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Chapter 1

Introduction

1.1 Motivation

”In 1948 Alan Turing suggested a role for assertions in checking the cor-
rectness of large programs. In 1967, Robert Floyd suggested that a verifying
compiler could check the correctness of such assertions by automatic theorem
proving. Ever since, these ideas have provided a properly scientific basis for
research into the problems of software engineering.” - C.A.R. Hoare

Program verification is about checking that programs are correct, or in other
words, about checking that they do exactly what they are supposed to do.
Ideally we would just throw every program written through some kind of
magical machine that performs this check automatically, but unfortunately
the actual situation doesn’t even approach this.

What programmers have to do when they want to verify a program is
either picture it using some simpler model and prove that this model is
correct or label parts of the program that are important and prove that the
information in the labels correctly describes the program. Both approaches
still involve a lot of manual work (part of the work can be automated),
which is why programs are only verified when their correctness is of vital
importance.

Program verification is typically applied in areas where flaws in programs
either cost money or lives. Examples are programs that:

• control the subway system, a space shuttle or a car,

• provide secure communication through use of encryption,

• shield a system from hackers,

• do climate control for a greenhouse,

• go in mass production, making it very expensive to replace them with
a corrected version.
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1.2 About this project

This project is about program verification for object oriented programs and
is an initiative of Frank de Boer. It is similar to the LOOP project worked
on in Nijmegen (see section 1.3.1) and a follow-up of the project worked on
by Cees Pierik (see section 1.3.2).

The idea of this project is to create a tool that allows one to attach a
special kind of labels to a Java program that describe the behavior of the
program. The tool will then convert this labeled program to a series of
logical formulas, that should all be true if the contents of the labels and
the behavior of the program match. So using these formulas one can verify
that the behavior of the program is as it is expected to be, by proving their
correctness.

This project resulted in the creation of two separate tools, called j2a and
a2h, written in ASF+SDF (see section 1.4.1). The first tool generates the
formulas from an asserted Java program, while the second one allows the
user to translate these formulas to the syntax of the theorem prover1 HOL
(see section 1.4.3).

Asserted Java a2hj2a Assertions HOL

1.3 Related work

In this section we mention two related projects and their main similarities
and differences compared to this one.

1.3.1 The LOOP project

LOOP stands for ‘Logic of Object-Oriented Programming’. The LOOP
project (see [14]) is being worked on in Nijmegen and also involves the
verification of Java modules using assertion labels. The assertion language
used is JML (Java Modeling Language, see [7]) which labels entire methods
and modules at once, instead of one separate statement at a time 2.

The LOOP tool translates the entire semantics of the module, combined
with the assertion labels, into logical theories. This approach is radically
different from ours, as we both do verification on a much smaller scale (one
state transition at a time) and abstract from the semantics of the program-
ming language in our resulting formulas.

Just like our formulas, the theories that the LOOP tool generates can be
read by a theorem prover, which helps automate proving their correctness.

1A theorem prover is a tool that is designed to formally prove logical formulas, while

providing automation that simplifies the proof process.
2As our assertion language does.
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1.3.2 Verification of flowcharts

Cees Pierik built a tool for the generation of the resulting formulas, called
verification conditions, from flowcharts (see section 2.3). The corresponding
theory is described in [1] and more specifically in [2].

The idea of the tool is to have the flowcharts, diagrams that picture state-
changes, describe the semantics of some object oriented program. Using
assertion labels at control states, conditions can be generated that verify
state-changes.

The tool j2a developed in this project basically generates the verification
conditions by comparing the semantics of the asserted program with that of
the equivalent flowchart. When the structure of the corresponding flowchart
is known, the generation of the conditions follows quite naturally from the
theory.

1.4 Technology used

1.4.1 ASF+SDF

ASF+SDF ([11]) is the combination of the formalisms ASF (Algebraic Spec-
ification Formalism) and SDF (Syntax Definition Formalism).

SDF is a formalism that enables the user to define the lexical and context-
free syntax of, for example, a programming language. Because in the SDF-
specification both the lexical and context-free syntax are given, it implicitly
defines a mapping from a text string that matches the syntax to the corre-
sponding syntax tree. A tool called sglr has been written to perform this
translation.

ASF is a formalism that describes conditional transformation rules with
respect to some signature containing the syntax on which to apply the rewrit-
ing. It can be used to describe the semantics of the syntax tree which, in
practice, is about transforming the syntax tree. The tool asfe performs this
transformation, using a syntax tree as input and generating another syntax
tree as output.

The result of combining the two is that SDF-modules can be used to
describe the syntax of the language and ASF-modules to describe the se-
mantics, using the corresponding SDF-modules as their signature defini-
tions. Using sglr, asfe and these modules, the rewriting of a text string that
matches the syntax to an syntax tree that describes the semantics of the
string is automatic. Another tool, called unparsePT has been written to
convert this tree to the corresponding text string.

1.4.2 The ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment ([11]) is an interactive development en-
vironment for the automatic generation of interactive systems for manipu-
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lating programs, specifications, or other texts written in a formal language.

It basically combines the above-mentioned three programs, making it a
generic compiler that compiles a program in a manner that depends on the
supplied ASF+SDF-specification. But it also provides extra features such
as a user interface that gives an overview of the import graph, an editor with
syntax-checking abilities and, in the newest version, an optional link with
an integrated debug environment, making it a very convenient programming
environment for the development and adjustment of specifications written
in ASF+SDF.

For more information about the ASF+SDF Meta-Environment, see the
home page ([11]) or the online manual ([12]).

1.4.3 HOL

HOL ([5]), which stands for ”Higher Order Logic”, is a system designed
to support interactive theorem proving in higher order logic. To this end,
the formal logic is interfaced to a general purpose programming language
in which terms and theorems of the logic can be denoted, proof strate-
gies expressed and applied, and logical theories developed. HOL contains
many pre-proved mathematical theorems and a couple of automated theo-
rem provers to reduce the amount of work needed.

A theorem is typically proven by inserting it into HOL as a goal, advanc-
ing or splitting the goal into subgoals using the theorems and automated
theorem provers and by proving these simplified subgoals in the end. Unfor-
tunately, as in ordinary mathematics, if you fail to prove a goal in HOL this
does not necessarily mean it is wrong. It could be that the goal is correct,
but that you just haven’t found the way to prove it yet.

1.5 Outline of this thesis

Chapter 1 is meant to provide the reader with some basic information con-
cerning this project.

Chapter 2 will provide the programming language independent basics that
are used in the implementation of the assertion mechanism.

Chapter 3 will give the details of the implementation for Java. The chapter
will provide, for each statement supported, enough information
to deduce which verification conditions should be generated when
implementing the assertion mechanism.

Chapter 4 will further explain how the assertion mechanism should be used
and what specific steps are needed by giving an example that has
been verified using this mechanism.
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Chapter 5 will discuss some of the specific design choices made when im-
plementing the assertion mechanism from Chapter 3.

Chapter 6 will list some suggestions for future work on this project.
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Chapter 2

Theoretical background

2.1 Introduction

This chapter is meant to give an overview of the theoretical, programming
language-independent basics that are used to build up the system for the
generation of the verification conditions, the logical formulas that will be
used to verify the behavior of the program.

We will start this chapter by giving the details of the assertion language.
This is the language that has been constructed to annotate the programs.
Although it could be used with any object-oriented programming language,
the syntax is chosen to match that of Java. Because of this, it should be
easier for Java programmers to get familiar with it.

Then we will explain what flowcharts are, what role they play in this
project and the need for substitutions. The chapter will be concluded with
an explanation of the substitutions used.

For further background information the reader should read [2].

2.2 Assertion language basics

2.2.1 Variables

The basic building blocks of the assertion language are variables. These
entities refer to the objects and the fields of these objects. They are of the
form u, z, this or v.x where:

• u stands for a temporary variable. Temporary variables are the vari-
ables that have the most limited scope possible. In most programming
languages these are the variables that are declared locally in a function
(for C) or in a method (for Java). They are called temporary, because
they disappear when the flow of control leaves the function or method.

• z stands for a logical variable. These are the variables used in ordinary
logic, either as a free variable or as a variable bound by existential or
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universal quantification. These logical variables do not exist in the
programming language, although the free variables will be given a
meaning in the scope of a method. They cannot change value during
execution of a method, which makes them especially useful for com-
paring changed values of variables and expressions with their values
at the beginning of the method.

• this refers to the current object, assuming there is such an object.

• v.x stands for the instance variable x on the object referred to by the
variable v.

2.2.2 Types

The variables just mentioned must have known types. The types in the
assertion language are the basic types Int and Bool, the types C from
some chosen set of class types and the types denoting a finite sequence of
Integers, Booleans or objects of some class type C.

Some variables can also be of undefined (or error) type due to errors
in the typing of sub-variables. x.y, for example, is syntactically valid as a
variable if x refers to an object, but has error type if y is not an instance
variable of x.

2.2.3 Expressions

The expressions used in the assertion language are the variables and terms
op(e1, · · · , en) (not necessarily in this notation), where the ei stand for ex-
pressions and op stands for some operation on a fixed number of expressions.
A selection of some popular expressions has been made for this tool, although
it is relatively easy to add new ones.

A new type of variable of the form z[e] is introduced as well, denoting
the eth member of the sequence referred to by z.

The expressions used are:

1. The expressions of type Int:

• v, a variable of type Int.

• −e, where e should be of type Int.

• |e|, where e should be of type ‘sequence of Int’. It stands for the
length of sequence e.

• e1 +/−/∗ e2, respectively the sum, difference and multiplication
of the Int typed expressions e1 and e2.

• An arbitrary sequence of digits, which stands for a constant of
type Int.

2. The expressions of type Bool:
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• true.

• false.

• v, a variable of type Bool.

• e0 ≤ / ≥ / < / > e1, where e0 and e1 are of type Int.

These symbols have the obvious meanings.

3. The expressions that can have any type:

• (nil : t), denoting an undefined expression of type t.

4. The expressions that are of type Bool if they are defined, but can be
of undefined type if any of their parameters is undefined:

• e0 ∧ / ∨ e1, where e0 and e1 are expressions of type Bool.

• ¬e, where e is an expression of type Bool.

• e0 = / 6= e1, where e0 and e1 are expressions of the same type.

