twice in parser.c,
generate parse errors.

• Many ambiguities; e.g. in the formal parameters of functions (may be
related to AbstractDeclarator missing).

10.1.2 Varieties of the function call island grammar

Explicit statements and expressions

This is defined in the function call grammar described in chapter 7. The source
code is listed in A.2.

Watery expressions

The following is an excerpt from the watery expression version of Expr.sdf,
edited for clarity:

1It is possible that the results reported below for this grammar are therefore a little in-
accurate; the numbers would likely have to be adjusted upwards somewhat, but the points
made in the Discussion section stand.

55

CHAPTER 10. IMPLEMENTATION COMPARISON 56

lexical syntax

[0-9]+ → Digits

[A-Za-z_][A-Za-z_0-9]* → Id

[L]? [\’] (([\\]~[]) |~[\\\ ’])+ [\’] → CharConst

[\^*\/\%\+\-\!\&\|\~\ <\ >\.\?\:\=]+ → WATEREXPR {avoid↙

}

lexical restrictions

Id -/- [A-Za-z_0-9]

WATEREXPR -/- [\^*\/\%\+\-\!\&\|\~\ <\ >\.\?\:\=]

Digits -/- [0-9x]

context-free syntax

%% top-level sorts

Expr2+ → Expr

Expr Expr → Expr {reject}

IslandExpr → Expr2 {prefer}

WaterExpr → Expr2 {avoid}

%% water catches operators

WATEREXPR → WaterExpr {avoid}

%% atomic expressions

CharConst → WaterExpr

"0x"? Digits → WaterExpr {prefer}

Digits ?"." Digits ("e"Digits)? → WaterExpr

Id → WaterExpr {avoid}

String → WaterExpr {prefer}

FunCall → IslandExpr {prefer}

%% bracket catcher

"(" Expr ")" → WaterExpr {avoid}

"[" Expr "]" → Subscript

WaterExpr Subscript → WaterExpr

Watery statements

The following is an excerpt from the watery statement version of Stat.sdf,
edited for clarity:

"if" → Keyword

"for" → Keyword

"while" → Keyword

"return" → Keyword

... → Keyword

Keyword → WateryStat

Expr → WateryStat {prefer}

%% follow restriction:

Expr Expr → WateryStat {reject}

"(" Expr ")" → WateryStat

%% occurs in for statements:

"(" Expr? ";" Expr? ";" Expr ?")" → WateryStat

";" → WateryStat

CHAPTER 10. IMPLEMENTATION COMPARISON 57

CompoundStat → WateryStat

"{" WateryStat* "}" → CompoundStat

This specification relies in particular on the list of keywords, which designates
the likes of if, for and while, and many others, as such. While the other
grammar variants also use this keyword list, their function there is merely to
prevent them from being parsed as identifiers; they are not reused there in the
actual definition of their corresponding statements.

While this specification is more compact and tolerant than the others, its in-
tent and structure is not as clear as the varieties where statements are explicitly
spelled out.

10.2 Comparison

Method The SDF metrics were computed as follows. The number of lines
of code (LOC) is computed by filtering out blank and comment-only lines, and
counting the number of resulting lines in all the SDF files that constitute the
grammar in question. The number of lines of code (LOC) is computed. This is
implemented by the following bash script:

$cat *.sdf \

| grep -v -e "^[]*\%\%[.]*" |grep -v -e "^[]*$" \

| wc -l

The number of productions is determined by the following script, which
counts the number of ‘->’ operators:

$ cat *.sdf|grep -v -e "^[]*\%\%[.]*" \

|grep -v -e "^[]*$"|grep -e "→ " \

|wc -l

Counting the number of productions using the tool dump-productions, which
is part of the ASF+SDF Meta Environment, failed for the full C grammar, also
supplied with the meta environment, due to a segmentation fault (which indi-
cates a bug in the software). It did work for my function call island grammar,
which reports the number of productions as 709, whereas my own measurement
reports 216 productions. This is difference is due to the generation of additional
rules in grammar normalization, parse table generation [Vis97], and the expan-
sion of productions using the alternative operator ‘|’ into separate ones. Since
my number is taken directly from the written specification, it is more represen-
tative of what the grammar engineer deals with. The parser however, uses the
productions generated (and properly counted) by pt-dump.

The number of priorities, counted as the number of productions duplicated
in the priorities sections, are counted by hand.

Results Results have been summarized in table 10.1. Performance compar-
isons between full grammars, lexical approaches and certain kinds of island
grammars are provided in [Lee05].

Discussion It should be stressed that the ‘full’ grammar is actually incom-
plete and ambiguous. Therefore, the numbers reported in table 10.1 for the full
grammar should probably be higher. Nevertheless, the table clearly shows that

CHAPTER 10. IMPLEMENTATION COMPARISON 58

method productions priorities LOC
full grammar 221 + 31∗ ±50 497
function call island grammar 190 ±38 313
idem with watery expr’s 116 0 240
idem with watery expr’s & stats 100 0 227

*) +31 is a manual correction for the number of productions in Expressions.sdf using

the alternative operator instead of the -> operator.

Figure 10.1: Results

even for nested or complex constructs of interest, considerable gains in terms of
number of productions and LOC may be achieved by using an island grammar.
However, development was not straightforward. The potential gains depend
strongly on the engineer’s familiarity with the target language and with island
grammar development itself, since it presents a number of challenges not found
in the development of full grammars:

1. The Meta-Environment currently does not provide an intuitive and con-
venient way of resolving island/water ambiguites from within an SDF
specification. This problem is described in detail in chapter 12. It has in
a number of cases lead to testing many alternative implementations, of-
ten richly decorated with various combinations of prefer/avoid attributes,
only to conclude that none would work satisfactorily.

2. The definition of certain tolerant constructs, such as the watery expres-
sions, require one to think about these constructs in an unnatural way,
that is: a way which runs counter to their nature and, hence, intuition.
For expressions, this nature is inherently hierarchic and structured. At-
tempting to capture such constructs lexically requires a lot of effort to be
invested in creative thinking and testing.

Another example of an unnatural construct definition is provided by the
watery statements. There, we have introduced a separation between key-
words which require parentheses, such as if and for), and the actual
parenthetic constructs that follow them.

3. Finding island/water sorts and catchers that work correctly can be diffi-
cult. This is elaborated on in chapter 13.

For these reasons, island grammar development is difficult for complicated
constructs. Accurately assessing whether or not an island approach to a certain
problem has is worth the trouble is, consequently, hard.

Chapter 11

Engineering advice

“You can’t possibly get a good technology going without an enormous
number of failures. It’s a universal rule. If you look at bicycles, there
were thousands of weird models built and tried before they found the
one that really worked. You could never design a bicycle theoretically.
Even now, after we’ve been building them for 100 years, it’s very
difficult to understand just why a bicycle works - it’s even difficult
to formulate it as a mathematical problem. But just by trial and
error, we found out how to do it, and the error was essential.”
— Freeman Dyson in an interview by Stewart Brand (1998)

11.1 Introduction

A number of general notions and patterns have emerged from the experiments
in this thesis and from the literature. In this chapter we will explain some of
them in a general way against the background of island grammar design. We
will also attempt to recast some of the observations into engineering guidelines.

11.2 Signal sequences and catchers

With island grammars, our awareness of the syntactic structure of the source
text is generally less than that in the case of full grammars, as much of the
structural information is lost in (lexical) water sorts. To compensate for this,
we can rely on certain local lexical properties for recognizing constructs. For
instance, function calls contain parentheses, so we could look for occurrences of
these literals in the source text as indicators of possible function calls. Literals
used in such a way are called signal sequences. Of course, function calls may not
be the only type of construct using parentheses. Looking at expressions, we may
also encounter typecasts, strings or bracket expressions containing parentheses:

p = (void *) q; /* typecast */
char *s = "Donald F. Duck (1943)"; /* string */
n = (1+2); /* bracket expression */

While signal characters are used to identify islands, the existence of other
non-island constructs which also contain these signal characters often necessi-

59

CHAPTER 11. ENGINEERING ADVICE 60

tates the definition of catchers, intended to capture these other constructs and
to distinguish them from island constructs. Catchers are generally water con-
structs; an exception to this is when a catcher may have descendant sorts that
are islands. This occurs in bracket expressions for example (see above). We
will now look at the design process to see how signal sequences and catchers are
used.

11.3 A typical step in the design process

First, we will highlight some typical iteration steps in the island grammar design
process by defining an example island construct. As before, we will pick C func-
tion calls as our construct of interest, and assume we have an island grammar
containing a lexical water sort, creatively named WATER, as a starting point.

1. Starting point:

lexical syntax
~[\ \n\t]+ -> WATER

2. Pick a construct of interest: a function call.

3. Define island(s) for construct of interest:

Id "(" {Expr ","}* ")" -> FunCall
FunCall -> Island {prefer}

4. Identify signal sequences: opening and closing parentheses (and).

5. Exclude these from the water sort:1

"(" -> WATER {reject}
")" -> WATER {reject}

6. Define catchers for uninteresting constructs that can now no longer parse
because they contain excluded signal sequences:2

"(" Expr ")" -> Expr
STRING -> Expr
TypeCast Expr -> Expr
"(" Type ")" -> TypeCast
[\"][...]*[\"] -> STRING

This example shows some of the most important recurring design steps and
related concepts, which we will use as a basis for discussion in the sections that
follow.

1This may also be done by removing the characters in question from the lexical definition
of WATER.

2Moonen defines catchers (which he does not name as such) as LAYOUT. [Moo01] The
advantage of this is ease of specification. The disadvantages is that such cachers are used in
a context-unaware manner.

CHAPTER 11. ENGINEERING ADVICE 61

11.4 Tolerance

Island grammars can provide increased tolerance. This tolerance is achieved
through water(y) sorts, which are generally more liberal than their elaborately
specified full grammar counterparts. Tolerance can be a desirable property of
a grammar, since it facilitates parsing of language dialects and less well-formed
source code. In addition, a tolerant lexical specification may reduce the number
of productions that need to be specified. As an example, we could capture C-
keywords such as if, while and for with a tolerant lexical definition, instead
of defining every keyword explicitly:

lexical syntax
[a-z]+ -> WaterKeyword

11.5 Correctness

Consider the following grammar:

lexical syntax
~[]* -> Water

context-free syntax
Water -> Program

This defines an island grammar, namely a maximally tolerant one, in which
the only water sort is as liberally defined as possible, and a Program consists of
only water, without islands.3 Suppose some construct(s) of interest were given.
With respect to these, the grammar generates only false negatives, since no
islands representing them have been defined.

The desirability of tolerance notwithstanding, a grammar and its constituent
water sorts should obviously not be so tolerant as to admit false negatives,
which would cause the grammar to be incorrect. On the other hand, excessively
tolerant island sorts may cause false positives. This shows that there is a there
is a tradeoff between tolerance and correctness.

Note that false negatives should be avoided at all cost, since they lead to
irrecoverable information loss during parsing. False positives on the other hand
may be filtered out later using semantic analysis; for an example of this please
see chapter 9. It is generally a good idea to prefer possible parse errors over
possible false negatives, since the latter may go unnoticed, while the former may
be remedied with a refinement of the grammar used, as shown in section 11.3.
This section also demonstrates how signal sequences can be used to ensure that
certain constructs which contain them will not accidentally be parsed as water,
thus reducing the risk of false negatives.

While in many cases we may be fairly confident that an island grammar
performs as expected given careful design, it is generally not possibly to infer
correctness from the grammar, since it may generate an infinite language, and
there is always the possibility of false negatives. Section 15.2 presents a testing
framework for SDF that should help ensure correctness.

3While island grammars are generally defined as grammars that actually include island
sorts, we deviate from this here in order to make a point.

CHAPTER 11. ENGINEERING ADVICE 62

11.6 Compositionality

The definition of watery sorts affects compositionality. Consider for example
the following watery definition for expressions:

lexical syntax
~[]* -> Expr %% capture every character

While this production will certainly capture all expressions in the target
language, it would likely conflict with other sorts in the resulting composite
language if we were to merge the production into another specification (i.e.
composition). For instance, if our example Expr sort were used in the following
definition, it would swallow the neighbouring parentheses, if-statement and Stat :

context-free syntax
"if" "(" Expr ")" Stat -> Stat

This illustrates how liberal water sorts tend to overflow their intended
boundaries, causing unintended parses or ambiguities. So, liberal watery sorts
can reduce compositionality. Hence, from a compositionality and correctness
standpoint, it is desirable to specify such a sort with as little lexical freedom as
possible. Note the tradeoff between tolerance and liberal specifications on one
hand, and compositionality on the other.

We can limit the possible detrimental effects of water sorts on composi-
tionality by creating specific water sorts for separate constructs. For instance,
expressions have their own water sort (e.g. ExprWater) and so do statements
(StatWater). This allows us to tailor their lexical definitions exactly to the
constructs that need to be captured by the water sort. (This point was left out
of the example of section 11.3 for simplicity.)

Note that the concept of compositionality is used here in the sense of a
degree, as opposed to a discrete yes/no matter. Summarizing, we can say that
while island grammars are in general not compositional, the degree to which
this is the case may be reduced through the restrictive (as opposed to liberal)
specification of watery sorts.

11.7 Nested sorts

Nesting occurs when sort A can occur as a subterm in sort B. This is the case
with function calls and expressions in our function call grammar:

y = 3 * f(g(x)+1)

Here, the top level sort is an (assignment) expression, which is not in it-
self a construct of interest. Within the expression however, we encounter a
function call to f() of the form f(g(x)+1). Within this function call, another
expression occurs, namely g(x)+1, which in turn contains another function call:
g(x). So function calls are nested within expressions, and vice versa. For this
reason, both expressions and function calls are also nested recursively within
themselves. In the syntax defintion, we can see that both sorts occur in the left
hand side of each other’s productions:

CHAPTER 11. ENGINEERING ADVICE 63

Id "(" {Expr ","}* ")" -> FunCall
FunCall -> Expr Expr

��
FunCall

OO

Since function calls, and not expressions, are our constructs of interest, we
would like to define them with as little effort as possible. It would seem that
the obvious answer to this is to create a water sort for expressions, allowing us
to capture them lexically if possible.

