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Chapter 1

Introduction

1.1 Problem Statement

In this thesis we investigate factors of the testability of object-oriented soft-
ware systems. The starting point is given by a study of the literature to
obtain an initial model of testability, and related software metrics. Subseq-
uently, the metrics are evaluated by means of two case studies of large Java
systems. The goal of this thesis is to define and evaluate a set of metrics
that can be used to assess the testability of the classes of a Java system.

1.2 Software Testing

Programmers are human beings. Human beings are prone to make errors
during most of their activities, and software development is no exception.
Thus the need arises for verification of the (half-) products of software de-
velopment. Software testing is the practice of running a piece of software in
order to verify that it works as expected.

The errors made by programmers have the potential of introducing faults
in the program. Typically faults are confined to a single program statement,
but more complex and distributed faults can occur too. Faults in a program
have the capability of causing the program to fail. Failure happens when
the program produces an output that is different from the expected output.
In short, programmers make errors and introduce faults in their programs,
which become prone to failure. The terms we use here are defined more
thoroughly by the IEEE in [12].

Software testing occurs (or should occur!) during multiple phases of
the construction of a software system. Typically the software development
methodology determines both the kind of testing, and the phase(s) during
which testing is done. Since methodology is not our focus here, we will
suffice by briefly describing the different kinds of testing that are common in
practice. It is useful to consider the several aspects of testing separately. The
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following overview of software testing is based on the Software Engineering
Body of Knowledge (SWEBOK) [2].

First, we look at the level at which testing can take place.

• Unit testing is concerned with verifying the behavior of the smallest
isolated components of the system. Typically, this kind of testing is
performed by developers or maintainers and involves using knowledge
of the code itself. In practice, it is often hard to test components in
isolation. Components often tend to rely on others to perform their
function.

• Integration testing is focused at the verification of the interactions
between the components of the system. The components are typically
subjected to unit testing before integration testing starts. A strategy
that determines the order in which components should be combined
usually follows from the architecture of the system.

• System testing occurs at the level of the system as a whole. On the one
hand, the system can be validated against the non-functional require-
ments, such as performance, security, reliability or interactions with
external systems. On the other hand, the functionality implemented
by the system can be compared to its specification.

Second, testing can have several objectives. Of course, the base objective
of testing is verification of the developed code, however, the reference to be
used for verification can be different.

• Acceptance testing is done to verify that the system implements the
customer’s requirements correctly. Usually the testing is done by (fu-
ture) users of the system. In addition to verifying whether or not
the required functionality is present in the system, (future) users are
also likely to be concerned about the user-interface and performance
characteristics.

• Functional testing is done to determine if the system has correctly
implemented the specification of functionality. Typically, a team sep-
arate to the development or maintenance teams would perform this
task.

• Reliability evaluation is sometimes done by executing test cases ob-
tained from a typical operational profile for the system. The rate of
failure observed during such a test session can then be used to derive
statistical measures of the reliability of the system.

• Regression testing is performed to make sure that a modification of a
certain part of the system has not inadvertently broken other parts of
the system. For example, a regression test could entail the execution
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of every unit test. Larger projects will likely require a more selective
approach if regression testing is to remain viable.

Finally, we discuss the ways in which test cases can be selected.

• White-box testing refers to the creation of test cases by exploiting
knowledge of the implementation (ie. the source code) of the system
under test. Therefore, white-box techniques are typically applied by
the same developers that wrote the code.

Several aspects of the source code can be targeted by white-box tech-
niques. For example, possible techniques are based on the control-
flow, data-flow or call behavior of the code being tested. Observing
the effects of modifications made to certain parts of the code, so-called
mutation analysis, can also be classified as a white-box technique.

• Black-box testing is the opposite of white-box testing, in the sense that
no knowledge of the implementation is used to generate test cases.
Instead, black-box testing focuses on the input/output behavior of
the system. This approach enables people without knowledge of the
internals of a system to apply these techniques.

Many black-box techniques take the specification of the system as a
starting point. The specification should provide information about the
domains of inputs and outputs of the system, and describe the imple-
mented functionality. Using this information, the tester should be able
to generate input/output pairs that represent correct executions of the
system. In other words, for every pair, the system should result in the
specified output value when given the specified input value. Clearly,
one such pair exactly represents a test case.