2.2.4 Assertions

Assertions are basically logical formulas, which are always of type Bool. The
idea is to choose the variables and expressions that best match your pro-
gramming language and allow inclusions into the assertion language. This
way the assertion language can be used to express facts about the program
using similar syntax.

In our case the variables and expressions match our programming lan-
guage Java. The assertions are of the following forms, where the first two
forms arrange the inclusion of Java syntax:

• {v}, where v is a variable of type Bool.

• {e}, where e is an expression of type Bool.

• A0 ⇒ A1, where A1 and A2 are assertions.

• A0 ∨ / ∧ A1, where A1 and A2 are assertions.

• ¬A, where A is an assertion.

• ∀z(A), where A is an assertion.

• ∃z(A), where A is an assertion.

2.3 Flowcharts

The translation of annotated Java statements to the formulas that will en-
able us to verify the behavior of the program is based on a comparison with
flowcharts. Flowcharts are simple diagrams that consist of three parts:

• States that are depicted as orbs. These model certain points in the
program.
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• Transitions that are depicted as directed lines between states. They
are annotated with the statement that causes the change of state and
can optionally have a condition that must be valid before the transition
will occur.

• Assertions as described in the previous section, which add informa-
tion to states. When looking at a transition, we call the assertion
at the state before the transition the precondition and the assertion
at the state after the transition the post-condition of the statement
attached to the transition.

Graphically, a flowchart that consists of a single transition looks like this:
pre

[cond −>] stat

post

The brackets [] denote that the conditional part is optional. The concrete
examples below show how you can build bigger flowcharts by attaching more
states to each other (on the left) and how you can use the condition at the
transition to get a case split (on the right). As the example on the right
shows we also have a statement called ’skip’ for flowcharts that are used to
model transitions that don’t have any effect.

{a == 2}

a = 3

{a > 2}

a = 2

{a > 1} {a != 2}{a < 2}

{true}

a == 2 −> a = 1 a != 2 −> skip

2.4 Assertions and verification conditions

The idea is now to view the annotated program as a very large flowchart
and to generate verification conditions for the transitions. The transitions
are between different states, in which variables can have different values.
We would like to have all the necessary information about each transition
in the state before the transition, so that we can generate the verification
condition in that state.

We accomplish this using statement-specific1 substitutions that calcu-

1Depending on the statement given at the transition.
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late the weakest precondition of the post-condition. This is the most general
condition that makes the post-condition valid after execution of the state-
ment. We then make the implication of the precondition of the statement
to the weakest precondition of the post-condition our verification condition.

So in the case of the following abstract flowchart

pre post
stat

,

the verification condition generated would be pre ⇒ post[..] , where the sub-

stitutions [..] depend on stat.

If we also had condition cond at the transition we would include this
information in the implication, making it pre ∧ cond ⇒ post[..] .

2.5 Substitutions

Substitutions are an essential part of the assertion mechanism. Therefore
they should be described extensively before explaining which substitutions
are needed for specific statements.

2.5.1 Normal substitutions

Normal substitutions are used to replace free variables and expressions. In
general they will traverse the structure of an assertion and replace free vari-
ables and expressions as they are encountered. The notation used for them
is [e2/e1], which denotes that we should replace expression2 e1 by expression
e2. We can also use the notation [en+1/e1, · · · , e2n/en], which denotes the
simultaneous substitution of ei by ei+n for 1 <= i <= n.

Because normal substitution replaces free variables and expressions and
not references to instance variables, the formula x.y[z/y] is equivalent to x.y
and not to x.z. If we do want to replace the reference to x.y with a reference
to x.z we should explicitly state so, using the substitution [x.z/x.y].

There’s another important problem with substituting references to in-
stance variables. Even if u1 and u2 are two simple temporary variables of
the same class type, in most cases it is impossible to check statically (with-
out executing any code) whether they refer to the same object. When doing
a simple variable-name substitution (for example [u2/u1]) this is not im-
portant, but when substituting references it is. If u1 and u2 refer to the
same object, then u1.y and u2.y refer to the same instance variable and
both u1.y[x/u1.y] and u2.y[x/u1.y] are equivalent to x. While if they refer
to different objects, u2.y[x/u1.y] is not equivalent with x.

So we need some conditional expression that can perform a comparison
check ‘dynamically’, which means that we get a formula that enables us to
do a case split that performs the right substitution whether the variables

2Note that free variables are also expressions.
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are equal or not. For this purpose, an expression if e1 then e2 else e3 fi is
added to the assertion language. This conditional expression is relevant for
the following special cases of the substitution, which are needed to properly
deal with substitution of references to instance variables (≡ denotes syntactic
equivalence):

(v1.x)[e/v.x] ≡ if v1[e/v.x]= v then e else (v1[e/v.x]).x fi
(v1.y)[e/v.x] ≡ (v1[e/v.x]).y

where, as in the section describing the assertion language, v and v1

denote variables and e is some expression.

Example

Assume x and a are variables. Then
(x.b.c > 3)[a/a.b] ≡ x.b.c[a/a.b] > 3[a/a.b]

≡ (x.b[a/a.b]).c > 3
≡ (if x[a/a.b] = a then a else (x[a/a.b]).b fi).c > 3
≡ (if x = a then a else x.b fi).c > 3

2.5.2 New substitutions

New substitutions are a special kind of substitution, denoted as [new/u],
used to model the creation of a new object referred to by some temporary
variable u.

Creating an object means that a new object is added to the collection of
existing objects. So when moving an assertion that states something about a
new object to the previous state (see sections 2.3 and 2.4) we actually move
it to a situation were the new object doesn’t exist yet. The new substitution
is designed to deal with this.

For most expressions, the substitution just does a top-down traversal
over the structure. However, there are some special cases that define its
special behavior. First, for a reference to an instance variable of the newly
created object:

(u.x)[new/u] ≡ (nil: t)

where t is the type of the instance variable u.x.

u can also occur in (in)equalities. If neither e1 nor e2 is a conditional
expression or u they cannot refer to the newly created object and we have
ordinary traversal:

(e1 = e2)[new/u] ≡ (e1[new/u]) = (e2[new/u])
(e1 6= e2)[new/u] ≡ (e1[new/u]) 6= (e2[new/u])

If e1 is u and e2 is neither u nor a conditional expression (or vice versa)
they cannot refer to the same object (because one of them refers to the
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newly created object and the other does not), so we get:

(e1 = e2)[new/u] ≡ false
(e1 6= e2)[new/u] ≡ true

And of course, (u = u)[new/u] ≡ true

If e1 is a conditional expression of the form if e3 then e4 else e5 fi then:

(e1 = e2)[new/u] ≡
if e3[new/u] then (e4 = e2)[new/u] else
(e5=e2)[new/u] fi

As with expressions, for most assertions the substitution just traverses
inductively over the structure. When a new object is created however, as
mentioned before, the collection of existing objects changes, which has conse-
quences for universal and existential quantification. The following equations
capture this change of scope when z ranges over objects:

(∃z (A))[new/u] ≡ (∃z (A[new/u])) ∨ (A[u/z][new/u])
(∀z (A))[new/u] ≡ (∀z (A[new/u])) ∧ (A[u/z][new/u])

Example

Suppose that we have a transition with a statement that creates a new ob-
ject and that we know in the starting state that only one object exists,
namely the current one. In logic, this assumption pre could be written as

∀z (z = this) .

pre
u = new C

post

The transition adds a new object to the collection of existing objects.
Because of this, precisely two objects exist at the second state, namely the
object referred to by u and the current object. We denote this fact with the

formula ∀z (z = this ∨ z = u) for post.

In this situation, we would use the substitution [new/u] to calculate the
weakest precondition of post (more about this in the next chapter), which
would become:
(∀z (z = this ∨ z = u))[new/u] ≡
∀z ((z = this ∨ z = u)[new/u]) ∧ (z = this ∨ z = u)[u/z][new/u] ≡
(∀z (z = this ∨ false) ∧ (u = this ∨ u = u)[new/u] ≡
(∀z (z = this ∨ false) ∧ (false ∨ true)

It is clear that the result is equivalent to the precondition pre, showing
us that our post-condition post follows from precondition pre under the
transition given.
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Existential quantification over sequences of objects

Let z be a logical variable ranging over sequences of objects and z ′ a logical
variable ranging over sequences of boolean values. The variables z and z ′

together will, in a post-condition after object creation, code a sequence of
objects possibly including the newly created object. At the places where
z′ yields true the value of the coded sequence is the newly created object,
where z′ yields false the value of the coded sequence is the same as the value
of z. This encoding is described by a special substitution [z‘, u/z], where u
again refers to the newly created object.

In our assertion language, the only operations on sequences are |z|, which
denotes the length of sequence z, and z[n], which gives us the nth element
of sequence z (only defined if 1 <= n <= |z|). So we will describe the
substitution [z‘, u/z] by stating its effects on these operations:

z[z′, u/z] ≡ undefined
(|z|)[z′, u/z] ≡ |z|
(z[e])[z′, u/z] ≡ if z′[e′] then u else z[e′] fi

where e′ = e[z′, u/z]

For the remaining expressions and assertions the substitution just does
a top-down traversal over the structure (for example, (|z| ∧ |z ′|)[z‘, u/z] ≡
(|z|)[z‘, u/z]∧ (|z′|)[z‘, u/z]).

Given this encoding we can now define:

(∃z (A))[new/u] ≡ ∃z (∃z′ (|z| = |z′| ∧ (A[z′, u/z][new/u])))

where z ranges over sequences of objects.
For an example on using this substitution, the reader is referred to [2].

18



Chapter 3

Tool support for verification

3.1 Introduction

This chapter is about the details specific to the implementation. The lan-
guage that our theory is applied to is Java, so the generation of the ver-
ification conditions is also discussed with respect to this language. One
important aspect that has not (yet) been implemented is class inheritance.
Because of this we can simplify matters a little bit.

Basically, this chapter contains every interesting implementation aspect
related to this project. The next section gives a rough overview of the actual
implementation. Then a detailed overview will be given of the statements
currently supported and their interpretation within the tool. And the last
section will dive into the machinery used for interpreting exception handling.

This chapter does not contain actual code fragments of the implemented
system itself, although it will demonstrate what the translation of the simple
statements would look like in ASF+SDF. The actual code will be available
via the web later on.