However in doing so, we must realize that while expressions are not con-
structs of primary interest, they are significant in that they may contain con-
structs of primary interest. Expressions, as such, are constructs of secondary
interest. In their definition we must account for this fact, and make sure that
function calls stand out from the watery remainder of the expression sort. We
can do this by looking for the signal sequences that a function call may contain,
as we have illustrated in a previous paragraph, and excluding them from the
water.

Expressions are nested within other sorts, from which we must be able to
distinguish them, in order to identify them in the context of an entire C program.

Program // FunDef // CompoundStat // Stat // Expr // FunCalloo

This means we will have to devise water sorts and catchers for each nesting
ancestor sort as well. All in all, the required effort is considerable. Chapter 13
describes a method to investigate some of the possible conflicts that may occur
as a result of nesting.

11.8 Shortcuts

Island grammars are supposedly ‘lightweight’, meaning that they are considered
to require less specification effort. Section 7.4 describes how the production for
function calls was recycled to capture function attributes, which occur as part
of function declarations. As it happens, this was rather quickly found to work
satisfactorily, which would seem to support the idea of lightweightness associated
with island grammars.

The paragraph on statement separation in section ?? on the other hand,
describes a shortcut that allows us to parse multiple statement types with a
single production. (It seems fair to qualify certain shortcuts as ‘hacks’. While
the notion of a hack might seem to run contrary to the general idea of science, it
should be considered an integral part of island grammar development, as we take
sometimes unconventional shortcuts around having to define a full grammar. At
the very least, one might wonder which shortcuts are hacks, and which are not.)

Philosophy aside, this particular shortcut resulted in a reduction in the total
number of required productions which, again, seems like a testimony to the
lightweight nature of the island grammar approach. However, while its definition
may seem obvious, it took a substantial amount of time to come up with and
test; especially since this was done in the initial experimentation phase of this

CHAPTER 11. ENGINEERING ADVICE 64

research project.
Creativity, as opposed to verifiable methodology, plays a role of significance

in devising shortcuts. Moreover, there is no guarantee upfront that some short-
cut we may come up with will actually work. Sometimes, inadequacies may
only come to light in a late stage of development, which is generally very costly
in software development. While the trial and error approach is more or less
inherent to grammar engineering, island grammars add a new dimension of un-
predictability in this respect. This makes the costs and benefits difficult to
estimate, and the approach risky.

11.9 Island/water ambiguities

A key issue in island grammar development is the frequent occurence of is-
land/water ambiguities. Suppose we had a grammar that correctly recognized
some construct of interest as an island. This does not rule out the possibility of
the construct being recognized as water too, at the same time.

Figure 11.1 shows an example of how a function call foo(x) might find itself
in such a predicament; it is correctly identified as an island, but it is also valid
water because the definition of water allows for an Id immediately followed by
a BracketExpr.

The problem is that the function call argument x surrounded by parentheses
is mistaken for a bracket expression. Indeed, the parser cannot be expected to
distinguish between these, as that would require more awareness of the syntactic
structure than the use of a water sort permits, in this case. The solution to this
very common type of problem would be to prefer our island construct over the
water construct. Chapter 12 looks at which disambiguation methods we might
use to this effect.

11.10 Portability across languages

Some languages are inherently more difficult to parse than others. A notori-
ously difficult language in this respect is C++. It offers many features that
complicate its syntax, such as namespaces, templates, multiple inheritance, op-
erator overloading, and polymorphism. The following quote, if to nothing else,
certainly applies to its syntax:

”If C gives you enough rope to hang yourself, then C++ gives
you enough rope to bind and gag your neighborhood, rig the sails on
a small ship, and still have enough rope to hang yourself from the
yardarm” — Anonymous, The UNIX-HATERS Handbook

Fortunately, some languages are easily parsed. We will now take a look at
some of the properties that affect this ‘parseability’.

With island grammars, the precise syntactic structure of the environment in
which a given construct of interest is embedded is often not known. Because of
this, the recognition of constructs relies heavily on local lexical features. There-
fore, languages which make this local recognition of constructs of interest easy
through their (lexical) syntax, are more suitable candidates for island grammar
descriptions.

CHAPTER 11. ENGINEERING ADVICE 65

Expr (ambiguous)

SubExpr*

IslandExpr

FunCall

Id

foo

”(”

(

{Expr ”,”}*

x

”)”

)

WaterExpr

Id

foo

BracketExpr

”(”

(

Expr

x

”)”

)

Figure 11.1: Typical island/water disambiguation problem in the form of an
expression foo(x). The desired subtree is the one on the left in which foo(x)
is parsed as a FunCall.

// Hello World in PHP

f(’Hello World!’);

function f($msg)

{

print($msg);

}

% Hello World in Matlab

f(’Hello World!’);

function rv = f(msg)

disp(’msg’);

Figure 11.2: Function definitions signaled by the signal sequence ‘function‘

CHAPTER 11. ENGINEERING ADVICE 66

Some languages offer clear lexical cues to demarkate certain constructs. For
example, Python, JavaScript, PHP and Matlab require the keyword function
to indicate that what follows is a function definition (fig. 11.2). Assembly lan-
guages feature mnemonic instructions which can serve as signal sequences. Ex-
ample listing 1.4 shows how a procedure call in CMOS/NMOS 6502 assembly is
preceded by a JSR instruction. The Intel x86 family of processors has the call
instruction for procedure calls. MS-DOS and Linux/x86 based systems imple-
ment system calls as interrupts, generated by the int instruction. PowerPC, a
RISC architecture, provides instructions such as bl (branch with link) and sc
(system call).

Assembly languages typically also contain little or no nested constructs,
but instead are basically a long list of single-word mnemonics followed by a
comma-separated list of operands, with the occasional label thrown in for good
measure. Expressions can occur, but they may only contain constant subex-
pressions that can be evaluated during preprocessing or compilation, such as
2*(my constant+3), so tasks like function call extraction are quite straightfor-
ward compared to the C case.

source language syntactic idiosyncracies
XML, HTML -
assembly very regular flat structure

mnemonics are good signal sequences
C
C++ operator overloading
Python, Haskell off-side rule4

COBOL comment columns at fixed positions
FORTRAN identifiers may contain layout (req’s lookahead)

features CALL keyword
PL/I keywords allowed as identifiers
Matlab/Octave function calls with and without ()

allows undeclared library calls
array index and function call both use ()
function definitions may be nested

... dynamic type inference, polymorphism

Table 11.1: Language features

Some languages such as assembly code are inherently easy to analyze due
to their flat syntactic structure and easily recognizable signal constructs (the
mnemonics). Nesting of syntactic constructs - a problem begging for syntac-
tic analysis - occurs very often in XML-only or HTML-only documents. They
do not generally adhere to their respective formal language specifications very
strictly, which requires tolerant parsers, which in turn may be implemented
using island grammars, as we have seen. Their easily recognizable signal con-
structs (tags of the form <foo ...>, </foo > or <foo />), again, facilitate their
implementation. In addition, it can be much more convenient, and faster, to
implement a syntactic analysis in a couple of island grammar rules than to do
so by importing an entire XML specification and defining constructs of interest
on top of that.

CHAPTER 11. ENGINEERING ADVICE 67

There are many other specification languages that are essentially lists of
name/value pairs; GNU autotools files, UNIX config files, address books, etc.
Defining an island grammar for these is quite easy, and allows us to abstract
away from their concrete syntax, which in turn enables analysis and semantifi-
cation through generic methods.

Of course, certain languages have features which make them especially un-
suitable for any but the most elementary island grammar analyses. For example,
Matlab uses the same notation to denote array indexing and function call pa-
rameters:

y = 3 * f(x) % is f a function or an array?

Fortran allows spaces inside of identifiers [Aho86]:

DO 5 I = 1.25 ! DO5I is an identifier

DO 5 I = 1,25 ! "DO" Label Id "=" Const "," Const

These languages not only require significant awareness of syntactic structure
for many tasks. The Fortran exampe for instance requires a lookahead of 5
characters, which is not a problem for SDF/SGLR, but can be for other com-
mon parser types such as LALR(1) class parsers5, to which the ubiqitous Yacc
belongs. To get around this, some Fortran parsers have two stages; one rec-
ognizes the problematic constructs requiring a lot of lookahead lexically, while
a subsequent stage performs further analysis on the lexed constructs. This is
essentially an island grammar approach.

Certain problems such as identifier (type) recognition (and hence function
call recognition) are undecidable by any context-free parsing without semantic
analysis. This is the case with Matlab, for example.

11.11 When to use island grammars

The result of parsing some (program) text over a grammar is a syntax tree,
which decribes the internal and external syntactic structure of the constructs
recognized by the grammar. Lexical analysis on the other hand can identify
substrings in a text and point out the positions in which they occur (just as
parsing can), but provides no information about the structural context of the
recognized constructs. The patterns which these substrings must match are
specified in the form of regular expressions. If some structural awareness is
desired, it has to be explicitly programmed around or into the actual lexing
component(s).6 Definitions for lexers can also get rather messy, as we have seen
in the case of Doxygen/Lex in section 5.5.

In case the problem we are trying to solve needs some awareness of the
internal or external syntactic structure of a construct of interest, we should
consider using a grammatical approach (i.e. parsing). Though lexical analysis
is generally faster for simpler tasks, island grammars offer performance benefits
with respect to full grammars [Lee05]. Island grammars are particularly well-
suited int the following areas:

5The 1 in LALR(1) indicates a lookahead of one character, while Fortran requires un-
bounded lookahead, which SDF/SGLR provide.

6Doing so takes lexical analysis in the direction of parsing, which raises the question of
whether one shouldn’t be using a parser to begin with.

CHAPTER 11. ENGINEERING ADVICE 68

1. Tolerant parsing

2. Identifying high level constructs (which have little or no nesting)

3. Identifying constructs containing characteristic signal sequences

Example applications of this are language cocktails that occur in common
web scripting languages, such as HTML mixed with JavaScript, JSP, PHP or
ASP [SCD03] or COBOL with embedded CICS [KL03]. Class hierarchies are
also typically high-level constructs, for example in Java, C++, Python, Ruby
and C++. Comments are another example. They are especially easy to recog-
nize due to their signal characters such as ‘//’ in Java, although matching them
up with constructs they describe is much more involved.

• When parsing a certain language that is inherently suitable for island pars-
ing due to its flat structure or characteristic signal sequences. Assembly
language is an example of this (see section 11.10).

• In the absence of a full grammar; an ad hoc grammar approach may be
preferable over lexing. [Moo02]

• In conjunction with a full grammar. A tolerant grammar (which may be
considered an island grammar) can be semi-automatically derived from
this. This offers performance benefits compared to full grammars, and
quality benefits compared to lexing. [KL03]

• As an agile prototyping tool in the course of developing a full grammar.
Water sorts can be used initially to cover simple examples so other parts
of the grammar can be tested. Later, the water sorts can be refined into
more detailed productions.

• For identifying simple constructs in multiple languages with a single gram-
mar. For example, an imports-grammar that recognizes C’s #include,
Java’s import, Python’s import, PHP’s include() and require(), etc.

11.12 Miscellaneous points of advice

• Aggregate occurrences of consecutive water characters into single parse
tree node as much as possible to prevent excessive parse tree sizes and
reduce the usage of system resources.

• Create separate water types for every island sort to isolate the possibly
adverse effects of the water on the grammar’s compositionality as best as
possible.

• If speed and memory constraints are of little importance, allowing for
ambiguities in the grammar may be convenient from a rapid prototyping
perspective. Ambiguities may be resolved in a post-parsing stage by a tool
such as filterPT. Note however that their regular occurrence may have a
severe negative impact on parsing performance.

• Ambiguities do, however, indicate vaguenesses in our specification, which
should alert us to the possibility of false negatives.

CHAPTER 11. ENGINEERING ADVICE 69

• If expressions are not constructs of interest, then expression grammars
may be good candidates for a water treatment. Usually, they are quite
voluminous due to the large number of productions and priority decla-
rations involved. A lot of specification, testing and debugging may be
avoided by capturing them lexically as exemplified in section ??. (Al-
ternatively, since they are also quite uniform across many programming
languages, copying them from an existing grammar and editing them into
shape may be preferable.)

• It almost goes without saying that the grammar itself should be doc-
umented well. For island grammars, which may employ several hacks,
tricks, shortcuts and whatnot, this is especially necessary.

• Consider using tools such as SdfMetz [AV07] to help optimize the grammar
if necessary; eliminate redundant injections, etc.

Chapter 12

Disambiguation

12.1 Introduction

The watery expression grammar from chapter 10 reveals some ambiguity prob-
lems that are very common with island grammars, and which cannot easily or
reliably be solved using disambiguation techniques currently available in the
Meta-Environment. In this chapter, we will elaborate on these problems and
attempt to present a solution.

12.2 Existing disambiguation mechanisms

12.2.1 Prefer/avoid

Consider a simple grammar and an example parse tree of some ambiguous term
over this grammar:

context-free syntax
Island -> S
Water -> S
... -> Island
... -> Water

S (ambiguous)

Island Water

This ambiguity can be resolved in SDF by tagging Island with a prefer
attribute:

context-free syntax
Island -> S
Water -> S
... -> Island {prefer}
... -> Water

S (ambiguous)

Island {prefer} Water

Alternatively, we might tag Water with avoid, which is the inverse of the
prefer attribute:

70

CHAPTER 12. DISAMBIGUATION 71

context-free syntax
Island -> S
Water -> S
... -> Island
... -> Water {avoid}

S (ambiguous)

Island Water {avoid}

In our example, both have the same effect, which is the elimination of the
unwanted Water subtree on the right, resulting in the following unambiguous
tree:

S

Island

Now consider the ambiguity in figure 11.1, in which a function call occurs
as part of an expression sort, which is basically a list of subexpressions. Due
to its definition, this expression sort may be ambiguous in the presence of func-
tion calls, since these may be interpreted as either a function call (the desired
interpretation) or an identifier (Id) followed by a bracket expression (Bracke-
tExpr). Given the prefer/avoid construct, intuition might suggest tagging the
productions for IslandExpr and WaterExpr with prefer and avoid, respectively:

context-free syntax
IslandExpr -> SubExpr {prefer}
WaterExpr -> SubExpr {avoid}

However, looking at the tree of figure 11.1, we can see that the nodes for
IslandExpr and WaterExpr do not occur directly under the ambiguous Expr
node. Unfortunately, the basic prefer/avoid can only disambiguate situations in
which the ambiguous nodes do occur directly underneath an ambiguous node.
SGLR does have mechanisms in place to disambiguate using prefer/avoid by
descending into subtrees, namely:

• Prefer/avoid counting: subtrees with more prefers and less avoids are
favoured over subtrees with less prefers and more avoids.