In general, a system that would pass all possible test cases implements
its specification correctly. However, exhaustively testing a system is
not a feasible practice, since most interesting systems will likely involve
input and output domains that are very large. Therefore, a number of
techniques exist to reduce this problem. These provide ways to select
a set of test cases that will provide a reasonable level of confidence
in the correctness of a system that passes the tests. Examples of
these techniques are partitioning of the domains in equivalence classes,
boundary-value analysis, random testing, and statistical testing based
on an operational profile.

• Use cases [13] can also serve as the starting point for a test case. A use
case typically gives an informal description of the way a user interacts
with the system in order to reach a certain goal. A project applying a
use case-centered approach would collect a large number of use cases
during requirements gathering and analysis phases. Subsequently each
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of the use cases would be used as input for a design and implementation
phase, resulting in an implementation of the functionality described
in the use case. Given that the use cases have been written at an
appropriate level of abstraction, it should be fairly easy to generate a
number of test cases from them.

Due to the fact that use cases capture the required functionality in
a way that is understandable for both customers and developers, this
approach to generating test cases is very suitable for use during ac-
ceptance testing.

Of course, the aspects described above are not completely orthogonal,
and some combinations of level, objective and technique will not yield a
useful testing method. On the other hand, some techniques are likely to be
used at a specific level, and in the context of specific testing objective. For
example, functional testing would typically occur at the system level using
black-box techniques.

1.3 Testability

A software system’s testability is defined by the ISO model [21] as “attributes
of software that bear on the effort needed to validate the software product.” In
other words, the testability of a software system is indicative of the amount
of effort needed to test the system. This thesis investigates testability from
the perspective of unit testing, where our units consist of the classes of an
object-oriented software system.

In the world of software engineering, a software system exists by grace
of the process supporting it. The process takes care of maintenance of
the software and development of new features, among other things. The
validation of the software system i.e. testing, is an activity that is tightly
coupled to both the software and its supporting process. The amount of
effort that one should expect to spend on testing, given a certain desired
degree of validity, is therefore a result of properties of both the process and
the software. Figure 1.1, adapted from the fish-bone figure in [3], gives an
overview of the facets that influence the test effort.

The overview presented in Figure 1.1 allows us to specify the focus of our
work. The goal of this thesis is to find a number of source-based metrics, or
measures, that can be used to assess a software system’s testability. In terms
of Figure 1.1, we generally focus on the implementation ‘major bone’, and
specifically on the source code factors ‘minor bone’. The ‘bones’ of Figure
1.1 each represent an important aspect of a software project with respect
to the testing effort. First, the required degree of validity sets the testing
goal of the project. The higher the goal, the higher the expected effort.
Second, representation regards factors of the requirements and specification,
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Figure 1.1: The testability fish-bone.
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and their influence on the testing effort. Third, implementation deals with
factors of the actual software, including determinism and interaction with
external systems. Fourth, test suite takes care of quality aspects of the test
suite itself, i.e. its documentation, reuseability and validity. Fifth, test tools
takes into account the presence of tools that support the project’s testing
effort. Finally, process capability regards the capability of the (testing) staff,
and how the project’s organization supports the testing effort. The ‘major
bones’ of Figure 1.1 will be described in more detail in Chapter 2.

1.4 Assessing Testability Using Metrics

In this thesis we investigate factors of the testability of object-oriented soft-
ware systems. Our approach is to evaluate a set of source-based metrics
with respect to their capabilities to assess the effort needed for testing. We
choose this approach because metrics are a good driver for the investigation
of aspects of software. The evaluation of metrics that are thought to have
a bearing on the testing effort allows us to, on the one hand, gain insight
into the factors of testability, and obtain refined metrics, on the other. Both
results can subsequently be used in further studies.

The goal of this thesis is to define and evaluate a set of metrics that can
be used to assess the testability of the classes of a Java system. Metrics that
have this property are useful for a number of reasons.

First, putting the focus on extraction of facts from source code, as op-
posed to using design documents, has several advantages of a practical na-
ture. Practice shows that documentation is either severely lacking or simply
not present at all. Furthermore, documentation typically consists of nat-
ural language texts or diagrams, which can both be ambiguous and hard
to process automatically. In contrast, the source code of a software system
provides a direct rendering of the implementation, and is very suitable for
automatic processing.