3.2 The building blocks of this project

The translation of the asserted statements to HOL-statements has been split
up into two parts. First the asserted statements are translated to assertions
in the assertion language and then these assertions are translated to HOL-
syntax.

Asserted Java a2hj2a Assertions HOL

Five ingredients are needed to establish this process: The syntax of the
assertion language, the syntax of the annotated language (in this case Java)
enriched with information about where to insert assertions, the syntax of

19



HOL, rewrite rules that state how to translate asserted Java to assertions
and rewrite rules that state how to translate assertions to HOL-formulas. In
my implementation I abbreviated these pieces respectively as assert, java,
hol, j2a (which also specifies where to insert the assertions) and a2h.

It is clear that the first translation only requires assert, java and j2a
while the second one only requires assert, hol and a2h. As assert, java
and hol are only concerned with syntax, the corresponding parts of the
ASF+SDF specification consist of SDF-modules only. The most interesting
parts, j2a and a2h, consist of ASF-modules that describe the rewrite process
and, because we use special syntax for pieces of code that are still being
rewritten, SDF-modules that describe the additionally needed syntax.

3.3 Conversion of simple statements

As mentioned before, we first model each statement as a flowchart and then
describe the generated verification conditions. Because the flowcharts and
the conditions are themselves based on Hoare’s logic (see [3]), we will also
show the corresponding rules from this theory. Additionally, to show how
easy it is to implement the generation process using ASF+SDF we will
sketch what the corresponding rules would look like in ASF.

3.3.1 Assignments

When dealing with a simple assignment of the form pre v = e; post , where
pre is the precondition, post is the post-condition, v is a variable and e is
an expression in Java which is also in the assertion language, we get the
following corresponding flowchart

pre
v = e

post

We now calculate the weakest precondition of post using the substitution

[e/v] and get the verification condition pre ⇒ post[e/v] as announced at

the end of the previous chapter. This condition is actually based on the

rule {P [e/v]} v := e {P} from Hoare’s logic that says that P [e/v] is the

weakest precondition of the post-condition when executing an assignment.

The corresponding rewrite rule in ASF could look like the one below,
which gives a direct mapping of the statement to the generated verification
condition:

[cSA] convertSimpleAssignment(

Assertion1 Variable = Expression; Assertion2

) =

Assertion1 ==> Assertion2[Expression/Variable]
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Assignments with object creation

We also allow assignments where v is a temporary variable and e is of the
form new C(), where C is the name of an object. But here we cannot use
the simple substitution [b/a] because the collection of existing objects before
and after the assignment is different. Instead we have to use the substitution

[new/v], giving the verification condition pre ⇒ post[new/v] . In this spe-

cial case, the corresponding rule would be {P [new/u]} u := new C {P}

and a matching ASF-rule could be of the form

[cNA] convertNewAssignment(

Assertion1 Variable = new ClassName(); Assertion2

) =

Assertion1 ==> Assertion2[new/Variable]

3.3.2 If-then and if-then-else

If then

If-then statements are a little bit trickier to convert, because they typically
contain a whole block of statements themselves. If-then statements are of
the form pre if (a) then B post, where B is a block of (possibly asserted)

statements. a is either a boolean Java expression that is also valid in the
assertion language or a boolean Java equation of the form ‘v == null’ or
‘v != null’, where v is a variable. The reason for these last two forms is
that this way we can easily deduct the type of the null-statement when
translating it into assertion syntax.

The if-then statement corresponds with the following flow diagram:

pre /\ apre post post

B
skipa −> skip

!a −> skip

skip skip

The block with the B in it stands for the flow chart of the block of
statements B. Above the left arrow the annotation ‘a → skip’ is found,
meaning that this path is only taken if a is valid and that the skip-statement
(which doesn’t do anything) is executed during the transition. This is also
how the other annotated transition on the left, where ! is Java-syntax for
¬, should be read.

For the if-then statement we have the rule

21



{P∧a} B {Q} and P∧¬a→Q
{P} if (a) then B {Q}

Its first assumption is that we can deduce the post-condition of the state-
ment from its precondition, when condition a is valid, by executing block
B. The second assumption says that we can, when a is not valid, deduce
the post-condition directly from its precondition. If these assumptions are
both valid, then we may conclude that P and Q are valid as pre- and post-
condition of the statement.

So first we have to generate the implication (pre ∧ ¬a) ⇒ post for the

transition that skips the if-then statement if a is false. Then we have the
obvious implications near the beginning between pre and pre∧ a and at the
end between post and post. As described in section 2.4, this would give us
implications pre∧a ⇒ pre∧a and post ⇒ post, but since these implications
are trivially true we do not generate them.

Which other verification conditions should now be generated? Clearly
this depends on the structure of the block of statements B. To show this,
the part that depends on block B has been placed in a dotted rectangle,
which can only be interpreted when looking at the flowchart of block B as
well.

Assuming that the verification conditions generated are separated by
commas, we could express the conversion of the if-then statement in ASF
using

[cIT] convertIfThen(Assertion1

if (Expression) then Block

Assertion2) =

Assertion1 && (!Expression) ==> Assertion2,

convertBlock((Assertion1 && Expression) Block Assertion2)

If then else

If-then-else statements are very similar to if-then statements. They are of
the form pre if (a) then B else C post and correspond with the following
flow chart:

pre /\ a post

B
skip skip

post

post

skipCskip

pre /\ !a

pre

skip

skip
a −> skip

!a −> skip
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The way the verification conditions are generated is as with if-then state-
ments, with the exception that both transitions from the initial state pass
through a block of statements. The rule for this statement is

{P∧a} B {Q} and {P∧¬a} C {Q}
{P} if (a) then B else C {Q}

with a similar meaning as the previous one. The corresponding ASF-rule
would be

[cITE] convertIfThenElse(Assertion1

if (Expression) then Block1 else Block2

Assertion2) =

convertBlock((Assertion1 && Expression) Block1 Assertion2),

convertBlock((Assertion1 && (!Expression)) Block2 Assertion2)

3.3.3 While

While loops are of the form pre while (a) B post and have the following

rule

{P∧a} B {Q}
{P} while (a) B {P∧¬a}

which basically states that if the precondition remains valid after exe-
cuting the statements in the loop once, it remains valid after any number
of executions of the statements in the loop. Or in other words, that in this
case the precondition is still valid after the execution of the while-statement
has finished.

The flowchart for this statement is:

pre /\ apre pre post

B
skip

skip

a −> skip

!a −> skip

skip

This flowchart is also similar to that of the if-then statement, as is the
generation of the verification conditions. The important difference is the
addition of a backward transition at the end of block B. As this picture
clearly shows, pre is considered to be the invariant of the loop.
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We don’t need to generate an additional condition for the backward
transition as it would give us the trivially true implication pre ⇒ pre.

We could implement the while-statement in ASF using

[cW] convertWhile(Assertion1

while (Expression) Block

Assertion2) =

Assertion1 && (!Expression) ==> Assertion2,

convertBlock((Assertion1 && Expression) Block Assertion1)

3.4 Method invocation

3.4.1 The context switch

Method definitions can be annotated with a pre- and a post-condition, which
makes it possible to describe the effects that placing a call to a method has.
Typical points of interest are the effects caused by assignments to instance
variables and information about the expression the method returns 1.

An important problem with annotating method invocations is that (es-
pecially temporary) variables in the method are not accessible or even visible
from the outside and vice versa and that the reference value this refers to a
different object in the environment of the caller than it does in the callee. To
solve this problem we use the concept of the context switch, a combination
of substitutions that solves the change of environment.

3.4.2 The rule for method invocation

We only look at calls to methods that return an expression combined with
an assignment that assigns this expression to a temporary variable. So we

look at assignments of the form pre x = e0.m(e1, · · · , en); post for which

we use the notation O x := e0.m(E) R.

We assume m() has formal parameters y1, . . . , yn for which we use short-
hand notation Y . Name the body of m() S, its precondition P and its
post-condition Q. The expression this method returns is e and r is an ab-
stract reference to the return-value of the method.2

The picture below shows the different contexts that play a role dur-
ing the method invocation. Instead of proving the transition from O to R
directly we will take a detour via the method that is being called. We as-
sume that the path from P to Q has been verified when we encountered the
method m() in the class specification and will verify the transitions from O

1We only allow methods to have one return-expression, because this is an assumption

made in the corresponding theory.
2Such an abstract reference is useful, because it enables the user to make statements

about what a method returns.
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to P and from Q to R in the ’original’ context where we invoked the method.

P Q

S
skip skip

R

x = e0.m(E)

O Original context

Context of m(Y)

skip skip

We have the following rule for method invocations that helps us:

{P}S{Q[e/r]} and Q[e0/this][E/Y ]→R[r/x]
{P [e0/this][E/Y ]} x:=e0.m(E) {R}

The parts of this rule should be explained:

• The first assumption, {P}S{Q[e/r]}, states what we already assumed,
namely that P and Q should be correct pre- and post-conditions of
m(). Because r, the reference to the result, has no meaning in the
body S of m() it should be substituted by the expression it refers to
(which does have meaning in the body).

• The second assumption, Q[e0/this][E/Y ] → R[r/x], forms the impli-
cation from the post-condition of the method to the post-condition of
the method call in the context of caller. [E/Y ] is shorthand for the
simultaneous substitution [e1/y1, · · · , en/yn].

• And finally, the conclusion {P [e0/this][E/Y ]} x := e0.m(E) {R} of
the goal states that, if the assumptions are met, we have an implication
of the precondition of the method to the post-condition of the method
call in the context of the caller.

Using the formula we need to generate verification conditions for the as-

sumptions and for the implication O ⇒ P [e0/this][E/Y ] in order to verify

the implication O ⇒ R (in the context of the caller).

3.4.3 Invariance

The approach mentioned in the previous subsection does not deal with log-
ical variables that possibly appear in the pre- and post-condition of the
method. Logical variables are used as invariant expressions, typically to
compare the old and the new value of a variable or expression. It is therefore
very common for a comparison between such logical variable and an expres-
sion to appear in the precondition. Some ‘machinery’ should be added to
correct the relationship between logical variables in the precondition of the
method and expressions in the precondition of the method call.
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The problem is corrected with the following rule that can cope with in-
variance:

{P}S{Q[e/r]} and Q[e0/this][E/Y ][F/Z]→R[r/x]
{P [e0/this][E/Y ][F/Z]} x:=e0.m(E) {R}

New in this rule is the substitution [F/Z] that stands for the simultane-
ous substitution of all logical variables in the assertion with their matching
expressions in the context of the caller.