• Injection counting: trees with less injections are favoured over trees with
more injections.

Unfortunately, the use of these heuristics is discouraged, and they have been
disabled in MetaStudio for the following reasons:

“[...] these disambiguations silently disambiguate and therefore hide
important problems of a syntax definition. They might also disam-
biguate in a ‘context-sensitive’ manner; choosing one alternative in
some context, and another in a different context. Several examples
of these effects have lead to the decision of turning them off.”1

So, these mechanisms can lead to unpredictable and unwanted results. There-
fore we will not rely on them for disambiguating the type of problem described
above.

1Source: release notes of the Meta-Environment 1.5.

CHAPTER 12. DISAMBIGUATION 72

12.2.2 FilterPT

An alternative to the prefer/avoid approach is the command line tool FilterPT,
the function of which is to minimize or maximize the occurrence of certain sorts
in a parse forest. [Lee05] Suppose that we had a parse forest with the following
ambiguous subtree in it, and that we wanted to keep the Island subtree and
discard the Water subtree:

S (ambiguous)

Island Water

We could disambiguate this example with FilterPT from the command line
as follows:

filterpt -N Island

The switch -N tells FilterPT to maximize the occurrence of the sort Island.
We may also use FilterPT in the converse way, by minimizing a given sort,
indicated by the switch -n:

filterpt -n Water

In our example, both approaches would result in the unambiguous subtree:

S

Island

Contrary to the basic prefer/avoid mechanism, this filter does take the whole
subtrees into consideration, by counting the occurrences of the given sort in them
and minimizing or maximizing accordingly. This means we could disambiguate
the parse forest of figure 11.1 by maximizing the sort FunCall. This would
eliminate the right subtree in favour of the left one, which is what we intended
to do.

However, while our intention is to disambiguate based only on the topmost
occurrence of FunCall, FilterPT also descends into the subtrees underneath
this node. In doing so, it takes subtrees into account that have no relevance
whatsoever to the actual disambiguation problem. This may also affect the
disambiguation in unpredictable ways. Consequently, we cannot be sure that
FilterPT will not eliminate subtrees that we would have liked to keep.

Moreover, the subtrees may themselves contain water/island ambiguities,
so the order in which FilterPT is applied in case of multiple disambiguations
based on different sorts becomes important. Determining the right order would
require a detailed analysis of possible occurrences of nested ambiguous trees, if
we want to make sure we are not discarding important subtrees unwittingly.

12.2.3 Priorities

Priorities prevent certain productions from occurring as direct children of other
productions. Consider the following example grammar (unnecessary details left
out):

CHAPTER 12. DISAMBIGUATION 73

lexical syntax
[0-9]* -> Expr

context-free syntax
Expr "*" Expr -> Expr
Expr "+" Expr -> Expr

Now suppose we were to parse the term 3*a+b over Expr. This term may
be interpreted semantically to represent the arithmetic expression (3a) + b. As
we defined it however, it may be parsed in two ways and is therefore ambiguous:

+

a *

b 3

*

3 +

a b

Using priorities, we can make our parser mimic the familiar arithmetical
operator binding rules, which say that multiplication binds more strongly than
addition. This eliminates the possibility of the tree on the right, which repre-
sents an incorrect parse corresponding to 3(a + b), occurring in our parse tree.
We can achieve this by adding a priorities section to our SDF specification:

context-free priorities
Expr "*" Expr -> Expr >
Expr "+" Expr -> Expr

This expresses the restriction that (the production rule for) ‘+’ cannot occur
as a direct child of ‘*’ in the parse tree, as is the case in the tree on the right.
This type of disabiguation operates on ambiguous subtrees whose nodes are
the same, but arranged in a different order. It is intended to disambiguate
expression grammars, and cannot be used to resolve our example ambiguity.

12.3 Discussion

The existing disambiguation methods discussed above are either wholly unable
to disambiguate the common type of island/water ambiguity illustrated in fig-
ure 11.1, or cannot do so practically (e.g. through invocation from an SDF
specification) or predictably:

applica- predic- in in
method bility tability SDF MetaStudio

prefer/avoid very limited ? yes yes
prefer/avoid counting very limited no n/a yes
injection counting very limited no n/a yes
priorities no n/a yes yes
reject limited n/a yes yes
FilterPT yes limited no no

Table 12.1: Overview of current disambiguation methods

CHAPTER 12. DISAMBIGUATION 74

In the following section we will propose a new type of disambiguation con-
struct that should solve these problems, if it is correctly implemented and,
importantly, can be invoked from SDF.

12.3.1 A prefer-to filter

Using injections, we can create a situation in which the ambiguity can be re-
solved by looking at a certain level in an ambiguous subtree. Our familiar figure
11.1 tree demonstrates this: the sort FunCall is first injected into IslandExpr,
while all the expression subtypes other than function call are injected into Wa-
terExpr.

context-free syntax
IslandExpr -> SubExpr {prefer-to(WaterExpr)}
WaterExpr -> SubExpr

FunCall -> IslandExpr
... -> WaterExpr

A prefer-to filter would descend ambiguous subtrees level by level in a lock-
step manner, checking all subtrees at the same depth and progressing down-
ward from the their root nodes. Upon encountering a construct marked with
prefer-to(S), it would discard all subtrees with a production ... -> S at
that level. Clearlym, this strategy would work in our example case. Moreover,
the technique of introducing injections and using them to mark (subtrees as)
islands or water at the same level can be applied generically. It is especially
useful in tackling ambiguities occuring ‘under’ list constructors in a parse tree,
which is a problem for the avoid/prefer construct.

A filter such as the one described here may be implemented in ASF; an
explanation and examples of post-parse disambiguation filters can be found in
[BKV02]. The additional attributes required can be specified in SDF, although
the automatic invocation by SGLR would require modifications to the parse
table generator and parser/parser generator. (A basic data flow diagram for
these components is depicted in figure 14.2.)

Chapter 13

Lexical inheritance analysis

13.1 Introduction

Consider a language modeled in part by the example grammar in figure 13.1,
and represented visually in 13.2.1 Let’s say FunCall is our sole construct of
interest. Since we would like to specify the uninteresting constructs in the form
of water productions, and water is, in principle, defined lexically, it follows that
we must to some extent rely on lexical properties to distinguish between water
and non-water. We can use signal sequences to do this.

lexical syntax
[\"][A-Za-z0-9\(\)\,]*[\"] -> String %% production p_1
[A-Za-z0-9]+ -> Id %% production p_2

context-free syntax
Id "(" {Expr ","}* ")" -> FunCall %% production p_3
String -> Expr %% production p_4
FunCall -> Expr %% production p_5

Figure 13.1: Mini example grammar for C expressions and function call

Function calls contain parentheses (and possibly commas) so we might use
those as signal sequences in spotting function calls. However, looking at the
figures, we see that strings may also contain these characters. This could lead
to conflicts resulting in ambiguities, false positives or parse errors.

If we are to construct a correct island grammar that does not exhibit such
problems, we must have some systematic method for detecting conflicts between
literals of the various sorts. The following sections propose one such method,
which should serve to inform decisions about whether or not a candidate set of
productions is suitable for inclusion in the grammar being designed.

We begin by introducing the ∆̂∗ operator, which we can use to construct
1The lexical definition for the sort String would normally include many more characters.

This is typically specified by listing the characters that are not part of the sort and then
taking their complement, but this was thought to be a slightly more enlightening considering
the subject we are trying to introduce.

75

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 76

Expr

FunCall

Id ({Expr ”,”}*)

String

" [A-Za-z0-9(),]* "

Figure 13.2: Visual representation of example grammar from fig. 13.1

sets of inherited sorts. For instance, with reference to figure 13.2, we can say
that the Expr sort inherits Id (in this case through FunCall).

We then introduce the L operator, whose definition relies on that of the
former. It gives us the literals used in or inherited by some production or set
of productions, as well as all their substrings. Using these operators, we can
determine of any of these substrings are in conflict.

13.2 Definitions

Consider a context-free grammar G = (V,Σ, P, Ŝ) as defined in section 1.1. The
variables s, s′, si represent sorts in V ∪λ, where λ is the empty sort. The variables
p, p′, pi range over the productions P , and ti are terminal symbols, i.e. strings
over the alphabet Σ. A production p can be written as p : s0 → s1t1...sntn. We
will write p : s0 → ...s′... to denote that production p contains the sort s′ in
its right hand side, which makes s′ a child of sort s0 and, loosely speaking, of
production p. We can now define two important functions:

• The child productions operator ∆, which gives us all the productions
of sorts that are directly referenced by the subset P ′ of the productions
P . It has the form ∆ : Pm → Pn where m,n ∈ N+. Its definition is:

∆(Ps′) ≡ {p ∈ P ′ | p : s0 → ...s′...} (13.1)

• The descendant productions operator ∆̂∗, which gives us all the pro-
ductions of sorts that are directly or indirectly referenced by P ′ ⊆ P , mod-
ulo cyclic productions. It has the form ∆̂∗ : Pm×V k → Pn where k, m, n ∈
N+, and is defined as:

∆̂∗(Ps) ≡ Ps ∪ ∆̂∗(∆(Ps), {s}) (13.2)

The latter function serves to call the recursive form of ∆̂∗:

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 77

∆̂∗(Ps) ≡ Ps ∪ ∆̂∗(∆(Ps), {s}) (13.3)

∆̂∗(Ps, V
′) ≡

{
∅ s ∈ V ′ ∨ Ps = ∅
Ps ∪ ∆̂∗(∆(Ps), V ′ ∪ {s}) otherwise

(13.4)

The following property applies, which we will use as a reduction step in our
equations:

∆̂∗(Ps1 ∪ Ps2, V
′) ≡ ∆̂∗(Ps1 , V

′) ∪ ∆̂∗(Ps2 , V
′) (13.5)

Now we shall introduce the L operator. Suppose P ′ is a set of productions,
which we might have found using the operators just defined. We will denote the
regular language defined by taking all the substrings of all literals occuring in
P ′ by L(P ′).

L({s1t1...sntn}) = {t1..., tn} (13.6)
L(p1 ∪ p2) = L(p1) ∪ L(p2) (13.7)

The terminal symbols ti all define regular languages, sinces they are ex-
pressed in terms of regular expressions (in SDF’s lexical syntax sections) or
as string literals (in SDF’s context-free syntax). For a singleton set of pro-
ductions of the form p : s0 → s1t1...sntn, the set L({p}) = {t1..., tn} is certainly
a regular language, namely t1 ∪ ... ∪ tn. This is because the set of regular lan-
guages is closed under union. The same argument applies to equation 13.7.
Hence, the operator L defines a regular language.

Since we are going to be looking at substrings, we provide their definition
here for the sake of qcompleteness:

Definition A substring of a string w = w1w2...wn is a string wiwi+1...wj

where 1 ≤ i ≤ j and i ≤ j ≤ n. For example, bo, w, rain, and rainbow are all
substrings of the string rainbow.

13.3 Example

As an example, we compute the set ∆̂∗(PString):

∆̂∗(PString) = ∆̂∗(PString, ∅)

= PString ∪ ∆̂∗(∆(PString), ∅)

= PString ∪ ∆̂∗(∅, ∅)
= PString ∪ ∅
= PString

= {p1}

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 78

This tells us that String has no descendants, other than possibly Id itself,
which is evidently true from looking at the grammar. And now for Expr (Fun-
Call is abbreviated to FC):

∆̂∗(PExpr) = PExpr ∪ ∆̂∗(∆(PExpr), {Expr})

= PExpr ∪ ∆̂∗(PString ∪ PFC , {Expr})

= PExpr ∪ ∆̂∗(PString, {Expr}) ∪ ∆̂∗(PFC , {Expr})
= PExpr

∪ PString ∪ ∆̂∗(∆(PString), {String, Expr})

∪ PFC ∪ ∆̂∗(∆(PFC), {FC,Expr})
= PExpr

∪ PString ∪ ∆̂∗(∅, {String, Expr})

∪ PFC ∪ ∆̂∗(PId ∪ PFC , {FC,Expr})
= PExpr

∪ PString ∪ ∅

∪ PFC ∪ [∆̂∗(PId, {FC,Expr}) ∪ ∆̂∗(PFC , {FC,Expr})]
= PExpr ∪ PString ∪ PFC

∪ [(PId ∪ ∆̂∗(∆(PId), {Id, FC,Expr})) ∪ ∅]
= PExpr ∪ PString ∪ PFC

∪ [PId ∪ ∆̂∗(∅, {Id, FC,Expr})]
= PExpr ∪ PString ∪ PFC ∪ [PId ∪ ∅]
= PExpr ∪ PString ∪ PFC ∪ PId

= {p4, p5, p1, p3, p2}

Now we determine which literals occur in certain productions:

L(PFC) = L({p3})
= {[\(], [\)], [\,]}

Using the results obtained above, we compute the following set:

L(∆̂∗(PExpr) \ PFC) = L((PExpr ∪ PString ∪ PFC ∪ PId) \ PFC)
= L({p4, p5, p1, p3, p2} \ {p3})
⊇ L({p1})
= {["][A-Za-z0-9\(\)\,]*["]}
⊇ {[\(\)\,]*}

Now we look for common substrings of literals between the sorts FunCall
and Expr :

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 79

L(PFC) ∩ L(∆̂∗(PExpr) \ PFC)
⊇ {[\(], [\)], [\,]} ∩ {[\(\)\,]*}
6= ∅

13.4 Results

We will consider the outcomes of our example analysis as our dataset. The
productions associated with FunCall ’s descendant sorts are listed in table 13.1.

pi V L({pi}) conflicting substrings
p3 FunCall {[\(],[\)]} n/a (recursive occurence)
p4 Expr ∅ ∅
p5 Expr ∅ ∅
p1 String {[\"][A-Za-z0-9\(\)\,]*[\"]} {[\(],[\)]}
p2 Id {[A-Za-z0-9]+} ∅

Table 13.1: Lexicals inherited by FunCall

By no small coincidence, the pi from the table also happen to constitute the
entire set of productions we gave as the example grammar. This is of course
due to the fact that the example has been deliberately kept simple, leaving out
redundant productions. In a more realistic one, there would have likely been
more productions. Furthermore, in a C grammar, there would also be conflicts
with bracket expressions and typecast operators, since they contain balanced
parentheses.)