Second, being able to determine which parts (classes) of the system cause
it to become significantly harder to test allows for the possibility of modi-
fying specific parts of the system in order improve the testability. From the
perspective of development, those programming practices or constructions
that are known to result in badly testable software can then be avoided.

Finally, in order to support planning and resource allocation, being able
to assess the testability based on software metrics is desirable. For example,
a system that is in early stages of development typically has no test effort
data available yet. The same would be the case for a process where no
(accurate) time or effort bookkeeping is done.

We investigate testability from the perspective of object-oriented soft-
ware systems. Object-oriented programming is a new programming para-
digm, which has not yet been subject to the same amount of investigation as
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older paradigms have been. In case of the topic of testability, object-oriented
programming has received little attention of the literature.

1.5 Overview

In Chapter 2 we further specify the topic of this thesis, and provide some
details on related issues. Furthermore, we describe an initial model of testa-
bility. Related approaches to our topic are presented and discussed in Chap-
ter 3. At the end of the chapter we discuss the relationships between those
approaches and our own approach. In Chapter 4 we define the metrics that
we have selected for evaluation, and describe the experiments we do to eval-
uate them. A detailed description of the methods used for the experiments
concludes Chapter 4. Two case studies are described in Chapter 5, followed
by a presentation of the results for both case studies. The chapter is con-
cluded by a discussion of the results. Finally, in Chapter 6 we present the
concluding notes of this thesis.
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Chapter 2

Testability

In this chapter we specify the focus of this thesis, and describe an initial
model of testability. This model is used as a starting point for the experi-
ments described in Chapters 4 and 5.

2.1 The Fish-bone In More Detail

The ‘fish-bone’ presented in Figure 1.1 attempts to specify the focus of this
thesis, and put it in context. To provide some additional detail on related
issues, we will discuss how each of the ‘major bones’ influences the testing
effort. Parts of this discussion are based on work by Binder [3].

A major input of the test effort picture is the degree of validity that the
software is required to have. In general, software that is required to have
a high degree of validity will need to be tested thoroughly before it can be
claimed the requirement is met.

For some software development projects the required degree of validity
may be known explicitly, while for most others the software will simply be
expected to ‘work’. For example, safety-critical systems are often required to
meet very strict validity requirements; maximally allowable failure rates are
typically stated explicitely. On the other hand, a word processor application
will likely not be required to meet the same degree of validity.

Let’s assume that a project intends to verify the validity of the software
by means of testing. If the required degree of validity is specified, the goal of
testing is clear; to evaluate whether or not the software meets the specified
validity requirement. It will depend on the other aspects of the project how
much effort will be required to complete the testing.

If the required degree of validity is not specified, the project will need
to agree on some kind of testing criterion that indicates whether adequate
testing has been performed. In the context of white box testing, such a
criterion is typically called a code coverage criterion, because it indicates the
extent to which a certain aspect of the code has been ‘covered’ by testing.
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For example, a code coverage criterion could be that all lines of code of
the software are executed at least once. In effect, a testing criterion will
establish a lower bound on the validity of the software, and an upper bound
on the number of test cases required. A project will thus have to make
a trade-off between the verification of validity on the one hand, and the
required amount of testing on the other. Again, it will depend on the other
aspects of the project how much effort will be required to complete the
testing according to the selected testing criterion.

In practice, the moment that testing is complete will typically be deter-
mined by the amount of effort a project is capable of spending on testing.
The ‘spine’ of Figure 1.1 would thus start at ‘available test effort’, and point
upwards to ‘resulting validity’.

Representation

Ideally there is more to a software system than its source code. According
to various industry standards, documentation should cover the requirements
the software needs to implement and the specification of the chosen solution.
The quality of these documents has its bearing on the test effort.

Requirements capture the expectations of the customer, and thus are
a crucial source of test cases that determine whether the implementation
is correct and complete. From a testing viewpoint, good requirements are
unambiguous and quantifiable.

A specification details the architecture and design of the solution that
was selected to implement the requirements. Complete and current specifi-
cations describe the intended behavior of the implementation. Knowing the
intended behavior is valuable if one wants to derive test cases that validate
the implementation.

The separation of concerns inherent in modern software documentation
raises the issue of traceability. A software system and its documentation is
traceable if the relations between the components of the requirements and
those of the specification, and those of the specification and implementation,
are clear. In other words, it should be easy to point to the components
involved in solving a certain requirement. Vice versa, it should be clear
which requirement a certain component implements.