3.4.4 Notes on using the assertion mechanism for method
invocation

It is important to note that the pre- and post-condition given for a method
will typically depend on the type of calls that we expect to be made to this
method, either from another part of our program or by some unknown pro-
gram. In the next chapter, for example, a method is given that is expected
to be called with some appropriate parameter of type integer (some assump-
tion about it is stated in the precondition), although in principle it could
be called with any integer value as actual parameter. Of course we could
just rewrite the method to make it work on any input, but you usually want
to check something about a program using the assertions and not modify
the program to match the assertions (although this could be useful when
writing a method for the first time).

A more important thing to note, about the context switch, is that it can
only be used under certain conditions. This was noticed when discussing its
implementation using ASF+SDF. Of course the sort of expressions that can
be used as actual parameters is already limited to the ones accepted by the
assertion language, but there’s another problem. When supplying a method
with an expression containing an instance variable as an actual parameter,
we may get a faulty condition when using the context switch on the post-
condition. What happens is that we again substitute a formal parameter for
its actual parameter, but that this one may suddenly have a different value
because the value of the instance variable was changed during execution of
the method. Therefore we can only correctly use the context switch if we
don’t use instance variables in the actual parameters 3.

3.5 Constructor invocation

In most cases, the substitution mechanism described for assignments with
object creation is not sufficient. The reason for this is that in Java all objects

3Or if we are certain that the instance variables supplied are not changed during exe-

cution of the method, but this would typically be something that you would verify using

the assertion mechanism.
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have constructors, methods that are called when a new object is created.
The effect of this constructor call at object creation time should also be
considered. In this section we assume the constructor that is being called
has been annotated with a pre- and a post-condition, in a way similar to
annotating an ordinary method.

We will deal with object creation coupled with a constructor call by
modeling these two actions as a special kind of method invocation. If we

have a statement of the form O x = new C(e1, · · · , en); R we can model

it as O x = new C; x = x.C(e1, · · · , en); R, assuming for the moment
that you can actually use a constructor as a callable method on an object
returning the object itself.

The second statement is a method call, and we already have a rule to
verify method calls. The main difference is that we also need the informa-
tion that x is a newly created object. We will use the following diagram,
calling the precondition of the constructor P , its post-condition Q and its
body S:

P Q

S
skip skip

R

x = x.C(E)

O Original context

Context of C(Y)

x = new C; skip

This picture differs from the one used with ordinary method invocation
with respect to the transition between O and P , which is no longer triv-
ial. What we will do is apply the context switch first, which will move
assertion P to the original context. Then we will use the statement-specific
substitution [new/x] to move the assertion to the state of O and then we
will form the implication between O and P , which gives us implication

O ⇒ P [x/this][E/Y ][F/Z][new/x] . The rest of the verification conditions

that are generated are similar to those for method invocation.

This choice of interpretation has consequences for the format of the pre-
and post-condition of the constructor. If you want, for example, to say
that after the assignment the new object is unique (which was a trivial
consequence when using the simple form of object creation) this must already
be stated in the precondition of the constructor and repeated up to the post-
condition of the constructor.
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3.6 Exception handling

3.6.1 Introduction

It would be very convenient to be able to deal with exception handling
using our assertion mechanism. Inheritance is not supported (yet), which
simplifies the process a little bit and allows us to focus on the principles
involved without having to worry about types of exceptions that are not
known at compile time.

Exceptions are modeled as special boolean variables, distinguishable
from ordinary boolean variables, that are only true when an exception of
the matching type is thrown. In Java only one exception can be thrown at
any given time during the execution of the program, which implies that at
most one ‘exception variable’ is true at any given time.

So far we have begun modeling each type of statement as a flowchart
and derived its intended interpretation using this flowchart. Because the
flow of control was more or less sequential this was a very easy and natural
way to do this. When an exception is thrown however, the flow of control is
interrupted and will continue, if at all, at the first embracing statement that
handles the exception thrown. This behavior should be reflected in the way
verification conditions are generated from the assertions given, but it does
require additional machinery to build the proper corresponding flowcharts.

3.6.2 Exception mechanism principles

There are basically two ways in which exceptions can be thrown in Java.
They can be thrown explicitly using the throw-statement or implicitly when
executing a statement or some expression that violates the normal semantics
of Java, for example when encountering a division by zero. Although implicit
exceptions appear to be thrown very unexpectedly, in Java most of them are
only thrown at a point where they are specified as a possible result of an
expression evaluation or statement execution.

When executing a statement we need to know which exceptions can
be thrown, either explicitly or implicitly, in order to construct the proper
flowchart. Exceptions only affect the state after the interrupted statement
and not the states before it, so the place to describe the effect of an exception
appears to be the post-condition of the statement that caused it. Since we
already have distinguishable boolean variables for the exceptions we will use
these same variables to specify, with their occurrence in the post-condition,
the exceptions that can be thrown during execution of a statement.

We define throw E as an alias for E → skip as annotation for transi-
tions in a flowchart, where E is a boolean variable corresponding with some
exception class E. Within a block of statements (pictured with a dotted
rectangle) we have the following generic translation for a statement pre stat
post that can result in a throw of exception E. If exception booleans are not
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explicitly given a value in a part of the flowchart then this means that they
are false in this part.

post
stat

pre

throw E

throw E

post /\ E

As the picture shows the transition from the exception state (the one at
the bottom) leaves the block where the exception was thrown. It may be
caught later on, but this depends on the surrounding program.

From the picture shown we can derive two verification conditions, one
for the normal transition and one for the transition caused by the excep-
tion thrown. Assuming that the pre contains boolean exception variables
E,F1, · · · , Fn and post contains E,G1, · · · , Gm we would generate ([..] being
the substitution depending on stat):

• pre ∧ (¬E ∧ ¬F1 ∧ · · · ∧ ¬Fn) ⇒ post[..] ∧ (¬E ∧ ¬G1 ∧ · · · ∧ ¬Gm)

• pre ∧ E ∧ (¬F1 ∧ · · · ∧ ¬Fn) ⇒ (post ∧ E) ∧ (¬G1 ∧ · · · ∧ ¬Gm)

Note that we will also need to generate exception conditions similar to
the second one for the exceptions G1, · · · , Gm (since they occur in post!),
but to keep the picture simple the corresponding transitions have been left
out.

3.6.3 Exception related statements

If an exception occurs while executing a statement, it may have side-effects.
For conditional and compositional statements (such as if and while) it just
breaks the flow of control, but the effect usually depends on the type of
statement. The most important ones will be mentioned.

Throw

The throw-statement is the only statement that explicitly throws an ex-

ception. It is currently only supported in the simple form throw new C(); ,

where C is the class type of the exception thrown. Its translation to a
flowchart is:
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pre

throw C

throw C

post /\ C

In this case we don’t have a normal transition and the only condition
generated for the exception transition would be pre∧C∧(¬F1∧ · · · ∧¬Fn) ⇒
(post∧C)∧ (¬G1 ∧ · · · ∧¬Gm), as implicit exceptions cannot be thrown at
a throw-statement.

Try catch

The try-catch-statement is the first variant of the more general try-catch-
finally-statement, which will be treated later on. Its syntax is

try A catch(Exception1 v1) B1 · · · catch(Exceptionn vn) Bn

where A and the Bi are blocks of statements, the Exceptioni are types of
exception classes and the vi are variable names.

If an uncaught exception of type E is thrown in block A, then the present
catch-clauses will be inspected (in order) to see if one of the types Exceptioni

matches E. 4 If one of them matches then the exception is caught, normal
execution will continue in the corresponding block and when execution leaves
this block it will also leave the try-catch-statement.

So what we need to do is to generate, for every exception thrown, the
implication from the post-condition of every statement where the exception
is thrown (either implicit or explicit) to the precondition (if present) of the
first statement in the catch-block that handles the exception, which can be
seen as the precondition of the entire catch-block.

For a statement of the form try A catch(E v) B, where B has precon-
dition preB, we would get the chart below. The dotted transitions coming
from block A are coming from the throws that occur within the block and
leave it, as can be seen in the charts of the previous sections.

4Or, when using inheritance, to see if one of the Exceptioni is a superclass of E.
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A

pre   /\ E
B

pre  
B

B
skip skip

throw E

We don’t need to generate the implication preB ∧ E ⇒ preB for these
flowcharts, since it is always true. Observe the situation shown in the next
picture, which models a possible series of thrown exceptions in some try-
block. Assuming for the moment that all statements apply to the generic
case of section 3.6.2, so the precondition of the throw in the chart above
will be of the form post∧E for some post-condition post and some boolean
exception variable E, we would generate the following additional verification
conditions for the jumps in the flow of control:

• (posti ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn) ⇒
(pre1 ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn)

• (posti ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre2 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

• (postj ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre2 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

where we also assume that the exceptions that can be thrown are E1,· · · ,En

with boolean exception variables b1,· · · ,bn and that all of these variables
occur in every assertion.

...

...
try {

post
...
...
post

i

...

...
}
catch (E1 e) {

pre
stat;...

}
catch (E2 f) {

pre
stat;...

}

1

2

j E1

E2

E2

Try finally

The try-finally-statement is of the form try A finally B , where A and
B are again blocks of statements. If block A terminates normally, execution
continues in block B. If an uncaught exception is thrown in A, execution
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continues normally in B, but when block B terminates normally the ex-
ception is thrown again. Should another uncaught exception be thrown in
block B in the last case, then the previous exception is forgotten and the
new exception leaves block B.

The flowchart of the statement would look like the one below. As can
be seen block B will be executed whether block A terminates normally or
abnormally, but the way in which the termination of B is handled will differ.