Given the fact that we have detected clashes based on the chosen candidate
signal sequences, we now have two options (see section 11.3 for more information
on the related design step):

1. Define catchers for clashing sorts (e.g. String) to avoid island/water am-
biguities. (This would be relatively easy in the example at hand. The
following table shows the associated mapping to islands, water and catch-
ers. This mapping is reflected in the source code of our function call
grammar with watery expressions, listed in section A.2.)

pi V type
p3 FunCall island
p4 Expr water
p5 Expr water
p1 String catcher
p2 Id water

Table 13.2: Mapping to island/water/catcher

2. Conclude that the candidate signal sequences under consideration are not
practical for signaling our COI, and try other signal sequences.

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 80

If none of these options are feasible, we may conclude that an island/wa-
ter/catchers recognition strategy based on signal sequences is not suitable for
the construct in question (FunCall).

A procedure as described in this chapter may be implemented in a functional
programming language (such as ASF). Intermediate results can be cached for
efficient performance.

13.5 Discussion

Klusener and Lämmel [KL03] describe a method for semi-automatic derivation
of island grammars, which they refer to as tolerant grammars, from a given
base-line (full) grammar.

The method described in this chapter might have raised the question of
where exactly to obtain the productions to be analyzed. Given a full grammar,
this is not a problem. However, the reason for using island grammars at all is
often that a full grammar does not exist. Then, in the absence of a full grammar,
we find ourselves in somewhat of a chicken-and-egg situation.

One approach might be to ‘intuitively’ construct a prototype set of produc-
tions, i.e. a (partial) prototype grammar, which can then be analyzed. In such a
case, the method can serve to reinforce the ‘creative’ process that island gram-
mar design frequently is. This is in fact how the method has been applied in the
development of the function call island grammars we have discussed. The lan-
guage in question was C, with which the author has been familiar for a long time.
The prototype grammar from chapter 7 has been created largely from memory,
with only casual reference to a formal specification. This was made possible
in part because exhaustive detailed knowledge of all possible constructs in the
language was unnecessary, due to the tolerant nature of certain water sorts used.
Applying the method to the obtained grammar then suggested ways of making
this prototype grammar more watery, resulting in the two variants described
before, featuring watery expressions and statements.

This does mean however, that before we could become (confidently) aware of
the possibilities for increased wateryness by applying lexical inheritance analysis,
we have had to resort to a fuller grammar (i.e. the one with the fairly detailed
expression grammar) than the one we intended to end up with. So, while the
resulting island grammar might be more watery, and thus satisfying in terms of
a reduced number of required productions and so on, the exercise was perhaps
more academic that it was practical.2

In short, while the type of knowledge inferred by the method is certainly
useful and in fact required for defining correct island grammars, the method’s
application may be more of a hassle than it is worth, especially as it may involve
specifying a fuller grammar first, only to turn it into an island grammar later on,
thus defeating the main purpose of the island grammar approach. This problem
is also apparent in the method described by Klusener and Lämmel. Still, the
formalization seems useful in clarifying the type of analysis that island grammar
design necessitates, and perhaps in making some of the relevant questions more

2That being said, the process has proved instructive, and the watery expressions and
statements may serve as future —perhaps intuitive— reference for how to model similar
constructs in other languages in a watery fashion.

CHAPTER 13. LEXICAL INHERITANCE ANALYSIS 81

tangible. If nothing else, it highlights the inherently troublesome nature of their
design in more complex cases.

Chapter 14

SGLR performance
improvements

14.1 Introduction

Island grammar efficiency Island grammars typically define less produc-
tions and sorts than their full counterparts. Therefore, the search space during
parsing will likely be smaller, which introduces the possibility of speed gains.
However, a sub-optimally constructed island grammar may have negative ef-
fects on parsing speed that outweigh these gains. For example, a grammar that
allows many ambiguities, or fails to aggregate consecutive occurrences of water-
characters into a single sort, will increase the size of the parse trees produced
and adversely affect efficiency.

But there are other factors with a possibly deleterious effect on parsing
performance. Position information for a parse tree, which tells us on what row
and column of a source file a parsed construct occurs, is obviously a rather
useful thing to have. However, Verhoeven states in his conclusions that “[...]
turning on position information results in unacceptable performance and parse
tree sizes”. [Ver00] In this chapter, we will be looking at island grammar-
specific improvements to the Meta-Environment’s parser that might alleviate
this complaint by reducing the size of the parse tree at parse-time.

The SGLR parser The ASF+SDF Meta-Environment’s parser is called SGLR,
for Scannerless Generalized Left-to-right Rightmost derivation parser. SGLR
parsing is based on Tomita’s GLR parsing algorithm [Tom85], which can parse
the entire range of context-free languages. Many other parser generators, such
as yacc, generate parsers that can only accept a proper subset of context-free
languages.1

The nodesucker filter We will discuss a mechanism for reducing the in-
memory size of a parse tree, called node sucking. Its central idea is illustrated in
figure 14.1. It replaces all water-type nodes, which may contain many characters,
by very small stub nodes with no lexical content. The water nodes are effectively

1GNU Bison, the successor to yacc supports GLR parsing too as of version 1.50.

82

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 83

Program

Water

int foo {

FunCall

bar()

Water

; }

→

Program

Water

∅

FunCall

bar()

Water

∅

Figure 14.1: Effects of the nodesucker filter

‘sucked dry’. We will see how this exploits the space efficiency provided by
maximal sharing of ATerms. The advantages of this are:

1. SGLR’s memory footprint is reduced.

2. The size of the resulting parse tree is reduced.

3. Because of (1), performance is improved for parses which are so large
as to require swapping the data structures that make up the parse tree
from resident memory to secondary storage. By reducing the memory
footprint by means of parse tree compression, this moment is deferred (or
altogether avoided), thus improving performance. (See [Ver00] for example
measurements reflecting this problem.)

The filter is not expected to have significant performance benefits other
than (3). in fact, since its application involves additional code for checking
whether a production is water or not, the parse is expected to incur a (negligible)
performance penalty.

14.2 Methods

How GLR parsing works Figure 14.2 shows the dataflow to and from the
parser. The first letter of ‘SGLR’ indicates that it does not have a separate
scanner component, unlike most conventional parsers. The lexical syntax is
specified in the same SDF specification as the context-free syntax, and the two
phases are integrated during parsing. (Actually, upon evaluation of an SDF
specification, the lexical and context-free syntax sections are merged into a
single set of productions, which are then stored in the parse table. Therefore it
would be more accurate to say that there is no separation to begin with.)

GLR parsers exhibit a kind of nondeterminism compared to conventional
LR-parsers. Whereas LR-parsers will enter a new state completely determined
by the current state and token being processed, GLR parsers may enter one of
many states, instead of just a single one. Like LR-parsers, GLR parsers maintain
an internal stack. However, because of the ‘nondeterminism’ just mentioned,
the latter employ a more complicated type of data structure than an ordinary
stack, called a Graph Structured Stack (GSS). To illustrate this, consider the
following code example (funcall.c):

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 84

module MyGrammar
...
...
...

// wvutpqrspt-dump // parse table

��

term
a+3*b

// onmlhijksglr //

parse tree

+

a *

b 3

Figure 14.2: dataflow to and from SGLR parser

int main(...) { f(); }

FunCall
,,XXXXXXXXX

// Water

22dddddddddddddd

,,ZZZZZZZZZZZZZZZ Water //

Water

22ffffffffff

Figure 14.3: GSS forking and joining

int main(int argc, char* argv[])
{
f();

}

Let’s say we were parsing this over a C-grammar that caused a Water/Fun-
Call ambiguity upon encountering ‘f()’. Now, the parser will fork its stack.
Figure 14.3 shows the graph structure of a GSS stack in such a case. Having
forked the GSS, the parser may later, upon having scanned more tokens, dis-
cover that one of the derivations is not valid, and drop the forked derivation
path from the tree. If on the other hand multiple valid simultaneous derivations
remain, an ambiguity has been found and will be marked accordingly in the
parse forest. (A parse forest is basically a parse tree which may contain ambi-
guities.) Upon reducing a given state/symbol pair, the parser has the following
choices:

1. The parse is forked (may lead to ambiguity later on if alternative is not
discarded).

2. Separate paths are further evaluated in parallel without forking or joining.

3. A path turns out to be invalid and is discarded.

4. Separate paths are joined (ambiguity).

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 85

Note that the parallel parses share a common prefix and a common suffix.
This allows for efficient implementation using ATerms maximal sharing. (This
concept is explained below).

14.3 Implementation

Outline One of the design goals of the SGLR parser, as opposed to the SGLR
parser generator, seems to be to favour simplicity of implementation over speed.
Therefore, it provides a good testing ground for a proof of concept implementa-
tion which, if successful, might be implemented in the parser generator, which
can convert a parser specified in the form of an SDF grammar to C code.

Our proof of concept, outlined in listing 14.1, has been implemented in
the function SG Reducer() in parser.c2, right before the fork/join decision
described above. Its workings can be described as follows:

• Test if the production considered in the current reduction (prodl) is a
water production

– If so, replace the subtree to be inserted by a stub tree; create this
subtree if this is the first time the substitution occurs.

– If not, just create and insert the regular tree t.

The kids nodes will be automatically destroyed by the ATerm garbage col-
lector if they are no longer referenced from elsewhere, thus freeing memory (see
below for more details on ATerms).

On terms and trees The stub tree inserted (see listing 14.1), like all other
trees arising during a parse by SGLR, is an ATerm. [BJKO00] It is shown in
below in a pretty printed textual form; internally, ATerms are stored in a much
more efficient binary form called BAF, for Binary ATerm Format. The [116] is
an ASCII character code. The other numbers, function arguments to aprod(),
are numbers representing grammar productions.

[
regular(
aprod(285),
[
regular(
aprod(285), []

),
regular(
aprod(287),[116]

)
]

)
]

2The full filename is sdf-bundle-2.4/sglr/libsglr/parser.c. It can be downloaded as
part of the package sdf-bundle-2.4, downloadable from www.meta-environment.org.

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 86

Listing 14.1 Modifications to parser.c

void SG_Reducer(stack *st0 , state s, label prodl ,

ATermList kids , size_t length ,

int attribute)

{

...

+ static tree stub_tree = NULL;

+ static ATerm stub_kids = NULL;

...

+ /* insert stub subtree in case of water production */

+ if (is_water_prod(prodl)) {

+ /* init: create stub tree */

+ if (stub_tree == NULL) {

+ stub_kids = ATmake("[regular(aprod (285) ,[regular(↙

aprod (285) ,[]),regular(aprod (287) ,[116])])]");

+ ATprotect (& stub_kids);

+ stub_tree = SG_Apply(table , prodl , (ATermList) ↙

stub_kids , attribute);

+ /* todo: attribute should also be a stub */

+ }

+ t = stub_tree;

+ }

+ else {

+ /* insert regular subtree */

! t = SG_Apply(table , prodl , kids , attribute);

+ }

...

}

A key property of ATerms is that they are implemented to use maximal shar-
ing. This means that similar (sub)terms are not duplicated in memory (deep
copying), but are duplicated by reference to a single (sub)term (shallow copy-
ing). For example, the following ATerm contains the subterm a(b(c("huey")))
three times:

[a(b(c("huey"))), a(b(c("huey"))), "louie", a(b(c("huey")))]

In memory, these three occurences are all represented by references to a
single literal copy of the term, which may potentially save a lot of storage space
in real-world situations, since storing a reference to a term is much cheaper than
storing the actual term itself. The nodesucker filter exploits this property, as
we will later explain.

In the normal situation, i.e. when a non-water production is being reduced,
the kids are inserted into a subtree t by the function call t = SG Apply(table,
prodl, kids, attribute). The subtree stub_tree however contains no ref-
erence to kids. As a result, after execution of the function SG_Reducer(), the
ATerm kids will not be referenced by any tree created during this execution of

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 87

2750

2800

2850

2900

2950

3000

3050

3100

0 50 100 150 200 250

A
T
er

m
s

al
lo

ca
te

d

number of reductions

nodesucker filter disabled
nodesucker filter enabled

Figure 14.4: ATerms allocated during SGLR parse of funcall.c with and with-
out nodesucker filter

and, will consequently be destroyed by the ATerm library’s automatic garbage
collector if necessary (i.e. if no other references remain).

Measurements Our measurement point occurs in the function SG_Reducer(),
right before the point where either the regular tree or the stub tree is inserted.
Our metric is provided by a call to the function AT getAllocatedCount(),
which, as the name suggests, counts the number of ATerms allocated at a given
moment. Its output is written to a dataset, in this case a gnuplot file, repre-
sented by the file pointer fp. This has been implented, in essence, by addition
of the following code:

AT_alloc_count = AT_getAllocatedCount();
fprintf(fp, "%d\t%d \n", num_calls, AT_alloc_count);

Here, num_calls is a static variable counting the number of calls to the
function SG_Reducer() and, hence, the number of reductions performed so far.

14.4 Results

Measurements are shown in figure 14.4 and table 14.1.

file nodesucker input size ATerms allocated
funcall.c off 44 3081
funcall.c on 44 3029

Table 14.1: Results of nodesucker filter

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 88

14.5 Discussion

Graph explanation In the lower left corner of the figure we can see that the
two graphs initially overlap. Then, around reduction number 12, the nodesucker-
enabled graph initially rises above the regular graph. This local increase in the
number of ATerms allocated is caused by the initial creation of the stub tree,
which consists of between 20 and 30 ATerms.

After that, we can see that the graphs temporarily have the same shape,
although they differ by a constant amount.