A non-traceable software system cannot be effectively tested, since rela-
tions between required, intended and current behaviors of the system cannot
easily be identified.

Implementation

The core of each software system consists of its implementation. Typically,
the implementation is the target of all testing, and thus the extent to which
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the implementation allows itself to be tested is a key factor of the required
amount of testing effort.

The major part of the implementation of an application consists of source
code expressed in one or more programming languages. Factors of the source
code that relate to the testability of the implementation, and thus the testing
effort, are the topic of this thesis. We will explore this category in the other
sections of this chapter.

An implementation that is driven by an external interface can be hard
to test. For example, a graphical user interface (GUI) is a source of events
that the underlying application must respond to. If no special care has been
dedicated to separating the GUI code from the application code, a myriad
of problems arises. First, controlling the application to execute certain com-
ponents would require the generation of GUI events in an appropriate way.
Not only will it be needed to have a thorough knowledge of the GUI, but
tools supporting the automated generation of GUI events will be needed
as well. Second, obtaining result data from an application that is tightly
coupled to a GUI can be problematic. In the worst case, values need to be
fetched from a GUI component.

Being able to repeat tests is a very desirable asset. Sources of non-
determinism present in the implementation or its environment can be ob-
stacles to repeatability. Examples are concurrency-related issues like a non-
fixed order of events and contention on resources, but also the use of (pseudo)
non-deterministic control or hardware-related problems.

Most applications have some way of dealing with invalid input data,
calculation errors and other exceptional conditions. The code responsible
for dealing with the condition is a good candidate for testing. However,
depending on the nature of an exceptional condition, it may be difficult to
reproduce the cause during testing, and thus exercise the responsible code.

Test Suite

Aspects of the test suite itself also determine the effort required to test.
First, test cases should be created to allow for automated execution. It
should be possible to compare observed output values to expected output
values in an automated way, preferably by employing a mechanism called a
test oracle. A test oracle is a simple abstraction of the mapping from valid
input values to correct output values.

Second, reusing test suites for different revisions and configurations of
the system under test must be possible. Test suites should thus be subject
to configuration management along with the software itself.

Third, test cases that contain errors are as harmful as buggy code. If
they are to be of any use, test suites had better be subject to a verification
process of their own.
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Finally, test suites need documentation detailing the implemented tests,
a test plan, test results of previous test runs and reports.

Test Tools

The presence of appropriate test tools can alleviate many problems that
originate in other parts of the ‘fish bone’ figure. For example, easy-to-use
tools will demand less of the staff responsible for testing. Test case definition
in the presence of graphical user interfaces is another example where tooling
can significantly reduce the required effort.

Obviously, testing benefits from automation of repetitive and error-prone
tasks as much as any other activity does. A good set of test tools is capable of
interoperating with related tools. For example, a test runner that encounters
a failed test is capable of producing a trace which can subsequently be read
be debugger or profiler tools, which in turn are linked with an editor, and
so forth.

Process Capability

The organizational structure, staff and resources supporting a certain activ-
ity are typically referred to collectively as a (business) process. Properties
of the testing process obviously have great influence on the effort required
to perform testing. Important factors include a commitment of the larger
organization to support testing, through funding, empowerment of those
responsible, and provision of capable staff.

In order for the process to perform effective testing, i.e. testing the right
thing, requirements and specification should be taken as a starting point.
Furthermore, the order of testing the various components of the system
under test, the test strategy, should conform to the order of development.
For example, if the system is developed in a bottom-up fashion, testing
should also commence at the lowest level.

2.2 A Model Of Testability

Now that we have specified our focus, it is time to deal with the topic of this
thesis. We investigate how factors of the source code of an object-oriented
software system relate to its testability. More specifically, we investigate
how factors of a class of the system influence the effort needed to unit test
the class.

In this section we will introduce the source code factors that will be
subject to further investigation in later chapters. We distinguish between
two categories of source code factors: factors that influence the number of
test cases required to test the system, and factors that influence the effort
required to develop each individual test case. We will refer to the former
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category as test case generation factors, and to the latter category as test
case construction factors.