A

pre   /\ E
B

pre  
B

B
skip skip

throw E
post  

B

skip
B

post  
B

pre  
B

skip
skip

skip

post   /\ E
B

throw E

throw E

For the example situation of the next picture, under similar assump-
tions as in the previous section we would generate the following additional
verification conditions for the jumps in the flow of control:

• (posti ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn) ⇒
(pre1 ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn)

• (posti ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre1 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

• (postj ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre1 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

• postn ∧ (¬b1 ∧ · · · ∧ ¬bn) ⇒
pre1 ∧ (¬b1 ∧ · · · ∧ ¬bn)

...

...
try {

post
...
...
post

i

...
post

}
finally {

pre
stat;...

}

1

j E1

n

none
E2

E2

Try catch finally

We are now ready to describe the try-catch-finally-statement, which is a
complex combination of the principles just mentioned. It’s syntax is
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try A catch(Exception1 v1) B1 · · · catch(Exceptionn vn) Bn finally C

where the Exceptioni are types of exceptions, the vi are variables and A,
the Bi and C are blocks of statements.

Its basic properties are these:

• If an uncaught exception is thrown in block A it is again caught in
the matching catch-block, if available, as described for the try-catch-
statement.

• When we have a normal exit from block A or one of the Bi, block C
is executed.

• If we exit one of the Bi because of an exception, or if block A throws
an exception that is not caught in one of the catch-clauses, then block
C will also be executed. But if block C finishes normally after this,
the exception is thrown again at the end of C.

The next picture will give the general idea of the flowchart constructed
for a statement of the form try A catch(E v) B finally C, where F is some
exception that is not caught by the catch-clause:

A skip

post  
C

pre  
C

C skipskip

skipskip
B

skip

skip

post  
B

pre   /\ F

skip

pre  
C

skip
C

skip

post  
C

throw F

post   /\ F
C

throw F

throw F

C

throw F

pre  B

throw E
pre   /\ EB

Again assuming that the exceptions that can be thrown are E1,· · · ,En,
their matching boolean exception variables are b1,· · · ,bn and that these
booleans occur in every assertion, we would generate the following addi-
tional verification conditions for the jumps in the situation of the picture
below:
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...
try {

post
1...

post
2...

post
...
post

3

4
}
catch (E1 e) {

}
catch (E2 f) {

}
finally {

}

pre
stat;
...
post

5

1

pre

post
...

6

stat;
...

pre 3
stat;...

2

E1

E2

E3 none

none

E2

• (post1 ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn) ⇒
(pre1 ∧ b1) ∧ (¬b2 ∧ · · · ∧ ¬bn)

• (post2 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre2 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

• (post3 ∧ b3) ∧ (¬b1 ∧ ¬b2 ∧ ¬b4 ∧ · · · ∧ ¬bn) ⇒
(pre3 ∧ b3) ∧ (¬b1 ∧ ¬b2 ∧ ¬b4 ∧ · · · ∧ ¬bn)

• post4 ∧ (¬b1 ∧ · · · ∧ ¬bn) ⇒
pre3 ∧ (¬b1 ∧ · · · ∧ ¬bn)

• (post5 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn) ⇒
(pre3 ∧ b2) ∧ (¬b1 ∧ ¬b3 ∧ · · · ∧ ¬bn)

• post6 ∧ (¬b1 ∧ · · · ∧ ¬bn) ⇒
pre3 ∧ (¬b1 ∧ · · · ∧ ¬bn)

3.6.4 Exception handling and method invocation

The changes in the flow of control that occur when an exception is thrown are
currently being handled by generating suitable implications from the post-
condition of the statement that threw the exception to the precondition of
the statement that is first executed when the exception is caught. When the
flow of control leaves a method, however, we have a similar problem as we
had with method invocation. This problem is that the scope of the variables
used in the assertions is limited. This suggests that we need a mechanism
similar to the context switch to cope with this problem.

When you look somewhat closer, you will see that the problem is not
only similar to method invocation, but actually caused by it! The flow of
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control can only leave a method after it has been called using the method
invocation.

Since we mention the exceptions that can be thrown during the execu-
tion of a statement in the post-condition of this statement, it seems useful
to state the exceptions that can occur within and leave a method (and their
effects) in the post-condition of the corresponding method. This way the
context switch, the basics of which we already have, can take care of the dif-
ficulties caused by the change of scope. The next picture (compare with the
one from section 3.4.2) shows how we can use the context switch combined
with exception handling.

P Q

S
skip skip

Context of m(Y)

Q /\ E

O R

x = e0.m(E)

R /\ E

throw E

throw E

throw E

skip

Original context

skip
throw E

What we need beside the verification conditions generated for a context
switch with normal execution, are the ones for the exceptions that can occur
within the method. Each exception that leaves the method is ‘caught’ in
the post-condition and generates an implication to the matching5 exception
state in the original context. So basically, we use a similar detour to the
context of the method to verify the throwing of exceptions in the original
context as we used for normal execution of the invocation.

In the case that an exception is thrown, we neither perform the usual
substitution that replaces the generic result-variable of the method with its
return-expression nor the usual substitution that assigns the result of the
method call to x. Namely, when the flow of control leaves the method be-
cause of an exception the method does not return a value and the assignment
in the original context will be interrupted before x can get a new value.

5We implicitly assume, although it is not checked at the moment, that the same boolean

exception variables are used in the post-condition of the method call as in the post-

condition of the method.
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Chapter 4

Case study: A verified
example

4.1 Introduction

In this chapter an example will be given to give an idea of the actual imple-
mentation of the assertion mechanism and the work involved with using it.
During the treatment of the example some extra information will be given
that is needed when annotating a program and when using the rewrite sys-
tem.

The example given will focus on inserting a new Node in a sorted linked
list of Nodes, assuming that the new Node should not be inserted as the new
head of the list in order to simplify the example. It is actually an advanced
version of the example mentioned in [2].

4.2 Step one: Annotating the program

4.2.1 The program

We have the following definition of a Node:

class Node {

Node next;

int key;

Node insert(int n) {

Node cur;

Node tmp;

cur = this;

while(cur.next != null && cur.next.key < n)

cur = cur.next;

tmp = new Node();

tmp.key = n;

tmp.next = cur.next;
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cur.next = tmp;

return this;

}

}

So a Node contains an instance variable key that contains an integer value
and an instance variable next that points to the next Node in the list or is
set to null if it is the last Node in the list. The method insert searches for
the correct place to insert a new Node with value n and then inserts a newly
created Node. The idea is that the insert-method is called on the head of
the list, but this is not necessary.

We want to verify the following things:

• That the method insert inserts the new Node in the right place

• That the list remains sorted

• That the values of the elements of the list are not changed during the
execution of the insert-method

To make the verification of the method easier these properties are verified
separately. In this example only the first step will be treated, but the source
of the other parts can be found in Appendix A.

4.2.2 The annotation

Programs using the assertion mechanism need to start with the header
/*+AssertedJava+*/

as a signal to the rewrite system that this is an annotated program that
should be translated into verification conditions. For the assertion labels we
use the syntax

/*+ [label ] assertion +*/
The label is needed to distinguish the assertions generated in later steps and
to enable better error reporting. Because of the notation, any ordinary Java
compiler will consider the assertions comments and will just ignore them.

To make it easier to write and read the assertions, it is possible to define
macros before declaring or defining classes. These macros can be used where
any other assertion can be used and are defined as one big block of definitions
of format
/*+
$name1(par11,· · · ,par1n) := assertion1

$name2(par21,· · · ,par2m) := assertion2

. . .
+*/
Each definition has a name that begins with the $-sign and can optionally
have a list of untyped variable names, which can have the format of either
temporary or logical variables. These will be substituted by their actual
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values when using the macro, via the ordinary substitution mechanism. So
they will not be substituted by their textual occurrence in the corresponding
assertion, but rather by their functional occurrence. The parameters can be
left out altogether in the definition, in which case the parenthesis are also
left out.

When we enter the insert-method we should be in a linked list and the
key that is given should be larger than the key in the current object if we
don’t want the new object to form a new head of the list. So we need a
precondition of the method, namely

/*+ [s] $linkedList(@z) && {n > this.key} +*/

Note that we have to make references to instance variables explicit using
the prefix ‘this.’ and that in this implementation logical variables have a
‘@ ’ in front of them. In this example we have a logical variable ‘@z ’ that
is of type ‘sequence of objects’ whose elements point to the elements of the
list. $linkedList is a macro that states that the logical variable argument is
a sequence of objects that refers to a linked list. It is defined as

$linkedList(@z) := (@forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {@z[@i] != (nil : Node)}

&& ({@i < |@z|}

==> {@z[@i].next == @z[@i+1]})

))

&& {@z[|@z|].next == (nil : Node)} && {this == @z[1]}

&& {|@z| >= 1}

which states that every object in the sequence that is not the last should
point to the next object in the sequence, no object in the sequence should be
undefined (null), the last object in the sequence should be the last object in
the list, the first object in the sequence should refer to the current object and
that the sequence should contain at least one object. In the post-condition
of the method we want to state that a Node with key n has been inserted in
the right place (and that the method returns the current object, although
this has nothing to do with the linked list). We use the assertion

/*+ [t] $addedKey(@z, n) && {RESULT == this} +*/

RESULT is a variable that is used in the precondition of a method that refers
to the result of the method. Remember that logical variables are constants,
so @z cannot have an index that refers to the new Node. The macro $added-
Key is defined as

$addedKey(@z, n) := @exists Node @Nd (

$addedToList(@z, @Nd)

&& $notElem(@Nd, @z)

&& {@Nd.key == n}

)
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and states that a new Node with key n has been added to the original list
in the correct place. The macros it uses are defined as

$notElem(elem, @z) := @forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {elem != @z[@i]}

)

$addedToList(@z, tmp) := @exists int @i (

({1 <= @i} && {@i <= |@z|})

&& (({@z[@i].next == tmp})

&& ({@i > 1} ==> {@z[@i].key < tmp.key})

&& (({@i < |@z|}) ==> ({@z[@i+1].key >= tmp.key}

&& {tmp.next == @z[@i+1]})))

&& (({@i == |@z|}) ==> ({tmp.next == (nil : Node)}))

)

More specifically, $addedToList states that its second argument tmp is in-
serted in the list referred to by @z just after a Node with a smaller key and
just before a Node with a key that is greater than or equal to n (if it is not
appended to the end of the list). If it is appended it should become the new
end of the list.