Then, the graphs intersect again. Apparently, the ATerm count for the
nodesucker version is lower, and this difference continues to increase for every
subsequent insertion of a stub tree. This can be explained by the fact that
ATerms, of which both the water and the stub trees are made up, are maximally
shared [BJKO00] so that multiple insertions of the subtree do not require it to
be deep-copied. The difference between the two graphs will widen even further
as more stub trees are substituted for water trees. So memory usage is reduced
because:

1. The stub tree is very small compared to typtical water trees, which may
grow quite large.

2. All water trees are substituted by a reference to only a single stub tree,
thanks to maximal sharing.

Redundant ATerms will be automatically destroyed by the ATerms library’s
garbage collector, thus reducing the memory requirements for the parser. All of
this results in a space complexity improvement linear in the size of the input.

Conclusion This technique reduces the size of the parse tree during parsing,
and therefore of the SGLR’s memory usage. This results in a more space-efficient
parse in case water sorts are present (and designated as such). In the case of
parses that would have to swap to secondary storage without the nodesucker
compression, parsing performance may be improved; significantly so, if the parse
can now complete entirely in resident memory.

It is especially helpful in deferring the moment at which the in-memory data
structures (such as the parse-subtrees arising during parsing and the GSS), have
to be swapped to disk. This reduces the reliance on secondary storage, which is
an important performance bottleneck in sufficiently long and/or complex parses.
[Ver00]

Current limitations

• Position information is not preserved, since the number of characters in
the parse tree is different from that in the source text. Possible solutions:
run length encoding (RLE) of removed water character sequences. This
may be implemented in a number of ways:

1. Create kids ATerm for the subtree’s leaves such that the values
stored in them represent not ASCII character but the run length
of the removed string. (While this would be a fairly elegant solution,
it negates (some of) the space and runtime improvements gained by

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 89

the method as implemented currently, due to the overhead of creating
extra ATerms.

2. Create a location index on non-water parse tree nodes, separate from
the parse tree at SGLR runtime. In our example term funcall.c,
such an index would only have to provide position information for
the function call f().
The concept of using indexes, notably applied in most relational
database management systems, is particularly applicable in the case
of island grammars, since they typically recognize only a limited num-
ber of sorts. Consequently, we would only have to provide position
information for relatively few sorts. For the water sorts, whose posi-
tion information is not relevant since they do not represent constructs
of interest, we could suffice with maintaining a counter internally. For
every occurence of a non-water sort, we could write the position infor-
mation to an index, for example a comma separated ASCII file. Such
an index could later be used to find extractable constructs quickly,
or to reconstruct the original term for unparsing. This could be im-
plemented in a quite straightforward manner, with a constant time
complexity overhead for every call to SG Reducer().

• The function is water prod() has not been implemented yet; we im-
plement the check by a hardcoded match on the production number,
looked up manually from the parse table beforehand. Ideally, this in-
formation would be passed, for example, through the SDF specification
or on the command line. This would require some additional (straightfor-
ward) searching code to determine if a production number prodl occurs
in a (sorted) list of water production numbers. The time worst-case com-
plexity overhead would be linear in the number of water productions for
every call to SG Reducer().

Alternative optimizations A much more radical and invasive optimization
would be to delete water subtrees from the parse tree entirely, during runtime.
This would have the advantage of implicit disambiguation, since no water sub-
tree would be able to survive such a filter, which of course means that they
could also not be the source of ambiguities. However, we would still have to
end up with a well-formed parse tree in some way. While lofty, this goal would
require more research and, likely, a lot more implementation effort.

It should be noted that ambiguity filtering is at present non-optimal in gen-
eral. Quoting from the source code comments in sglr/libsglr/filters.c:

“There are seven separate [post-parse ambiguity] filters:

• cycle detection

• direct preference

• indirect preference (heuristic)

• preference counting (heuristic)

• injection counting (heuristic)

• priority

CHAPTER 14. SGLR PERFORMANCE IMPROVEMENTS 90

• reject

The order that these filters are performed in is important because
different combinations of filters can remove different trees. The
‘strongest’ filters should be done first, but this is currently not the
case — the priority filter should be done first, but it is actually done
last.”

Some of these filters require a lot of traversal up and down the tree. If they
are in effect, it would more efficient to run the strongest filters first, so as to
obtain a minimal parse tree at the soonest possible instance. This would reduce
memory overhead, as well as the need for traversal of redundant nodes that will
eventually be eliminated from the parse tree anyway.

More details on SGLR parsing and disambiguation can be found in ??, al-
though some of the mechanisms discussed there have in the meantime been
removed from SGLR. Semantic (post-parse) filtering (using ASF) is discussed
in [BKMV03].

Finally, it is worth mentioning the existence of SdfMetz [AV07], a tool which
facilitates the assessment of performance-related aspects of SDF grammars.

Chapter 15

Proposed improvements to
the Meta-Environment

15.1 Information in MetaStudio

The documentation of the Meta-Environment is, understandably, not always
up to date with the latest changes to the code. While external sources of
documentation are available, some of which contain valuable information (e.g.
the Stratego/XT manual1 and various scientific articles), finding where certain
features are documented is not always easy. For example, in the course of this
research project, I could not get traversal functions to work until I accidentally
stumbled upon a relevant paragraph in a thesis about another subject which
happened to address the issue explicitly. [Zaa01]

This state of affairs is somewhat unfortunate, since grammar engineering is
no exception to the saying that the devil is in the details. More specifically, it is
in being unaware of certain details, e.g. the programming/specification language
in question, the way it is evaluated, the way the IDE operates, and so on.

An example of this in the case of the Meta-Environment would be that
an SDF module must always end on an empty line, or it will not be parsed
correctly. Another example would be the parse errors caused by not having
a suitable Layout sort defined or imported by an ASF specification. In such
a case, all that will parse is the obligatory keyword equations that starts the
specification, and nothing else. While these examples can be sources of confusion
when starting out, they will at least cause a visible error, whereas others may be
more insidious and lead to errors that will go unnoticed, resulting in incorrect
specifications.

Introducing explicit and descriptive warnings to alert the user to short-
comings in their specification can be very helpful in learning how to use the
Meta-Environment, and in improving the quality and correctness of ASF+SDF
specifications for both inexperienced and advanced users. Given the difficulty
of grammar engineering in general, and more particularly that of island gram-
mar engineering, we must consider that certain usability improvements may be
crucial to the suitability of the Meta-Environment as a viable solution to island
grammar engineering problems. With this in mind, I would like to pose some

1http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/

91

CHAPTER 15. PROPOSED IMPROVEMENTS TO THE META-ENVIRONMENT92

suggestions for improved information display and state monitoring in MetaStu-
dio:

• Show which tool options are in effect, possibly offering controls to alter
them. Of particular interest are SGLR parser flags, such as those that con-
trol disambiguation behaviour; we can enable or disable injection counting,
priority filtering, reject filtering, etc.

• In case of deprecated features, providing visual clues in the GUI might be
prudent. One deprecated feature, prefer/avoid counting, was turned off in
the 2.0 versions of the Meta-Environment. While this was documented in
the release notes, it had not made its way into the manual yet at the time
I was experimenting with this feature, which gave rise to some confusion
on my part.

• Show, for example in the import tree view, which module exports which
sorts. Conflicts may arise in creating ASF equations if a very general
lexical sort has been defined somewhere down the import tree. Hiding
unneeded sorts may also be beneficial to the efficiency of the parser, since
reducing the number of possible sorts to test for reduces parsing time.

• Provide features for parse tracing; show which rules are matched, which
stacks are alive, how much resources are being used, etc. Lex has a debug
option (-d) option which provides some of this functionality. In particular,
it would be useful if there were some way of visualising (e.g. via trees) or
tracing erroneous parses up to the point where they failed.

• Provide ASF traversal traces showing e.g. which nodes are visited and
which rules are matched.

• Display some basic statistics: LOC, number of productions and sorts per
module, etc

Some warnings that would be useful:

• Warn if an SDF specification does not end on an empty line, other than
with a general and non-descriptive parse error.

• Warn in case Layout sort is not defined/included. This may especially
cause confusion when starting out with ASF.

• Priority warnings (explained below).

• Possibly, warn on trailing spaces and newlines in terms. This is a common
source of parse errors is Layout is not defined/included.

Priority warnings Consider the following grammar snippet:

context-free syntax

Expr "+" Expr -> Expr {left}

Expr "-" Expr -> Expr {left}

context-free priorities

Expr "*" Expr -> Expr {left} > %% production does not exist

CHAPTER 15. PROPOSED IMPROVEMENTS TO THE META-ENVIRONMENT93

Expr "+" Expr -> Expr {left} >

Expr "-" Expr -> Expr {left} >

Expr "+" Expr -> Expr {left} %% duplicate

Firstly, SDF will not warn about the fact that the priority for ∗ has no cor-
responding production. It is very likely that such an occurrence is unintentional
and erroneous. Since expression grammars typically are quite large, something
like this is easily missed by the grammar engineer.

Secondly, the duplicate specification of the priority for +, which cannot
exist given the transitive nature of priorities and is consequently erroneous per
definition, will generate a parse error for terms such as a+b+c. However, SDF
should also warn about a specification containing conflicting priorities.

15.2 Suggested new features

We will now describe a number of new features that should prove useful.

Testing framework for SDF Recall from section 1.1 that the correctness
of an island grammar depends in particular on the degree to which it admits
false positives and false negatives. It is desirable to have some sort of formalism
for testing an SDF grammar, particularly for island grammars. I propose the
following mechanism to validate an SDF grammar by testing the parsing of
certain strings as sorts or their subsorts.

strings
"myfun" -> name
3+x -> expr
expr -> args
name "(" args ")" -> call
bla; -> stat

tests
[Water-1] stat -> Water
[Expr-1] expr -> Expr

[FunCall-1] name "(" args ")" ~-> Water
[FunCall-2] name "(" args ")" -> FunCall
[FunCall-3] name "(" args ")" -> Expr
[FunCall-4] name "(" args ")" ";" -> Stat
[FunCall-5] name "(" args ")" ";" -> AMBIGUOUS

Lowercase words represent string constants. They are a convenient short-
hand notation and reduce errors caused by having to retype the same expression.
A test s → S tests whether the string s be parsed as a term of sort S. The
operator ~-> is the logical negation of ->.

The tests can be resolved by running the strings represented by the concate-
nation of variables and literals on the left hand sides through the sglr parser
with a grammar that defines the sorts on the right hand side, and taking the
sort S on the right hand side as the start symbol for each test. If S occurs as
a direct or indirect child of a production which also has S on its right hand

CHAPTER 15. PROPOSED IMPROVEMENTS TO THE META-ENVIRONMENT94

side, the test evaluates to True. The sort AMBIGUOUS is a special case,
which evaluates to true if and only if it is a direct or indirect descendant of an
ambiguity node in the parse tree.

This can help to systematically test the grammar with respect to certain
(suspicious) constructs, especially less elementary ones, for parse errors, ambi-
guities and false positives and negatives. On the GUI side of things, it would of
course be very nice to have a button to add a (sub)term selected in an editing
window as a test, possibly commented out initially, to encourage building a set
of representative test cases.

A prefer-to disambiguation construct This has been described in section
12.3.1.

The greedy attribute SDF has the following notation to implement greedy
restrictions, also referred to as follow restrictions or prefer longest match:

lexical syntax
[A-Z][A-Za-z0-9]* -> Id

lexical restrictions
Id -/- [A-Za-z0-9]

The problem with this notation is that it duplicates information, which
makes the specification more error-prone, as it means that edits to the (lexical)
production will in most cases require corresponding changes to the follow re-
striction. In a lot of specifications, the restrictions section will be at a distance
of quite a number of lines from the syntax section. Especially since there is no
indication in the production’s definition that will alert us to the existence of
an associated follow restriction, that restriction may be easily overlooked. This
in turn would lead to an erroneous specification in case of changes to the sort
definition.2

Furthermore, the intent of the follow restriction is not immediately obvious
from the SDF syntax, which can be especially confusing for novice users. I
propose the following alternative notation:

lexical syntax
[A-Z][A-Za-z0-9]* -> Id {greedy}

This would prompt the SDF interpreter to transparently generate code
equivalent to that in the first example: a lexical restriction which expresses
that the sort Id cannot be followed by any character from its repeating tail, in
this example: [A-Za-z0-9]. This is merely a notational change; the semantics
are equivalent to the current notation using the -/- operator. This notation
however is more concise, more self-explanatory and less error-prone.

2This cost me at least an hour when tracing some problem with the minus operator being
rejected as part of Expr, which in the end turned out to be the result of the lexical restrictions
for Id being incorrect. Ironically, this was after I added this section.

CHAPTER 15. PROPOSED IMPROVEMENTS TO THE META-ENVIRONMENT95

Ambiguity viewer The Meta-Environment GUI currently offers several types
of views of a parse tree: without lexicals, with lexicals but without layout, with
lexicals and layout or, finally, as a shared tree. The latter view corresponds
most closely to how parse trees are stored internally, that is, with maximally
shared subterms. Since parse trees can get very large and unwieldy, it may be
quite difficult to trace the source of ambiguities visually.

It would be very helpful if there were some way of visualising which nodes
in ambiguous subtrees correspond, and which differ. The shared tree view isn’t
generally much help in this sense. One reason for this is that the lexicals (leaves)
at the bottom are no longer sorted in order of occurrence; i.e. the input string
is mangled beyond recognition. A suggestion would be to display the trees side
by side and highlight the disagreeing nodes, obtaining a visual tree diff. Making
tree nodes clickable so they can be folded in or out would also help enormously.

Parser option control It would make sense to allow the user to control
certain parser options from inside ASF+SDF specifications, such as which dis-
ambiguation filters to use (e.g. priorities, injection counting, prefer/avoid count-
ing). An SDF specification seems like a logical place for such directives since
correct behaviour of the grammar may rely on them. (Failing that, it would still
be useful to at least expose the default state of the options through the GUI.)

15.3 Other

• Allow graph export to a non-pixel based format (such as GraphViz’s dot)
from the GUI.

• Make tree nodes clickable and introduce the possibility to hide the subtree
rooted at a particular node. (This would also quite convenient for an
ambiguity viewer.)

• Visual aterm editor.

• Comments in ASF are somewhat non-obvious. Contrary to SDF itself,
which has a built-in comment syntax started by %%, ASF requires com-
ments intended for use inside equations to be defined in its associated
SDF specification. The comments defined for the target language speci-
fied therein may then be used to comment the ASF equations.