2.2.1 Test Case Generation Factors

The number of test cases that has to be created and executed is determined
by factors of the source code, on the one hand, and a testing criterion, on
the other. Furthermore, the testing criterion determines which source code
factors actually influence the number of required test cases. For example,
suppose that a project has chosen to create at least one test case for every
method. In that case, the total number of methods will clearly determine
the required number of test cases. Thus, whether or not a source code factor
is a test case generation factor depends on the testing criterion.

A source code factor that is often targeted by testing methodologies
is the control-flow of a program. In fact, one of the best known testing
methodologies, McCabe’s structured testing[27]1, generates test cases based
on a program’s control-flow. We will give a small example of McCabe’s
methodology in action. Consider the piece of Java code in Figure 2.1.

class Example {
int sign(int input) {

int result;
if(input > 0)

result = 1; // 2
else { // 1

if(input < 0)
result = -1; // 3

else
result = 0; // 4

}
return result;

}
}

Figure 2.1: The sign method.

The method sign calculates the sign of its input and yields 1, -1 or 0 if
the input is greater than zero, smaller than zero or exactly zero, respectively.
According to the structured testing criterion, we have to “Test a basis set of
paths through the control-flow graph of each module.” Thus, we need the
control-flow graph corresponding to sign, which is depicted in Figure 2.2.
The graph edges in Figure 2.2 have numerical labels that correspond to the

1The cited work is a later version of the original work, which was published in 1976.
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numbered code statements in Figure 2.1.

1

4
3 2

Figure 2.2: Control-flow graph of method sign.

A basis set of paths for this control-flow graph is given by:

{〈2〉, 〈1, 3〉, 〈1, 4〉}.

In order to comply with the structured testing criterion we will have to
create test cases that will cause the paths in the set to be executed. In
this simple example, finding suitable test cases is not hard; it is clear that a
positive number, a negative number and zero will suffice.

The number of paths in the basis set corresponds to the minimum num-
ber of test cases that has to be created to fulfill the structured testing
criterion. McCabe terms this number the ‘cyclomatic complexity number,’
where ‘cyclomatic’ originates from the graph theoretical ‘cyclomatic num-
ber’. Instead of by its full name, the cyclomatic complexity number has
become known as (the) ‘McCabe complexity’.

The example shows how both the testing criterion and the appropri-
ate source code factors determine the number of required test cases. The
structured testing criterion is almost directly stated in terms of source code
factors, which makes structured testing a distinct white-box approach. Con-
versely, the black-box approach to unit testing does not target source code
factors directly, by definition. However, there are still source code factors
that could determine the number of required test cases in a black-box set-
ting. One distinct example is given by work of Voas et. al. [26][23][24],
which regards the fault sensitivity of software components. Stated briefly,
fault sensitivity is the probability that a fault will be revealed by a ran-
domly selected test case, given that a fault is indeed present. Thus, a low
fault sensitivity indicates that many test cases will be required to uncover
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potential faults, and vice versa. The topic of fault sensitivity is explored
further in various sections of Chapter 3.

Now that we have discussed how the number of required test cases is
influenced by generation factors in general, we will look at two features that
are specific to object-oriented programming.

Inheritance

Inheritance is a mechanism which allows classes to share their methods and
fields. The set of methods and fields of a class is thus the union of the
methods and fields that the class inherits, and those defined by the class
itself. Depending on the object-oriented language, classes can also redefine
the methods they inherit.

The (unit) testing of a class will typically consist of testing its methods.
However, through the use of the inheritance mechanism, classes can contain
methods that are defined in other classes. Should these methods be tested in
the class that inherits them? Should they be tested in the class that defines
them? Should they be tested in both? Answers to these questions should
be provided by the testing criterion that the project uses.

It is easy to see that inheritance is a source code factor that can influence
the number of required test cases. For example, given that the project has
decided to test all – inherited and defined – methods of each class, clearly
the number of inherited methods of a class will influence the number of
required test cases.

Polymorphism

Polymorphism is a feature of object-oriented languages that allows objects
to belong to multiple classes. Consider two classes, A and B. Let’s say that
A is the superclass of B, thus B inherits from A. Now, objects of class B are
also objects of class A. In practice this means that objects of class B will be
able to fill the role of objects of class A.

The use of polymorphism has possible implications for the number of
required test cases. For example, suppose that the signature of method
integerAdd is specified in Figure 2.3.

input: Number, Number
action: Compute the integer addition of the Numbers
output: int

Figure 2.3: Signature of the integerAdd method.