The rest of the assertions could be considered ‘filling’ that shows the
path from the precondition of the method to the post-condition. First we
present the rest of the assertions:

/*+ [s] $linkedList(@z) && {n > this.key} +*/

Node insert(int n /*+ Node [] @z +*/) {

Node cur;

Node tmp;

/*+ [s] $linkedList(@z) && {n > this.key} +*/

cur = this;

/*+ [l1] $linkedList(@z) && $currentPos(cur, @z) +*/

while(cur.next != null && cur.next.key < n)

cur = cur.next;

/*+ [l2] $linkedList(@z) && $correctPos(@z, cur) +*/

tmp = new Node();

/*+ [l3] $linkedList(@z) &&

$correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp != (nil : Node)}

+*/

tmp.key = n;

/*+ [l4] $linkedList(@z) &&

$correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp.key == n} && {tmp != (nil : Node)}

+*/

tmp.next = cur.next;

/*+ [l5] $linkedList(@z) && $correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp.key == n} &&

{tmp.next == cur.next} && {tmp != (nil : Node)}

+*/

cur.next = tmp;

/*+ [l6] $addedToList(@z, tmp) && $notElem(tmp, @z)

&& {tmp.key == n} && {tmp != (nil : Node)} +*/

return this;

}

/*+ [t] $addedKey(@z, n) && {RESULT == this} +*/
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Notice that the logical variable @z is declared in the header of the
method. Every free logical variable that is used in the method must be
declared this way, using a comma-separated list, to make sure the types are
known in advance. When calling the method, the variable @z will be given
a value, just as n gets a value when the method is called.

The definitions of $currentPos and $correctPos are as follows

$currentPos(cur, @z) := @exists int @i (

({1 <= @i} && {@i <= |@z|})

&& ({cur == @z[@i]} &&

({@i > 1} ==> {cur.key < n}))

)

$correctPos(@z, cur) := @exists int @i (

({1 <= @i} && {@i <= |@z|})

&& ({cur == @z[@i]} &&

({@i > 1} ==> {cur.key < n})

&& ({@i < |@z|} ==> {cur.next.key >= n}))

)

Of these macros $currentPos states that cur points to a position in the list
that has a key smaller than n and $correctPos states that cur either points
to the end of the list or to the Node after which the new Node should be
inserted.

The meaning of the rest of the assertions is similar to the others that have
been mentioned. See Appendix A for an overview of the asserted program
as a whole. The source can also be found in the file j2a/Split1.java.

4.3 Step two: Generating the verification condi-

tions

Now that we have written the annotations for the method we can continue
the process by generating the verification conditions. The easiest way of
doing this using this implementation is by using the Meta-Environment.
Detailed information about its usage can be found in [12], but I will mention
the steps needed to rewrite the annotated program.

First, enter the sub-directory j2a (Java to Assertion) and start the Meta-
Environment by running ‘meta’. Open module Main.sdf using the File→
Open Module-menu. The panel will now show the import graph of module

Main. Click on the box j2a/Main using the right button of your mouse,

select Edit term in the menu that pops up and open file Split1.java (this
file is not shown in the file list, because it does not have extension .trm).

In the XEmacs window containing Split1.java we can now parse the
program using the menu Term-actions→Parse. Of course our program
does not contain syntax-errors so after the parsing has been completed we
can generate the intermediate verification conditions using the menu Term-
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actions→Reduce, which will probably take about 5 to 10 minutes the first
time we do this 1.

After a while, a window containing the result will pop up. If there are
errors, the first word of the result will be ErrorList and the remainder will
be a list of error messages. For us everything went as planned and the first
word is InstrList, indicating that we generated the verification conditions.

The resulting list is of the form [Decls, Instr1, · · · , Instrn], where each
Instri is either of this form too or a labeled assertion. The first assertion, for
example, is labeled [s→l1] which indicates that it is some kind of implication
between the assertion labeled [s] and the assertion labeled [l1]. The nesting
of lists matches the nesting of blocks in the program, which enables the next
translation step to determine the scope of the declarations that can be found
in the Decls-lists.

Now save the result in the directory a2h under the name Split1.trm
and start a second version of the Meta-Environment from the directory a2h
(Assertion to HOL). Now repeat the steps mentioned above, again opening
module Main.sdf (but this time the one from directory a2h) and parsing
and reducing term file Split1.trm. Save the result as Split1.hol.

4.4 Step three: Verifying the assertions in HOL

The file Split1.hol should be put in the directory that contains the files
OOScript.sml and OO PRELUDE.sml. If this is the first time you use
these files you should run Holmake without any arguments in the directory
to compile the theory OO contained in OOScript.sml. After this start the
interpreter using the command ‘hol.unquote Split1.hol’

With the interpreter I use I get the following result:

-----------------------------------------------------------------

HOL [Kananaskis 1 (built Thu Sep 5 14:11:06 2002)]

For introductory HOL help, type: help "hol";

-----------------------------------------------------------------

<<HOL message: intLib loaded. Use intLib.deprecate_int() to turn off integer

parsing>>

<<HOL message: Created theory "Assertions">>

<<HOL message: Defined type: "NodeRec">>

<<HOL warning: Theory.new_constant: "[s->l1]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l1->l2]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l1->l1]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l2->l3]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l3->l4]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l4->l5]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l5->l6]" is not a standard constant name>>

<<HOL warning: Theory.new_constant: "[l6->t]" is not a standard constant name>>

[loading HOL power tools ************* ]

[closing file "/ufs/robbert/hol/tools/end-init-boss.sml"]

1On later runs this will take much shorter, but on the first run after starting the

environment the rewrite rules have to be compiled.
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This is hardly the place for an in-depth description of or a tutorial on
using HOL, for which I can recommend [6], but I will give a very short
description and explanation of the steps involved using one of the verification
conditions.

Using the command p(); we can request to see the first assertion, which
shows us the following formula

- p();

> val it =

Initial goal:

ASSERTION [l6->t]

((((?Li.

(((SOME 1 ?<=? SOME Li = SOME T) /\

(SOME Li ?<=? LEN (SOME Lz) = SOME T)) /\

((deref_ref (obj_at (SOME Lz) (SOME Li))

(NodeState (obj_at (SOME Lz) (SOME Li))).next =

tmp) /\

((SOME Li ?>? SOME 1 = SOME T) ==>

(deref_b (obj_at (SOME Lz) (SOME Li))

(NodeState (obj_at (SOME Lz) (SOME Li))).key ?<?

deref_b tmp (NodeState tmp).key =

SOME T))) /\

((SOME Li ?<? LEN (SOME Lz) = SOME T) ==>

(deref_b (obj_at (SOME Lz) (SOME Li <+> SOME 1))

(NodeState (obj_at (SOME Lz) (SOME Li <+> SOME 1))).

key ?>=? deref_b tmp (NodeState tmp).key =

SOME T) /\

(deref_ref tmp (NodeState tmp).next =

obj_at (SOME Lz) (SOME Li <+> SOME 1)))) /\

((SOME Li = LEN (SOME Lz)) ==>

(deref_ref tmp (NodeState tmp).next = null))) /\

!Li.

(SOME 1 ?<=? SOME Li = SOME T) /\

(SOME Li ?<=? LEN (SOME Lz) = SOME T) ==>

~(tmp = obj_at (SOME Lz) (SOME Li))) /\

(deref_b tmp (NodeState tmp).key = SOME n)) /\ ~(tmp = null) ==>

(?LNd.

~(LNd = null) /\

((?Li.

(((SOME 1 ?<=? SOME Li = SOME T) /\

(SOME Li ?<=? LEN (SOME Lz) = SOME T)) /\

((deref_ref (obj_at (SOME Lz) (SOME Li))

(NodeState (obj_at (SOME Lz) (SOME Li))).next =

LNd) /\

((SOME Li ?>? SOME 1 = SOME T) ==>

(deref_b (obj_at (SOME Lz) (SOME Li))

(NodeState (obj_at (SOME Lz) (SOME Li))).key ?<?

deref_b LNd (NodeState LNd).key =

SOME T))) /\

((SOME Li ?<? LEN (SOME Lz) = SOME T) ==>

(deref_b (obj_at (SOME Lz) (SOME Li <+> SOME 1))

(NodeState (obj_at (SOME Lz) (SOME Li <+> SOME 1))).

key ?>=? deref_b LNd (NodeState LNd).key =

SOME T) /\

(deref_ref LNd (NodeState LNd).next =

obj_at (SOME Lz) (SOME Li <+> SOME 1)))) /\

((SOME Li = LEN (SOME Lz)) ==>

(deref_ref LNd (NodeState LNd).next = null))) /\

!Li.
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(SOME 1 ?<=? SOME Li = SOME T) /\

(SOME Li ?<=? LEN (SOME Lz) = SOME T) ==>

~(LNd = obj_at (SOME Lz) (SOME Li))) /\

(deref_b LNd (NodeState LNd).key = SOME n)) /\ (this = this))

: goalstack

-

which is the result of the implication from assertion l6 to assertion t under
the substitution [this/RESULT]. It looks somewhat complicated, because we
use special HOL definitions to deal with some semantic properties. The
assertions are placed in order onto the goal-stack of HOL, which is why we
encounter the last implication first.

Look more closely at the formula. It is a very large implication of the
form ∃Li (A) ⇒ ∃LNd (¬(LNd = (nil : Node))∧∃Li (B)), where we almost
have A = B[temp/LNd]. This suggests that if we tell HOL to fill in temp
for LNd in the existential quantifier and that it should consider the same
Li in the other existential quantifiers, the system may be able to verify the
easy remains for us.

How can we do this? First we strip the label ASSERTION [l6->t] from
the formula using the command ‘e (REWRITE_TAC [ASSERTION_def]);’,
supplying HOL with just enough information to perform this task. Then we
tell HOL to break up the implication using ‘e STRIP_TAC;’, which gives us
direct access to the first existential quantifier in the right-hand side of the
implication. Now we can specify that we want to instantiate LNd with the
value tmp, providing the type of tmp as well, using
‘e (EXISTS_TAC (Term ‘tmp :Node object‘));’ and can split up the re-
sulting conjunction using ‘e STRIP_TAC;’.