• Implement a scripting language/environment to facilitate integration of
external tools and accessing built-in features:

– SGLR options

– ASF evaluator options

– Collecting data for measurements

– building filter chains from inside the environment

– filters

– analyzers (such as SDFMetz),

– visualizers, etc.

– Tools such as call graph extractors, RScript, etc.

CHAPTER 15. PROPOSED IMPROVEMENTS TO THE META-ENVIRONMENT96

• While we’re at it (i.e. at the scripting idea) an integrated console/inter-
preter for ASF would be most convenient for testing and experimentation.
The file-based terms can be a bit clumsy in certain situations. (This can
already be done by using shells such as bash (which feature variables)
and the Meta-Environment’s command line tools to some extent, but we
couldn’t call that the epitome of usability.) An example session could look
something like this (user input is preceded by the prompt meta>):

meta> $myterm1 = "int main() { foo(); }"

ok.

meta> extractCalls($myterm1) %% invoke ASF function

= [funcall("main","foo")]

meta> debug extractCalls($myterm1)

invoking ASF function ’extractCalls’ in debug trace mode:
...
...

The possibilities are endless and, I would guess for the major part, obvi-
ous. We could take hints from some other interpreted environments such
as MatLab’s interpreter, hugs, QuickBasic, etc, and not derive similar
function specifications here.

Chapter 16

Conclusions

16.1 Summary

The general idea behind island grammars is to discard uninteresting constructs
by capturing them with, preferably, lexical patterns. This is a perceived time-
saver, since it eliminates the need to specify syntax in detail, which can indeed
be very time consuming. A typical application (and perhaps indeed the most
important one) of island grammars is to provide at least some grammar in the
event that none is available there is none. The practicality of their use which,
then, encompasses their development, is a central matter of concern. As we have
seen, island grammars may indeed offer the benefits of conciseness ad tolerance.
However, these benefits pertain to their use, and must be weighed against the
complexity of devising them.

When developing full grammars, the typical solution to errors in the spec-
ification is to refine and/or extend certain productions until they capture the
language constructs in question as desired. While generally quite laborious, this
process is at least more or less straightforward, and the resulting specification
will reflect its purpose explicitly and hence, one hopes, clearly. By contrast,
island grammars such as the watery statement grammar of section 10.1.2 are,
while quite tolerant, not as self-explanatory as their more explicit counterparts.

While the advantage of not having to specify uninteresting constructs may
indeed lead to a significant reduction of specification effort in terms of the
number the number of productions, this is a misleading metric, as the potential
overall gains also depends on how complicated the analyses are which enable
us to arrive at correct island/water definitions sorts. This in turn depends on
factors such as the degree to which constructs of interest are nested within
uninteresting constructs in the target language, and how well-understood that
language is.

For instance, the process used to detect possible literal-clashes between the
subsorts of FunDef, described in chapter 13, required detailed analysis of parts
of the target language. This was used in order to determine how the effects of
design decisions concerning (lexical) water sorts, such as which characters they
include and exclude, would propagate up the grammar graph. Such questions
do not arise in the development of full grammars, since they have no tolerant
(water) sorts and, as such, no clashes can occur on account of excessive tolerance.

97

CHAPTER 16. CONCLUSIONS 98

One may find that the required language analysis, development and testing
iterations take more time than simply specifying the constructs in question in
detail, i.e. in the style of a full grammar. For certain special cases, e.g. capturing
high-level constructs or parsing ‘easy’ languages, this is not an issue. In the
general case however, predicting the potential gains of using an island grammar
approach can be difficult.

In short, while we may be able to define terse and correct island grammars
with reasonable compositionality properties, the question of their practicality
must be carefully considered on a case-by-case basis. Some parts of a language
may benefit much from an island grammar approach, while other parts may be
too complicated to bother with. The example of an expression grammar from
which we can extract function calls, presented in this thesis, is an example in
which the merits of an island grammar approach are questionable. In general,
assessing the viability of an island grammar approach is difficult and therefore
risky.

16.2 Contributions

• Researched, designed and compared island grammars for the recognition
of complex constructs of interest.

• Identified and compared some island grammar engineering patterns, and
discussed of the issues connected with them.

• Suggested and successfully implemented proof-of-concept efficiency im-
provements to the SGLR parser.

• Suggested a method for identifying potential clashes between literals in
a candidate island grammar, which allows one to reliably define islands,
water and catcher productions.

16.3 Future work

• Quantify complexity overhead of designing and testing an island grammar
based on certain properties such as the nesting of constructs and target
language complexity. This should be probably be considered very difficult.

• Research implicit disambiguation by preventing water nodes from being
included in the parse tree.

• Implement improvements suggested in the literature (e.g. [Lee05]), and in
this thesis, as part of the Meta-Environment.

Appendix A

Source Code

A.1 Comment extractor source code

Some of the shortcomings of this grammar have been resolved in the function
call extractor.

module IslandGrammarC

%% functionality:

%% - recognizes function definitions (sort FunDef)

%% - recognizes comments

%%

%% partially implemented:

%% - expressions: only [0-9]+ are valid (sort Expr)

%%

imports Water Comments

exports

sorts

Program IslandGlobal WaterGlobal Stat CompoundStat Expr↙

Id Type FunDecl FunDef FunCall

lexical syntax

[A-Za-z0-9_]* → Id

[0-9]+ → Expr

lexical restrictions

Id -/- [a-z0-9\-_]

context-free syntax

(IslandGlobal | WaterGlobal)* → Program

WATER ";" → WaterGlobal

IslandComment → IslandGlobal {↙

prefer}

99

APPENDIX A. SOURCE CODE 100

FunCall → IslandStat

Id "(" ")" ";" → FunCall

FunDecl → IslandGlobal {↙

prefer}

Id "(" ")" ";" → FunDecl {prefer}

FunDef → IslandGlobal {↙

prefer}

Type? Id "(" ")" CompoundStat → FunDef

IslandStat → Stat {prefer}

WaterStat → Stat {avoid}

WATER* ";" → WaterStat {prefer↙

}

WATER* CompoundStat → WaterStat {avoid}

CompoundStat → WATER {reject}

CompoundStat → Stat

"{" (Stat|IslandComment)* "}" → CompoundStat

VarDecl → IslandStat {prefer}

VarDecl → IslandGlobal {prefer}

Type Id ("[" "]")* ";" → VarDecl

Type Id ("[" "]")* "=" Expr ";" → VarDecl

("int" | "char" | "void") "*"* → Type

"char" → WATER {reject}

hiddens

context-free start-symbols Program

module Comments

imports Layout

exports

sorts IslandComment DropComment

Asterisk

CmtWord CmtBody CmtOpen CmtClose

lexical syntax

~[\ \t\n]+ → CmtWord

"/**" | "/*!" → CmtOpen

"*/" → CmtClose

"/*" ~[\!*] (~[*] | Asterisk)* "*/" → DropComment

[*] → Asterisk

APPENDIX A. SOURCE CODE 101

lexical restrictions

Asterisk -/- [\/]

CmtWord -/- ~[\ \t\n]

CmtOpen -/- ~[\ \t\n]

context-free restrictions

LAYOUT? -/- [\/].[*].~[\!*]

context-free syntax

DropComment → LAYOUT

CmtOpen CmtBody CmtClose → IslandComment {↙

prefer}

CmtWord* → CmtBody

CmtOpen → Drop {reject}

CmtClose → CmtWord {reject}

module Drop

exports

sorts Drop

lexical syntax

~[\ \t\n\;\{\}]+ → Drop {avoid}

lexical restrictions

Drop -/- ~[\ \t\n\;\{\}]

module Water

exports

sorts WATER

lexical syntax

~[\ \t\n\;\{\}]+ → WATER {avoid}

lexical restrictions

WATER -/- ~[\ \t\n\;\{\}]

module Layout

exports

lexical syntax

[\ \t\n] → LAYOUT

context-free restrictions

LAYOUT? -/- [\ \t\n]

APPENDIX A. SOURCE CODE 102

module ExtractorDoxygen

imports IslandGrammarC

exports

sorts

XML Result XMLId RandomXML

context-free start-symbols

XML Result

lexical syntax

[A-Za-z0-9]+ → XMLId

context-free syntax

"e" "(" Program "," XML* ")" → Result

"eToken"

"(" IslandGlobal | WaterGlobal ")" → XML

"eFunCall" "(" CompoundStat ")"

→ RandomXML

"eFunDef" "(" (Stat | IslandComment)*

"," XML* ")" → XML

"eStat" "(" Stat ")" → XML

"<comment >" CmtBody "</comment >" → XML

"<fundecl >" Id "</fundecl >" → XML

"<vardecl >" Type Id "</vardecl >" → XML

"<water >" WATER* "</water >" → XML

"<funbody >" XML* "</funbody >" → XML

"<test1 />" → XML

"<test2 />" → XML

"<ignoredstatement />" → XML

"<memberdef kind =\" variable \">"

"<type >"Type"</type >"

"<name >"Id"</name >"

("<initializer >"Expr"</initializer >")?

"</memberdef >" → XML

"eFunCall" "(" FunCall ")" → XML

"<funcall caller" "=" "\"" Id "\">" Id "</funcall >"

→ XML

"<memberdef kind =\" function \">"

"<type >dummytype </type >"

"<name >"Id"</name >"

RandomXML

APPENDIX A. SOURCE CODE 103

"</memberdef >" → XML

("<" XMLId (XMLId ("=" "\"" WATER* "\"")?)* ">"

WATER*

"</" XMLId ">")*

→ RandomXML

variables

"CmtBody "[0-9]* → CmtBody

"CmtOpen "[0-9]* → CmtOpen

"CmtClose "[0-9]* → CmtClose

"IslandComment "[0-9]* → IslandComment

"CmtClose "[0-9]* → CmtClose

"IslandGlobalSeq1 "[0-9]* → IslandGlobal*

"IslandGlobalSeq2 "[0-9]* → {IslandGlobal " "}*

"IslandGlobal "[0-9]* → IslandGlobal

"WATER "[0-9]* → WATER

"CompoundStat "[0-9]* → CompoundStat

"TokenSeq "[0-9]* → (IslandGlobal | ↙

WaterGlobal)*

"Token "[0-9]* → (IslandGlobal | ↙

WaterGlobal)

"StatOrIslandComment "[0-9]* → Stat|IslandComment

"StatOrIslandCommentSeq "[0-9]* → (Stat|IslandComment)*

"Stat "[0-9]* → Stat

"XML "[0-9]* → XML

"XMLSeq "[0-9]* → XML*

"Type "[0-9]* → Type

"Id"[0-9]* → Id

"Expr "[0-9]* → Expr

"FunCall "[0-9]* → FunCall

equations

[e1]

e(Token TokenSeq , XMLSeq)

= e(TokenSeq ,

XMLSeq

eToken(Token)

)

[2] eToken(WATER;) = <water >WATER </water >

APPENDIX A. SOURCE CODE 104

[3] eToken(CmtOpen CmtBody CmtClose)

=<comment >

CmtBody

</comment >

[4] eToken(Id();) = <fundecl >Id </fundecl >

[5] eToken(Type Id() { StatOrIslandCommentSeq })

= eFunDef(StatOrIslandCommentSeq ,)

[5c1] eFunDef(Stat StatOrIslandCommentSeq ,)

= eFunDef(StatOrIslandCommentSeq ,

eStat(Stat))

/* discard IslandComment */

[5c2] eFunDef(IslandComment StatOrIslandCommentSeq , XMLSeq)

= eFunDef(StatOrIslandCommentSeq ,

XMLSeq)

/* parse current statement (default) */

[5c3] eFunDef(Stat StatOrIslandCommentSeq , XMLSeq)

= eFunDef(StatOrIslandCommentSeq , XMLSeq

eStat(Stat))

/* terminate the recursion */

[5c4] eFunDef(,XMLSeq)

=

<funbody >

XMLSeq

</funbody >

[5d1] eStat(Id();) =<funcall caller ="Id">Id </funcall >

[5d2] eStat(Stat) = <ignoredstatement />

[6] eToken(Type Id;)

=<memberdef kind=" variable">

<type >Type </type >

<name >Id </name >

</memberdef >

[7] eToken(Type Id = Expr;)

=<memberdef kind=" variable">

<type >Type </type >

<name >Id </name >

<initializer >Expr </ initializer >

</memberdef >

APPENDIX A. SOURCE CODE 105

A.2 Function call extractor

module IslandGrammarC

%% limitations:

%%

%% - function pointer calls of the form

%% ’(*func)(1,2)’ are not recognized

%% - Doxygen comments (/**, /*!) are broken

%% - C++ comments (//_ comments are also not recognized

exports

imports Layout Water Stat

sorts

Program Global IslandGlobal WaterGlobal WaterGlobalWord ↙

Keyword

context-free start-symbols Program

lexical syntax

~[\ \t\n\;]+ → WaterGlobalWord {avoid}

lexical restrictions

WaterGlobalWord -/- ~[\ \t\n\;]

context-free syntax

Global* → Program

IslandGlobal → Global {prefer}

WaterGlobal → Global {avoid}

IslandComment → IslandGlobal {prefer}

WaterGlobalWord* ";" → WaterGlobal {avoid}

FunDef → IslandGlobal {prefer}

FunDecl → IslandGlobal {prefer}

VarDecl ";" → IslandGlobal {prefer}

CompoundStat → Water {reject}

"inline "? Type?

Id "(" ParamList ")" CompoundStat → FunDef

"else" → Water {reject}

"case" → Water {reject}

"goto" → Water {reject}

"else" → Keyword

"return" → Keyword

"if" → Keyword

"else" → Keyword

"do" → Keyword

"while" → Keyword

"switch" → Keyword

"case" → Keyword

"default" → Keyword

"for" → Keyword

"return" → Keyword

"goto" → Keyword

TypeQualifier → Keyword

StorageClassSpec → Keyword

APPENDIX A. SOURCE CODE 106

Keyword → Id {reject}

Keyword → UserType {reject}

module Stat

imports Comments Decl

hiddens

sorts CaseLabel GotoLabel

exports

sorts

Stat WaterStat IslandStat CompoundStat

XStat XaStat XbStat XaIslandStat XbIslandStat XWaterStat

context-free syntax

Water* → XWaterStat {prefer}

"{" (Stat|IslandComment)* "}" → CompoundStat

CompoundStat → Stat

GotoLabel → WaterStat

Id ":" → GotoLabel

Id ":" → Water {reject}

"default :" → Stat

%% - for the following constructs , add {rejects} in main module

%% - XaIslandStats end in (compound) statements so they don ’t

%% need to be terminated by ";", whereas XbIslandStats do

"if" "(" Expr ")" Stat

("else" Stat)? → XbIslandStat

"while" "(" Expr ")" Stat → XbIslandStat

"switch" "(" Expr ")" Stat → XbIslandStat

"for"

"(" XStat ";" Expr ";" XStat ?")"