In Java, the Number class has several subclasses, which all represent
different types of numbers. The method integerAdd claims to implement
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its operation for all of the subclasses of Number.2 As a result, a testing
criterion will have to tell the testers whether or not to create test cases for
objects of all the different subclasses, or what subset of subclasses would
be sufficient. Again, the actual testing criterion will determine how use of
polymorphism influences the number of required test cases.

Other types of polymorphism lead us beyond the scope of unit test-
ing. For example, consider a possible implementation of the integerAdd
method in Figure 2.4.

class Example {
int integerAdd(Number a, Number b) {

return(a.intValue() + b.intValue());
}

}

Figure 2.4: Possible implementation of the integerAdd method.

This implementation exploits the fact that all objects of class Number
(and thus also all objects of subclasses of Number) contain the intValue
method, which returns the value of that Number in integer form. However,
Number itself does not define an implementation of the intValue method;
all its subclasses provide an implementation that is suitable for the type of
number they represent.

The code in Figure 2.4 does not fix the implementation of the intValue
method that will be executed; it depends on the specific classes of the objects
a and b. In other words, it is clear that a method by the name intValue
will be called, however it is not yet known which exact method it will be.
McCabe et. al. [27] term this phenomenon ‘implicit control-flow’. Since the
target code of the implicit control-flow lies outside of the unit-under-test,
this use of polymorphism brings us outside of the scope of unit testing.

2.2.2 Test Case Construction Factors

If you know what needs to be tested according to your testing criterion, it
may seem that creating the required test cases is a trivial task. However, as
it turns out, the construction of test cases is at least as difficult a problem
as finding out what you need to test. For example, consider an alternate im-
plementation of the sign method and its corresponding control-flow graph
in Figure 2.5.

A basis set of paths for this control-flow graph is given by

{〈1〉, 〈2, 3〉, 〈2, 4, 5〉, 〈2, 4, 6〉}.

2Number itself is an abstract class.
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class Example {
int sign(int input) {

int result;
if(input == 0)

result = 0; // 1
else { // 2

if(input > 0)
result = 1; // 3

else { // 4
if(input < 0)

result = -1; // 5
else

result = 0; // 6
}

}
return result;

}
}

1

2

4
3

5
6

Figure 2.5: Alternate implementation of the sign method.

This set of paths poses a problem; there is no input for which the path
〈2, 4, 6〉 will be followed. We can see why this is the case by looking at the
code. Edge 2 will be followed if the input is not equal to 0, while edge 6 will
only be followed if the input is equal to 0.

Although the example may appear to be rather artificial, inconstructible
test cases are a very real problem. Selection of a testing criterion will have
to be done carefully in order to prevent the requirement of test cases that are
inconstructible. However, it may be possible to extract useful information
from the fact that a certain part of the code cannot be exercised by any
test case. In the example above, there is a clear presence of redundant code:
the second occurrence of the if(input == 0) statement. Indeed, it will
depend on the testing criterion whether or not inconstructible test cases
indicate true problems of the code.

Even if a test case is constructible in theory, there are source code factors
that influence the effort needed to construct it. The unit under test will need
to be initialized such that effective testing can be done. In our case, this
entails that the fields of (an object of) a class are set to the right values before
a test case can be executed. Furthermore, if the class under test depends on
other classes, because it used members of those classes, those will need to
be initialized. A class which deals with external interfaces (see Section 2.1)
will typically require the external components to be initialized as well. Due
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to our focus on source code factors, we will not consider the latter source of
initialization work. In Chapters 4 and 5 we investigate whether or not these
source code factors influence the testing effort.



Chapter 3

Related Work

Several approaches to testability assessment have been proposed in the liter-
ature. In this chapter we describe a number of them, and provide our view
in a discussion of each approach. The relation of these approaches to our
own work is provided at the conclusion of this chapter.

3.1 Fault Sensitivity

Voas et. al. define software testability as the probability that a piece of
software will fail on its next execution during testing, provided it contains
a fault [26]. In Section 1.2 we described how faults are related to the failure
of a program. It is important to realize that a fault will not always cause
a failure. The location of the fault, its nature and the program itself are
all factors that determine whether or not the fault will lead to a failure.
Additionally, the distribution of inputs presented to the program during
testing should be taken into account.