The formula ~(tmp = null) is trivial to prove because at this stage it
is already in the assumption list, so HOL can prove it using its built-in
prover RW TAC which we can call using ‘e (RW_TAC int_ss []);’. The
other subgoal we split up again, and its first result again to get direct
access to the other quantification. Now we tell HOL that it should use
the Li that we had on the left-hand side of the original implication using
‘e (EXISTS_TAC (Term ‘Li : int‘));’.

All the remaining subgoals are trivial enough for HOL, so we can solve
them using ‘e (OO_RW_TAC int_ss []);’ once for each subgoal 2.

Now we finally get the highly desirable message ‘Initial goal proved.’
on top of the goal, which means we are done verifying this transition. We
can now drop(); the goal and continue with the next one. We repeat this
process until we are done proving all goals and have thus verified the pro-
gram.

2When we call OO RW TAC, we actually call RW TAC, but supply it with all the

information from theory OO.

43



Chapter 5

Discussion

5.1 Introduction

This chapter discusses some of the aspects of the implementation. The first
section discusses the use of ASF+SDF for this project and the second one
gives the advantages and disadvantages of using the assertion language itself
for the description of the verification conditions. Then something will be told
about our experience with HOL, after which the chapter will be concluded
with a summary of the contributions that have been made while working on
this project.

5.2 Advantages and limitations of using ASF+SDF

Using ASF+SDF is very similar to using a functional programming lan-
guage, but its level of abstraction is even higher. Functional programming
languages abstract from imperative languages by emphasizing evaluation of
expressions over execution of commands. ASF+SDF abstracts from func-
tional programming languages by putting the emphasis on subterm replace-
ment, which could be seen as a special form of evaluation.

Just like functional languages, ASF+SDF has the advantage that defini-
tions look very clear and natural. In ASF+SDF it is even easier to make the
look of the definitions match the corresponding theory, as you can choose
your own syntax. In my implementation for example, I chose to make the
syntax look like that of an imperative language with function calls, but
it would be very well possible to make the substitution mechanism look
like the mathematical definitions given in Chapter 2. Furthermore, as with
functional programming, the programmer can totally neglect memory usage
when writing a specification.

It is important to note that, despite the similarities, ASF+SDF is not
a functional programming language. In fact, it is not even a programming
language, but just a formalism used for specifying syntactic and semantic
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transformations. It is exactly this property that makes it so extremely useful
for specifying program transformations (which are all about syntactic and
semantic transformation). However, the support for exception handling is
nearly absent in ASF+SDF.

For instance, interrupting the rewrite process to give an appropriate
error message is not possible. Generating user-defined error messages can
only be done by rewriting the program to the text of the messages, which
is not always a very easy thing to do. It usually involves adding extra rules
to extract the text describing the errors found from the rest of the result.

Another example of what is not supported by ASF+SDF is the prema-
ture termination of the rewrite process in case of the detection of a fatal
error.

5.3 Choice of intermediate language

5.3.1 Introduction

As already mentioned in the introduction, the rewrite process that has been
implemented during this project consists of two steps:

Asserted Java a2hj2a Assertions HOL

In the middle of the process, we store the assertions using the assertion
language. This section will discuss the pros and cons of using the assertion
language for this purpose.

5.3.2 The intermediate language

At least three (probably different) languages play a role in the rewrite pro-
cess:

1. The assertion language
The language used to express assumptions about the program.

2. The object-oriented source language
The language used to describe the program. It contains the assertion
labels.

3. The target language
The language that is readable by the chosen theorem prover. It is used
to express the assumptions made in (hopefully) provable formulas.

Because a translation from the assertion language to the target language
is usually known, the natural way to do the translation is to first translate
a ‘precondition - instruction - post-condition’ combination (an assumption
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about the program) to a single assertion and then do a translation to the
target language.

In the original tool this approach has not been taken. First the assertions
are recursively translated into Java objects. Then the combining substitu-
tions are applied to the objects, possibly creating new objects, and then
the resulting objects are translated into the target language. This basically
adds another language to the rewrite process, the intermediate language.

In our approach, the process consists of the before-mentioned two steps.
We also use an intermediate language, but in this implementation it is the
assertion language itself. One of the reasons for this is that it is assumed
that the assertion language should be sufficiently expressive in order to state
interesting assumptions about the program. If some assumptions can not
be translated into the assertion language itself, it is very likely that the
language used is too weak anyway and that an extension (or a completely
different language) should be used instead.

5.3.3 Advantages of using the assertion language as interme-
diate language

There are also several more practical reasons for doing a translation to the
assertion language in the first stage, instead of to another chosen language.
These are the following:

• The substitutions used, as described in section 2.5, are defined in the
context of the assertion language. Translating directly to another in-
termediate language in the first stage would require redefining the
substitutions for this new language, while translating indirectly to an-
other intermediate language would just introduce an extra translation
stage without any additional advantages.

• We already have a translation of annotated Java to the assertion
language and an easy translation of the assertion language to HOL-
syntax. Using a new intermediate language would require defining a
new mapping of annotated Java to this language, as well as defining
the mapping from the new intermediate language to HOL-syntax.

5.3.4 Disadvantages of using the assertion language as inter-
mediate language

Doing a direct translation to the assertion language when the assertion lan-
guage is still under development has a strong disadvantage.

When this is the case, the assertion language will change syntax very
often. As described in the previous section ASF+SDF is a formalism for de-
scribing syntax transformations and because of this the specifications writ-
ten in it depend heavily on the precise format of the syntax used. When
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the structure of the assertion language is changed, this requires that the
corresponding parts in the substitution mechanism, the translation of anno-
tated Java to the assertion language and the translation to HOL-syntax are
changed accordingly. This can be a lot of work, depending on how much the
structure of the assertion language has been changed.

It is not problematic to add constructs to the assertion language in the
current situation. This does require adding new rules for the translation to
HOL-syntax and may require adding new rules to the substitution mecha-
nism and the translation of annotated Java, but adding new rules is pretty
straightforward in most cases.

5.4 Choice of theorem prover

Although so far relatively little has been said about HOL, the theorem prover
used, it plays an essential role in the verification mechanism. After all it is
in HOL where is decided whether the annotated transitions can be proven
correct! We will also briefly introduce PVS, as we expect to achieve a higher
level of automation using the latter.

5.4.1 About PVS

PVS ([24]) stands for ”Prototype Verification System”. It consists of a
specification language integrated with support tools and a theorem prover.
PVS tries to provide the mechanization needed to apply formal methods
both rigorously and productively.

PVS works with specifications, rather than directly inserted goals, which
have a closer resemblance to the functional way of programming. It also
provides very convenient techniques for verifying the consistency of speci-
fications. This is especially useful if at some point we decide to do some
verification on the underlying logical definitions that we use in the theorem
prover to express our assertions.

5.4.2 Discussion

My personal experience is that it takes a lot of time to learn how to main-
tain the right level of abstraction if you use your own definitions in HOL.
Without the right level of abstraction subgoals can get cluttered up with
unnecessary lower-level information. Such subgoals are usually longer for-
mulas, unintuitive and typically have a different notation than the formula
you entered in the first place 1.

Despite the simplicity of the assertions and the annotation method used,
most resulting formulas, especially longer ones, are rather difficult to prove

1Pieces of which typically end up in the subgoals’ assumptions.
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in HOL. This is mainly because the proofs have to be ‘generated’ in a very
formal and explicit way, as to ensure the correctness of the proof. It is very
likely that using a different theorem prover, for example PVS, enables us to
make (most of) the verification process automatic instead of manual.

When describing the case study for example, I only provided the proof
for one of the verification conditions.2 Compared with the other proofs I
had this was a very short one, although I feel it should have been much
shorter. It shouldn’t even take an extremely smart theorem prover to figure
out that if only one free variable of type Node is used in a formula that also
has an existential clause with a bound variable of type Node that it would
be probably be a good idea to try filling in this free variable. HOL does not
do this for you, although there may be a way to program this behavior in a
user-defined tactic.

5.5 Contributions

To emphasize what the contributions of this project have been, I will give a
summary in this section. My contributions are:

• Implementing the interpretation of annotated Java. My work roughly
involved building a mechanism that extracts type-information from
a Java class, building the substitution mechanism for the assertion
language and specifying the translation process of basic annotated
Java to the assertion language. New in the last translation process
was the specific interpretation of compound statements such as if-then,
if-then-else and while.

• Implementing method invocation. There were some ideas on how to
handle the assertions in the context of method invocation, but they
had not been implemented yet. I did this for Java.

• Constructor invocation.
After discussing constructor invocation with Frank de Boer we came
up with a way to interpret constructor invocation in Java using the
principles of method invocation. This has been included in the im-
plementation as well, in the situations where non-default constructors
are invoked during object creation.

• Exception handling.
Frank de Boer had the suggestion of doing exception handling using
boolean exception variables. I worked this idea out and implemented
it for Java.

• Macro mechanism implementation for Java.

2Although proofs are available for all of the verification conditions.
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Cees Pierik already had a macro mechanism for use with flowcharts,
but I decided to implement my own version for use with Java classes.

• Bug fixes in translation to HOL, improvement HOL-definitions.
Most of the translation to HOL-syntax came from Cees Pierik’s tool.
There were some important bugs in the translation however which have
been corrected. Furthermore, I have adjusted some of the definitions
used in HOL to make the verification process in HOL more logical.
Because this implementation generates all verification conditions at
once instead of for one selected transition at a time, I have added a
definition to the theory that enabled the tool to label the assertions in
HOL.

• Reporting some bugs in the ASF+SDF Meta-Environment.
While working with the ASF+SDF Meta-Environment I encountered
some bugs, which have been reported to and fixed by the ASF+SDF
Meta-Environment support team.

• Correcting the linked list example, improving it, proving it in HOL.
The example worked out in Chapter 4 is based on the example from [2].
This example required some corrections in order to be used in practice
and was rather limited in what it proved about the linked list. The
corrected version of the example has been improved and implemented
as a Node-object in Java that has an insert-method. This insert-
method has been verified using this tool, which took me two to three
months as I needed to learn how to work with HOL as well.
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Chapter 6

Future work

6.1 Integration with existing tools/programming

environments

6.1.1 Overview

In Chapter 4 it was shown how the Meta-Environment can be used to gener-
ate the verification conditions using the ASF+SDF-modules written during
this project. As is briefly described in section 1.4.1 and 1.4.2, the Meta-
Environment is actually a collection of tools connected using a tool called
ToolBus ([8]).