Stat → XbIslandStat

"case" Expr ":" → XbIslandStat

Expr → XaIslandStat

"return" Expr → XaIslandStat

"do" Stat "while" "(" Expr ")" → XaIslandStat

VarDecl → XaIslandStat {prefer}

XWaterStat ";" → WaterStat

XaIslandStat ";" → IslandStat

XbIslandStat → IslandStat

%% the X indicates the sort does not have the semicolon

%% included at the end

%% eg: "bla" → XStat

%% "bla" ";" → Stat

%%

%% group a: need to be terminated by ";"

%% group b: end on (compound) statements , don ’t need a ↙

terminating ";"

APPENDIX A. SOURCE CODE 107

XaIslandStat → XaStat {prefer}

XbIslandStat → XbStat {prefer}

XWaterStat → XaStat {avoid}

XaStat ";" → Stat

XbStat → Stat

%% this production provides access to

%% the semicolon-less version of all statements

XaStat | XbStat → XStat

module Expr

imports Strings FunCall Type

hiddens

sorts CharConst Digits NatConst Subscript Id

context-free start-symbols Expr

exports

sorts Expr Id CastOperator

lexical syntax

[0-9]+ → Digits

[A-Za-z_][A-Za-z_0-9]* → Id

[L]? [\’] (([\\]~[]) |~[\\\ ’])+ [\’] → CharConst

lexical restrictions

Id -/- [A-Za-z_0-9]

context-free syntax

%% atomic expressions

CharConst → Expr

("+"|"-")?"0x"? Digits → Expr

("+"|"-")?Digits ?"." Digits ("e"("+"|"-") Digits)? → Expr

Id → Expr

String → Expr

FunCall → Expr

%% compositional expressions

"(" Expr ")" → Expr {bracket}

Expr "+" Expr → Expr {left}

Expr "-" Expr → Expr {left}

Expr "*" Expr → Expr {left}

Expr "/" Expr → Expr {left}

Expr "%" Expr → Expr {left}

Expr "^" Expr → Expr {left}

Expr "++" → Expr

Expr "--" → Expr

"++" Expr → Expr

"--" Expr → Expr

Expr "=" Expr → Expr {left}

Expr "+=" Expr → Expr {left}

Expr "-=" Expr → Expr {left}

Expr "*=" Expr → Expr {left}

Expr "/=" Expr → Expr {left}

Expr "%=" Expr → Expr {left}

APPENDIX A. SOURCE CODE 108

Expr "^=" Expr → Expr {left}

Expr "==" Expr → Expr {left ,prefer}

Expr "!=" Expr → Expr {left}

Expr "<" Expr → Expr {left}

Expr "<=" Expr → Expr {left}

Expr ">" Expr → Expr {left}

Expr ">=" Expr → Expr {left}

"!" Expr → Expr

Expr "&&" Expr → Expr {left ,prefer}

Expr "||" Expr → Expr {left ,prefer}

Expr "&" Expr → Expr {left ,avoid}

Expr "|" Expr → Expr {left}

"~" Expr → Expr

Expr "&=" Expr → Expr {left}

Expr "|=" Expr → Expr {left}

Expr "<<" Expr → Expr {left ,prefer}

Expr ">>" Expr → Expr {left ,prefer}

"&" Expr → Expr

"*" Expr → Expr

Expr "→" Expr → Expr {left}

Expr "." Expr → Expr {left}

"[" Expr "]" → Subscript

Expr Subscript → Expr

"(" Type ")" → CastOperator {avoid}

CastOperator Expr → Expr {avoid}

Expr "?" Expr ":" Expr → Expr

context-free priorities

Expr "." Expr → Expr {left} >

Expr "→" Expr → Expr {left} >

Expr Subscript → Expr >

Expr "++" → Expr >

Expr "--" → Expr >

"++" Expr → Expr >

"--" Expr → Expr >

"!" Expr → Expr >

"~" Expr → Expr >

Expr "+" Expr → Expr {left} >

Expr "-" Expr → Expr {left} >

Expr "*" Expr → Expr {left} >

Expr "/" Expr → Expr {left} >

Expr "%" Expr → Expr {left} >

Expr "^" Expr → Expr {left} >

Expr "=" Expr → Expr {left} >

Expr "+=" Expr → Expr {left} >

Expr "-=" Expr → Expr {left} >

Expr "*=" Expr → Expr {left} >

Expr "/=" Expr → Expr {left} >

APPENDIX A. SOURCE CODE 109

Expr "%=" Expr → Expr {left} >

Expr "^=" Expr → Expr {left} >

Expr "==" Expr → Expr {left ,prefer} >

Expr "!=" Expr → Expr {left} >

Expr "<" Expr → Expr {left} >

Expr "<=" Expr → Expr {left} >

Expr ">" Expr → Expr {left} >

Expr ">=" Expr → Expr {left} >

Expr "&&" Expr → Expr {left} >

Expr "||" Expr → Expr {left ,prefer} >

Expr "&" Expr → Expr {left ,avoid} >

Expr "|" Expr → Expr {left} >

Expr "&=" Expr → Expr {left} >

Expr "|=" Expr → Expr {left} >

Expr ">>" Expr → Expr {left ,prefer} >

Expr "<<" Expr → Expr {left ,prefer} >

"&" Expr → Expr >

"*" Expr → Expr >

Expr "?" Expr ":" Expr → Expr

module Strings

exports

sorts String

context-free start-symbols String

lexical syntax

"\"" StringChar* "\"" → StringCon

[\\][\"] → StringChar

~[\"\n] → StringChar

context-free syntax

StringCon+ → String

hiddens

sorts StringCon StringChar

module Decl

imports Expr

exports

sorts VarDecl Type UserType ParamList Param WATERPARAM ↙

ReturnType FunDecl FunDef

lexical syntax

~[\ ,]+ → WATERPARAM {avoid}

lexical restrictions

WATERPARAM -/- ~[\,]

context-free syntax

Type {(Id ("[" "]")*

("=" Expr)?) ","}+ → VarDecl

"inline "? Type?

Id "(" ParamList ")" ";" → FunDecl {prefer}

APPENDIX A. SOURCE CODE 110

Type Id? ("[" "]")* → Param

"..." → Param %% variadic ↙

functions

Type "(" "*" Id ("[" "]")* ")"

"(" {UserType ","}* ")" → Param %% fun ptr

Type ("[" "]")* → ReturnType

{Param ","}* → ParamList

module Type

exports

sorts

Type UserType

StorageClassSpec TypeQualifier

lexical syntax

[A-Za-z_][A-Za-z_0-9]* → UserType

lexical restrictions

UserType -/- [A-Za-z_0-9]

context-free syntax

StorageClassSpec* TypeQualifier* (" struct "|" union ")? UserType ↙

"*"*

→ Type

"typedef" → StorageClassSpec

"extern" → StorageClassSpec

"static" → StorageClassSpec

"auto" → StorageClassSpec

"register" → StorageClassSpec

"const" → TypeQualifier

"volatile" → TypeQualifier

module FunCall

imports Expr

exports

sorts FunCall

context-free syntax

Id "(" {Expr ","}* ")" → FunCall

module Comments

imports Water

hiddens

sorts

Asterisk

CmtWord CmtBody CmtOpen CmtClose

exports

sorts IslandComment WaterComment

context-free start-symbols IslandComment WaterComment

APPENDIX A. SOURCE CODE 111

hiddens

lexical syntax

~[\ \t\n]+ → CmtWord

exports

lexical syntax

"/**" | "/*!" → CmtOpen

"*/" → CmtClose

"/*" ~[\!*] (~[*] | Asterisk)* "*/" → WaterComment

[*] → Asterisk

lexical restrictions

Asterisk -/- [\/]

CmtWord -/- ~[\ \t\n]

CmtOpen -/- ~[\ \t\n]

context-free restrictions

LAYOUT? -/- [\/].[*].~[\!*]

context-free syntax

WaterComment → LAYOUT

CmtOpen CmtBody CmtClose → IslandComment {prefer}

CmtWord* → CmtBody

CmtOpen → Water {reject}

CmtClose → CmtWord {reject}

module Water

exports

sorts Water

lexical syntax

~[\ \t\n\;\{\}\(\)]+ → Water {avoid}

lexical restrictions

Water -/- ~[\ \t\n\;\{\}\(\)]

module Layout

exports

lexical syntax

[\ \t\n] → LAYOUT

context-free restrictions

LAYOUT? -/- [\ \t\n]

A.3 Extractor using suckpt

Here, we extract subtrees from the source file using suckpt. First, we extract
the sort FunDef. From each fundef,

1. input: parse tree of source file

2. extract subtrees on sort FunDef from the tree

3. add entry in sqlite database for each FunDef from the tree

4. for each those FunDef subtrees, extract sort FunCall

APPENDIX A. SOURCE CODE 112

5. for each FunCall, add entry in sqlite database for each FunDef from the
tree

METAPATH="/opt/asfsdf -meta -2.0.1RC2 -linux -i386.bin.sh"

METABINPATH="${METAPATH }/bin"

CLASSPATH="${METAPATH }/ share/aterm -java.jar:${METAPATH }/ share/↙

shared -objects.jar:${METAPATH }/ share/jjtraveler.jar:."

BASENAME="SuckPT"

module="Autoload"

term="suckpt_test_1.c.tree.txt"

suck="java -classpath ${CLASSPATH} ${BASENAME}"

this extraction relies on two facts:

#

1) the first Id occurring in a FunDef is the name of the ↙

function defined (true for ANSI C)

2) the first Id occurring in a FunCall is the name of the ↙

function called (true for ANSI C)

rm -f CALLSDB calls.sql

echo "create table calls(caller varchar (100) , called varchar (100))↙

;">>calls.sql

echo "create table defs(name varchar (100));">>calls.sql

suck FunDefs

rm FunDef.tree.txt .[0 -9]*

${suck} suckpt_test_1.c.tree.txt FunDef

for fundef in FunDef.tree.txt .[0 -9]*; do

suck Id from FunDefs to obtain name of calling function

rm Id.tree.txt .[0 -9]*

${suck} $fundef Id;

callerId=‘${METABINPATH }/ unparsePT -i Id.tree.txt.1‘

#echo =============================

#echo $callerId

#echo =============================

callerId=‘${METABINPATH }/ unparsePT -i Id.tree.txt.1‘

callId="insert into defs values (’‘${METABINPATH }/ unparsePT -i ↙

Id.tree.txt.1‘’);"

echo $callId >> calls.sql

suck FunCalls from FunDefs

rm FunCall.tree.txt .[0 -9]*

${suck} $fundef FunCall;

for funcall in FunCall.tree.txt .[0 -9]*; do

${suck} $funcall Id;

#callId =" -→ ‘${METABINPATH }/ unparsePT -i $funcall ‘" # name↙

+ arguments

callId=" ($callerId , ‘${METABINPATH }/ unparsePT -i Id.tree.↙

txt.1‘)"

echo $callId

callId="insert into calls values (’$callerId ’,’‘${METABINPATH↙

}/ unparsePT -i Id.tree.txt.1‘’);"

echo $callId >> calls.sql

done

done

cat ’calls.sql ’ | sqlite CALLSDB

APPENDIX A. SOURCE CODE 113

echo ’select caller ,called from calls , defs where called=name;’ | ↙

sqlite CALLSDB

A.4 SuckPT

/**

* SuckPT.java

*

* @author E.J. Post

*

* resources:

* - http :// homepages.cwi.nl/~ daybuild/daily -docs/aterm -java/↙

aterm/package -summary.html

* - /path/to/meta/share/x/.../ test/TestFib.java:

*

*/

import java.io.*;

import java.util .*;

import java.lang.Runtime .*;

import aterm .*;

public class SuckPT

{

int maxdepth = 100;

int numExtractions = 0;

int depth = 0;

ATerm patternApplProdSortToExtract;

private ATermFactory factory;

String sortToExtract = "FunCall";

Boolean verboseFlag = false;

Boolean dumpUnparsedFlag = false;

Boolean writeToFileFlag = true;

public static final void main(String [] args) throws ↙

IOException

{

SuckPT mysucker = new SuckPT(args);

// System.out.println ("all done .");

}

public SuckPT(String [] args) throws IOException

{

if (args.length < 2) {

System.out.print("suckpt 0.1a (c) 2007 Erik Post , ↙

University of Amsterdam <erik@shinsetsu.nl >\n\n");

System.out.println("usage: suckpt FILENAME SORT\n\↙

nThis will suck _all_ occurences of SORT from the ↙

tree in FILENAME");

return;

}

// parse command line arguments

for (int i=0; i < args.length; i++) {

String arg = args[i];

if (arg.equals("-v")) {

verboseFlag = true;

}

APPENDIX A. SOURCE CODE 114

}

String filename = args [0];

sortToExtract = args [1];

if (args.length >= 3) {

if(args [2] == "-v") verboseFlag = true;

else verboseFlag = false;

}

if(verboseFlag) {

System.out.print("suckpt 0.1a (c) 2007 Erik Post , ↙

University of Amsterdam <erik@shinsetsu.nl >\n\n");

System.out.println("extracting sort ’" +sortToExtract ↙

+"’ from file ’" + filename +"’");

}

factory = new aterm.pure.PureFactory ();

try {

// ATerm input = factory.readFromFile(System.in);

FileInputStream f = new FileInputStream (filename);

// ATerm input = factory.readFromFile(f);

dump((ATerm) factory.readFromFile(f));

if(verboseFlag) {

System.out.println("extracted " +numExtractions +"↙

occurences of sort ’" + sortToExtract +"’");

}

} catch (ParseError error) {

System.err.println("Your input was not a valid term!")↙

;

}

}

//

// traverse parse tree and process nodes

//

void dump(ATerm t)

{

// System.out.print("--dump(<ATerm >) at depth "+ depth +": ↙

--: " + t.getType ());

if(depth >= maxdepth) {

System.err.print("maximum tree depth exceeded .\n");

System.exit(-1);

}

switch(t.getType ()) {

case ATerm.APPL:

depth ++;

ATerm lhs = null;

// System.err.print (" depth: " + depth +"\n");

List matches1 = t.match(factory.parse("appl(prod(<term↙

>,<term >,<term >),<term >)"));

if (matches1 != null) {

ATerm targetSort = (ATerm) matches1.get (1);

lhs = (ATerm) matches1.get (3);

if(targetSort.toString ().equals("cf(sort (\"" + ↙

sortToExtract + "\"))")) {

// we’ve found a match

System.out.print(numExtractions+" ");

if(true || dumpUnparsedFlag) {

APPENDIX A. SOURCE CODE 115

dumpTermUnparsed("parsetree(" + t + " ,0)")↙

;

}

numExtractions ++;

if(verboseFlag) {

System.out.print("writing to: "+ ↙

sortToExtract +".tree.txt." +↙

numExtractions +"\n");

}

if (writeToFileFlag) {

try{

dumpTreeToFile("parsetree(" + t + " ,0)↙

", sortToExtract +".tree.txt."+↙

numExtractions);

}

catch (IOException ex) {

System.out.println("error writing to ↙

file\n");

}

}

}

} else if ((matches1 = t.match(factory.parse("appl(↙

list(<term >),<term >)"))) != null) {

lhs = (ATerm) matches1.get (1);

// System.err.print ("todo: appl(list())\n");

} else if ((matches1 = t.match(factory.parse("↙

parsetree(<term >,<term >)"))) != null) {

System.err.print("todo: parsetree ()\n");

lhs = ((ATermAppl) t).getArgument (0);

} else {

// unknown function

System.err.print("todo: non -appl(prod) ,...) APPL ↙

with arity "+((ATermAppl) t).getArity ()+"\n");

}

if (lhs != null) {

dump(lhs);

}

depth --;

break;

case ATerm.LIST:

// recurse into all list elements

for (int i=0; i<((ATermList) t).getLength (); i++) {

if(dumpUnparsedFlag) {

dumpTermUnparsed("parsetree(" + t + " ,0)");

}

dump (((ATermList) t).elementAt(i));

}

break;

default:

break;

}

}

// alternative methods provided by ATerm package:

// - void writeToTextFile(java.io.OutputStream stream) ↙

throws java.io.IOException

// - void writeToSharedTextFile(java.io.OutputStream stream)↙

throws java.io.IOException

//

APPENDIX A. SOURCE CODE 116

public void dumpTreeToFile(String parseTree , String fileName) ↙

throws IOException

{

FileOutputStream out; // declare a file output object

PrintStream p; // declare a print stream object

try {

out = new FileOutputStream(fileName);

p = new PrintStream(out);

p.print (parseTree);

p.close ();

}

catch (Exception e) {

System.err.println ("Error writing to file " + ↙

fileName);

}

}

public void dumpTermUnparsed(String parseTree)

{

// System.out.println(System.getenv ("PATH"));

try {

String [] cmd = {

"/bin/sh",

"-c",

"echo ’"+parseTree+"’| "+"/opt/asfsdf -meta -2.0.1↙

RC2 -linux -i386.bin.sh/bin" +"/unparsePT"

};

String line;

Process p = Runtime.getRuntime ().exec(cmd);

BufferedReader input = new BufferedReader(new ↙

InputStreamReader(p.getInputStream ()));

while ((line = input.readLine ()) != null) {

System.out.println(line);

}

input.close ();

}

catch (Exception err) {

err.printStackTrace ();

}

}

}

Appendix B

ASF+SDF
Meta-Environment
problems

B.1 Meta-Environment/MetaStudio issues

The Meta-Environment and the MetaStudio IDE have improved enormously
since the first time I worked with them in 1998. Installation, both from source
and binary, has also become much, much easier compared to previous releases.
This may encourage people to experiment with the Meta-Environment. How-
ever, there are still a number factors that hinder its learnability, usability and
correct operation. To name a few:

• No warning is reported in case a priority rule does not match a context-
free syntax rule. If this is the case, the priority rule is useless, and the user
may incorrectly assume the source of an ambiguity is not in the priorities
section.

• Undo works across multiple buffers in the IDE. Repeated undos may there-
fore affect other loaded files that we aren’t looking at. This is highly
uncommon, useless, and leads to much confusion and errors!

• There exists an ATerm-pretty printer (aterm-pp) as part of Stratego/XT,
but the Meta-Environment does not include this tool. It might come in
handy, particularly in reverse engineering te AsFix format as I have done
in the production of suckpt.

Miscellaneous bugs There are also some important bugs. Of course, all
software has bugs and the Meta versions used throughout this research project
were release candidates, not actual releases. However, for the sake completeness,
I will list a number of them. Note that some may have been fixed in the
meantime:

• Debug reduce hasn’t worked across all the 2.x versions of the Meta-
Environment I have tried, up to and including the 2.0.1 release candi-

117

APPENDIX B. ASF+SDF META-ENVIRONMENT PROBLEMS 118

date. Clicking it results in MetaStudio hanging saying ‘Rewriting...’ in
the status line, and nothing else.

• The tool dump-productions gives segmentation faults, e.g. when invoked
without command line arguments, or when the parse tables fed to it are
too large.

• SGLR (version from 2.0.1RC2) bug: reports an error in the term when an
incorrect file name for the parse table (e.e. ‘kukelekuu’) is given:
#sglr -p kukelekuu -fe -fi -t -l -o ExtractCalls1.tree -i ↙

ExtractCalls1.trm

sglr: error in ExtractCalls1.trm: unexpected error

• Syntax highlighting is not turned off after an unsuccessful parse, in which
case highlighting is both useless (for the most part) and confusing.

• After saving an update to an SDF specification, certain types of changes do
notappear in the parse tree; specifically in the case of adding prefer/avoid
attributes. (Has been fixed)

Buggy traversal function updates in MetaStudio Scenario: the follow-
ing rule was updated from within MetaStudio:
e(Program ,X) → X {traversal(accu)}

to
e(Program ,Result) → Result {traversal(accu ,bottom -up ,continue)}

Symptoms: the Issues window in the IDE says: “top-down or bottom up
missing in traversal strategy—”, followed by a line displaying the previous in-
carnation of the function that used the sort X (see figure B.1). Another bug,
occurring after changing the annotation of the traversal function from bottom-
up to top-down:
context -free syntax

e(Program ,Result) → Result {traversal(accu ,top -down ,↙

continue)}

equations

[1] e(MyFunCall , result(MyXList)) = result(MyXList ,funcall(↙

MyFunCall))

[2] e(MyWater , result(MyXList)) = result(MyXList)

e(bla(doe(,result(funcall ()))

reduced to:
result(funcall(start ())

The “start” is from a previous edit of the equations. Saving does not seem
to update things correctly internally using MetaStudio in RC2.

B.2 Documentation issues

The documentation on the Meta-Environment’s website1 was/is not yet com-
pletely up to date with the new version. (Note that the Meta versions used

1See www.meta-environment.org.

APPENDIX B. ASF+SDF META-ENVIRONMENT PROBLEMS 119

F
ig

ur
e

B
.1

:
M

et
a

E
nv

ir
om

en
t

di
sp

la
yi

ng
bu

gg
y

tr
av

er
sa

l
fu

nc
ti

on
be

ha
vi

ou
r

APPENDIX B. ASF+SDF META-ENVIRONMENT PROBLEMS 120

during this project were only release candidates, so all of it is understandably
work in progress.)

• MetaStudio has no built-in context-sensitive, hyperlinked help system.

• Some command line tools do not explain what they are for, let alone how
they should be used.

• The ToolBus/Java examples and documentation were not yet updated to
reflect the new recipe for creating Toolbus tools.

• From the SDF manual: “The function has an attribute named cons with
a string as argument. This is used by external tools to give names to
constructors in the syntax tree that is built.” Statements such as these
could do with some examples; the Stratego/XT manual provides some,
with drawings of example parse trees and AST’s to clarify their use.

• Existing documentation hardly contains any figures showing parse trees
and such. (The Stratego/XT online manual on the other hand does con-
tain many enlightening illustrations of example SDF parse trees.)

• A number of non-obvious and inconsistent tool names are used. For in-
stance, with pt-dump, does ‘pt’ mean parse tree or parse table? And what
sort of filter does FilterPT apply exactly? The answer is: minimization
and maximization of sorts, but this is not obvious from the name.

• There is very little mention of other external but potentially helpful tool(set)s
such as Stratego/XT or Strafunski in the documentation.

• The Meta-Environment 2.x has avoid/prefer counting turned off by de-
fault. The manual still mentioned it as part of the standard disambigua-
tion strategy however. This led to rather a lot of confusion.

Bibliography

[AV07] T.L. Alves, J. Visser. SdfMetz: Extraction of Metrics and Graphs
from Syntax Definitions - Tool Demonstration (Draft). (2007)

[BKVV06] M. Bravenboer, K.T. Kalleberg, R. Vermaas, E. Visser. Strate-
go/XT Tutorial, Examples, and Reference Manual (latest) (draft).
Universiteit Utrecht (2006)
http://nix.cs.uu.nl/dist/stratego/
strategoxt-manual-unstable-latest/manual/

[BIK06] O. Bournez, L. Ibaǎescu, H. Kirchner. From Chemical Rules
to Term Rewriting. LORIA-INRIA, LORIA-UHP, LORIA-CNRS,
Campus scientifique BP 239, F-54506 Vandoeuvre-lès-Nancy
Cedex, France (2006)

[Lee05] R. van der Leek. Implementation Strategies for Island Grammars.
MSc thesis, Technical University of Delft (2005)

[KLV05] P.Klint, R. Lämmel, C. Verhoef. Towards an engineering disci-
pline for grammarware. ACM Transactions on Software Engineer-
ing Methodology, Vol. 14, No. 3, ACM Press (2005)

[Kli05] P. Klint. A Tutorial Introduction to RScript — a Relational Ap-
proach to Software Analysis (draft) (2005)

[Ver04] R.B. Vermaas. xDoc, an extensible documentation generator. MSc
thesis, Utrecht University (2004)

[SCD03] N. Synytskyy, J.R. Cordy, T.R. Dean. Robust Multilingual Parsing
Using Island Grammars. Proceedings of the Conference of the Cen-
tre For Advanced Studies on Collaborative Research, IBM Press
(2003)

[LV03] R. Lämmel, J. Visser. A Strafunski Application Letter. Proceedings
of Practical Aspects of Declarative Programming, Springer-Verlag
(2003)

[KL03] S. Klusener, R. Lämmel. Deriving tolerant grammars from a base-
line grammar. Proceedings of the International Conference on Soft-
ware Maintenance (2003)

121

BIBLIOGRAPHY 122

[BKMV03] M.G.J. van den Brand, A.S. Klusener, L. Moonen, J.J. Vinju.
Generalized Parsing and Term Rewriting: Semantics Driven Dis-
ambiguation. Electronic Notes in Theoretical Computer Science
(2003)

[Vis02] J.M.W. Visser. Generic Traversal over Typed Source Code repre-
sentations. PhD thesis, University of Amsterdam (2002)

[SSV02] M.P.A. Sellink, H.M. Sneed, and C. Verhoef. Restructuring of
COBOL/CICS Legacy Systems. Science of Computer Program-
ming, 45(2-3) (2002)

[Moo02] L. Moonen. Lightweight Impact Analysis using Island Grammars.
Workshop on Program Comprehension, IEEE Computer Society
Press (June 2002)

[BKV02] M. van den Brand, P. Klint, J.J. Vinju. Term Rewriting with type-
safe traversal functions. Centrum voor Wiskunde en Informatica
(2002)

[Zaa01] H. Zaadnoordijk. Source code transformations using the new
ASF+SDF Meta-Environment. MSc thesis, University of Amster-
dam (2001)

[Moo01] L. Moonen. Generating Robust Parsers using Island Grammars.
Proceedings of the 8th Working Conference on Reverse Engineer-
ing, IEEE Computer Society Press (2001)

[Ver00] E.J. Verhoeven. COBOL island grammars in SDF. MSc thesis, Uni-
versity of Amsterdam (2000)

[BJKO00] M.G.J. van den Brand, H.A. de Jong, P. Klint, P.A. Olivier. Effi-
cient Annotated Terms. Software, Practice and Experience Vol. 30
No. 3 (2000)

[Deu99] A. van Deursen, T. Kuipers. Building Documentation Generators.
Proceedings of the International Conference on Software Mainte-
nance (1999)

[BKV98] M. van den Brand, P. Klint, C. Verhoef. Term Rewriting for Sale.
Electronic Notes in Computer Science 15 (1998)

[Vis97b] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam (1997)

[Vis97] E. Visser. Scannerless Generalized LR-parsing (1997)

[Sud97] T.A. Sudkamp. Languages and machines: an introduction to the
theory of computer science. 2nd edition, Addison Wesley (1997)

[Kop97] R. Koppler. A Systematic Approach to Fuzzy Parsing. Software:
Practice and Experience, Vol. 27, No. 6 (1997)

[BA96] S. Bohner, R. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

BIBLIOGRAPHY 123

[Rek92] J.G. Rekers. Parser Generation for Interactive Environments, PhD
thesis, University of Amsterdam (1992)

[Chi90] E.J. Chikofsky, J.H. Cross II. Reverse Engineering and Design Re-
covery: A Taxonomy in IEEE Software. IEEE Computer Society
(1990)

[Ben90] K.H. Bennet. An introduction to software maintenance. Informa-
tion and Software Technology, 12(4) (1990)

[BK89] J.A. Bergstra, J.W. Klop. A Universal Axiom System for Process
Specification (1989)

[Aho86] A.V. Aho, R. Sethi, J.D. Ullmann. Compilers: Principles, Tech-
niques and Tools (1986)

[Tom85] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algo-
rithm for Practical Systems, Kluwer Academic Publishers (1985)