Editor

Text Structure

Editor
Parser

Parsetable

Generator

Repository

Tree

Generator

Unparser
Interpreter

ASF+SDF
Compiler

Browser

Graph
TOOLBUS

To use the ASF+SDF-modules we only need a couple of these tools.
These are the ones mentioned in section 1.4.1 (sglr, asfe and unparsePT ).

In the Meta-Environment a special script, called ToolBus script, de-
scribes how the interaction between the tools should go. The best way to
integrate the tools needed with an existing tool would be to add a ToolBus
interface to the existing tool and write a script that describes how the com-
munication between the tools should be. For specific information on how to
write these scripts see [8].
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6.1.2 About sglr, asfe and unparsePT

In this section we will describe the tools that we need for the rewrite process,
in the order in which they are usually invoked.

sglr is a parser tool that uses a parse table to parse an input file. We can
generate the parse tables for the tools of this project using the tool
pt-dump with the Main-modules. The tool pt-dump is provided with
the Meta-Environment.

After a successful parse, the resulting parse tree is written to an output
file.

asfe is a tool that rewrites an input tree according to a parsed ASF speci-
fication. We can parse the ASF specifications from this tool by using
the tool eqs-dump with the Main-modules and will usually input the
parse tree resulting from the application of sglr.

After the rewrite, the result will be written to an output file formatted
as a tree.

unparsePT is a tool that rewrites an input tree to the corresponding text
string. It is used to write the output tree resulting from the application
of asfe to an ordinary text file.

6.1.3 Notes

In order to connect the tools using a ToolBus script, the ToolBus itself is
needed as well. Unfortunately, the tools mentioned above and the ToolBus
are currently only available for Unix/Linux-based systems. So in order to
use these tools on a machine running one of the Windows versions, it will
be necessary to install Cygwin ([19]).

Instead of using the ToolBus and a ToolBus script to connect the tools
from this project to an existing tool, there is also the option of executing
the tools described in the previous section using system calls and redirecting
the input and the output. This works fine if the program does not contain
syntax errors or semantic errors, but makes it harder to handle the cases
when it does contain them properly.

6.2 ”Filling in the blanks”

Our tool more or less requires all statements in a block or a method to
be annotated. In the theory of flowcharts, a non-annotated Java-statement
would correspond with a flowchart that has a number of non-annotated
states.

As a lot of the transitions in a block are trivial, as are many of the gen-
erated verification conditions, it would be nice of we could leave trivial parts
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of the block without annotation and let some tool insert the missing ones.
Because the missing annotations would be fitted in by a tool we wouldn’t
need to generate verification conditions for them. This would save work
when proving the conditions in the end, while we could still verify whether
the precondition of the block implies the post-condition after executing the
statements in the block.

We could fill in the gaps calculating weakest preconditions. We have
already developed the machinery for this, as we already used weakest pre-
conditions to move post-conditions to the state before the corresponding
transition.

The idea is illustrated using the picture below, in which we have depicted
a block of statements using a flowchart.

stat
1 stat

2 stat
3

pre post

post’’ post’

The first state has the precondition of the block, while the last one has
its post-condition. Calculating the weakest precondition of post we get post′,
which can be used to annotate the third state. Repeating this process with
post′ we get annotation post′′ for the second state. This would just leave
us with the verification of the first transition, as we know for sure that the
other ones are correct.

A tool that does the insertion could be used as a pre-processor on the
program text before the tool j2a is applied to it or the insertion process
could be included as a preliminary phase in the tool itself.

6.3 Extending the subset of Java

The tool only supports a very limited part of Java. A natural way to improve
the tool would be to provide additional transformation rules for control
structures or expressions.

Depending on the nature of these structures or expressions it could be
necessary to extend the assertion language as well.
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Appendix A

The example: source code

This chapter gives the full annotated source code of the example program
described in Chapter 4. As the example has been split up in three parts in
order to simplify the proof process, this chapter has been divided in three
sections as well, each describing a different part of the annotation of the
example.

A.1 Part one

A.1.1 Description

The first version of the annotation checks whether a new node with key n
has been inserted in the right place, assuming that the keys and order of
original linked list have not been altered and that the original part of the
linked list (the part referred to by logical sequence @z) remains ordered
during execution of the method.

A.1.2 Source code

/*+AssertedJava+*/

/*+

$linkedList(@z) := (@forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {@z[@i] != (nil : Node)}

&& ({@i < |@z|}

==> {@z[@i].next == @z[@i+1]})

))

&& {@z[|@z|].next == (nil : Node)} && {this == @z[1]}

&& {|@z| >= 1}

$currentPos(cur, @z) := @exists int @i (

({1 <= @i} && {@i <= |@z|})

&& ({cur == @z[@i]} &&

({@i > 1} ==> {cur.key < n}))

)

$correctPos(@z, cur) := @exists int @i (
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({1 <= @i} && {@i <= |@z|})

&& ({cur == @z[@i]} &&

({@i > 1} ==> {cur.key < n})

&& ({@i < |@z|} ==> {cur.next.key >= n}))

)

$notElem(elem, @z) := @forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {elem != @z[@i]}

)

$addedToList(@z, tmp) := @exists int @i (

({1 <= @i} && {@i <= |@z|})

&& (({@z[@i].next == tmp})

&& ({@i > 1} ==> {@z[@i].key < tmp.key})

&& (({@i < |@z|}) ==> ({@z[@i+1].key >= tmp.key}

&& {tmp.next == @z[@i+1]})))

&& (({@i == |@z|}) ==> ({tmp.next == (nil : Node)}))

)

$addedKey(@z, n) := @exists Node @Nd (

$addedToList(@z, @Nd)

&& $notElem(@Nd, @z)

&& {@Nd.key == n}

)

+*/

class Node {

Node next;

int key;

/*+ [s] $linkedList(@z) && {n > this.key} +*/

Node insert(int n /*+ Node [] @z, int [] @n +*/) {

Node cur;

Node tmp;

/*+ [s] $linkedList(@z) && {n > this.key} +*/

cur = this;

/*+ [l1] $linkedList(@z) && $currentPos(cur, @z) +*/

while(cur.next != null && cur.next.key < n)

cur = cur.next;

/*+ [l2] $linkedList(@z) && $correctPos(@z, cur) +*/

tmp = new Node();

/*+ [l3] $linkedList(@z) &&

$correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp != (nil : Node)}

+*/

tmp.key = n;

/*+ [l4] $linkedList(@z) &&

$correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp.key == n} && {tmp != (nil : Node)}

+*/

tmp.next = cur.next;

/*+ [l5] $linkedList(@z) && $correctPos(@z, cur) &&

$notElem(tmp, @z) && {tmp.key == n} &&

{tmp.next == cur.next} && {tmp != (nil : Node)}

+*/

cur.next = tmp;

/*+ [l6] $addedToList(@z, tmp) && $notElem(tmp, @z)

&& {tmp.key == n} && {tmp != (nil : Node)} +*/

return this;

}
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/*+ [t] $addedKey(@z, n) && {RESULT == this} +*/

}

A.2 Part two

A.2.1 Description

The second version of the annotation checks whether the original part of the
linked list remains ordered during execution of the method.

A.2.2 Source code

/*+AssertedJava+*/

/*+

$sortedList(@z) := @forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {@z[@i] != (nil : Node)}

&& ({@i < |@z|}

==> {@z[@i].key <= @z[@i+1].key})

)

$notElem(elem, @z) := @forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {elem != @z[@i]}

)

+*/

class Node {

Node next;

int key;

/*+ [s] $sortedList(@z) && {n > this.key} +*/

Node insert(int n /*+ Node [] @z, int [] @n +*/) {

Node cur;

Node tmp;

/*+ [s] $sortedList(@z) +*/

cur = this;

/*+ [l1] $sortedList(@z) +*/

while(cur.next != null && cur.next.key < n)

cur = cur.next;

/*+ [l2] $sortedList(@z) +*/

tmp = new Node();

/*+ [l3] $sortedList(@z) && $notElem(tmp, @z)

+*/

tmp.key = n;

/*+ [l4] $sortedList(@z) && $notElem(tmp, @z) +*/

tmp.next = cur.next;

/*+ [l5] $sortedList(@z) && $notElem(tmp, @z) +*/

cur.next = tmp;

/*+ [t] $sortedList(@z) && $notElem(tmp, @z) +*/

return this;

}

/*+ [t] $sortedList(@z) && {RESULT == this} +*/

}
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A.3 Part three

A.3.1 Description

The third version of the annotation checks whether the keys of the nodes of
the original linked list remain the same during execution of the method.

A.3.2 Source code

/*+AssertedJava+*/

/*+

$containsIntsFrom(@z, @n) := {|@z| == |@n|} &&

@forall int @i (

({1 <= @i} && {@i <= |@n|})

==> {@n[@i] == @z[@i].key}

)

$notElem(elem, @z) := @forall int @i (

({1 <= @i} && {@i <= |@z|})

==> {elem != @z[@i]}

)

+*/

class Node {

Node next;

int key;

/*+ [s] $containsIntsFrom(@z, @n) && {n > this.key} +*/

Node insert(int n /*+ Node [] @z, int [] @n +*/) {

Node cur;

Node tmp;

/*+ [s] $containsIntsFrom(@z, @n) +*/

cur = this;

/*+ [l1] $containsIntsFrom(@z, @n) +*/

while(cur.next != null && cur.next.key < n)

cur = cur.next;

/*+ [l2] $containsIntsFrom(@z, @n) +*/

tmp = new Node();

/*+ [l3] $containsIntsFrom(@z, @n) &&

$notElem(tmp, @z)

+*/

tmp.key = n;

/*+ [l4] $containsIntsFrom(@z, @n) &&

$notElem(tmp, @z)

+*/

tmp.next = cur.next;

/*+ [l5] $containsIntsFrom(@z, @n) &&

$notElem(tmp, @z)

+*/

cur.next = tmp;

/*+ [t] $containsIntsFrom(@z, @n) +*/

return this;

}

/*+ [t] $containsIntsFrom(@z, @n) && {RESULT == this} +*/

}
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