In their work, Voas et. al. aim at estimating the probability that a fault
at a program location will cause the program to fail during testing. They
assume that a black-box testing strategy is used and that the test inputs
are uniformly distributed. Furthermore, their analysis assumes that faults
are limited to a single location each, and that faults occur on their own.

Sensitivity analysis is a technique to estimate the fault sensitivity of a
program location. In order for a fault to be exposed during testing, the
location containing the fault must be executed, the fault must cause the
data state to become corrupted, and finally the corrupted data state needs
to propagate to the output. Sensitivity analysis calculates the probabilities
of the occurrence of these events separately. They are named the execu-
tion probability, the infection probability and the propagation probability,
respectively.

The product of these three probabilities yields the fault sensitivity of
the program location: the probability that a fault at that location will be
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exposed during testing. A program’s overall testability is defined as the
minimum sensitivity of all program locations.

Voas et. al. propose techniques for the implementation of the different
phases of their sensitivity analysis. First, the execution probability of a loca-
tion can be estimated by instrumenting the source code of the program with
a flag for every program location. Initially all the flags would be down, and
only if the corresponding location is executed during a program run would a
flag be raised. The instrumented program should be run a number of times,
taking input selected randomly from a certain distribution. Subsequently,
an estimate for the execution probability of a location is obtained by the
number of times the flag for the location was up divided by the number of
program runs.

Second, estimating the probability that a fault at a location will corrupt
the data state can be done using mutation analysis. The idea is to delib-
erately introduce different types of faults at a location, and executing the
location a number of times given randomly selected data states. Comparing
the data states that result from executing the faulty location to the correct
data state yields the number of times a fault has corrupted the data state.
Finally, dividing this number by the total number of executions gives an
estimate for the infection probability of a location.

Third, the propagation probability can be estimated using a combination
of data flow analysis and data state perturbation. Given a location, data
flow analysis is used to determine the set of ‘live’ variables. A variable is live
if its value potentially influences the output of the program. Now, the set of
live variables is perturbed, meaning that the value of one of the variables is
deliberately changed. Its resulting value is selected from a specified distri-
bution. The estimation process amounts to the following: first a data state
is selected at random, and the set of live variables is determined. One of the
live variables is chosen. For a number of times, the value of this variable is
perturbed, and the remainder of the program is executed. The remainder
of the program is also executed given the original data state, i.e. the one
that was not perturbed. Finally, the output that resulted from executing
the program with a perturbed data state is compared to the output of the
normal execution of the program. An estimate for the propagation proba-
bility is now obtained by dividing the number of times a different output
was encountered by the total number of executions.

The techniques we have described above are refined in further work by
Voas et. al., including [22]. A tool implementing these techniques has also
been developed [25].

Discussion

The sensitivity analysis technique was developed mainly for use with pro-
cedural programs. Object-oriented programs mainly consist of methods,
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which are procedural in nature. Sensitivity analysis could thus be used to
determine a method’s fault sensitivity, given that the three stages of the
analysis can be applied. The techniques described above all have their solu-
tions in the OO domain, which allows the sensitivity analysis technique to
be implemented for the OO paradigm.

3.2 Information Loss

A different approach to determining a program’s fault sensitivity is presented
by Voas and Miller in [23] and [24]. In contrast to the sensitivity analysis
presented in Section 3.1, this approach focuses on the analysis of semantic
information contained in program specification and design documents. The
link with testability is the same; a high fault sensitivity indicates a high
testability and vice versa.

Let us consider a program component that accepts an input, performs
some specified computation, and produces an output. An upper-bound on
this components fault sensitivity is given by the amount of information loss
occurring within the component. Information loss can appear in roughly two
guises: Explicit information loss occurs because the values of variables local
to the component may not be visible at the system level, and thus cannot be
inspected during testing. Implicit information loss is a consequence of the
domain/range ratio (DRR) of the component. The DRR of a component is
given by the ratio of the cardinality of the input to the cardinality of the
output. For example, consider the component in Figure 3.1.

input: an integer from the range 1...10
action: if input value is less than 6; return true

else; return false
output: true or false

Figure 3.1: Example of a component specification.

The DRR of this component is 10/2 = 5. Since this component does not
refer to additional (global) variables and does not cause any side-effects, a
DRR of 5 indicates that the execution of this component will result in loss
of information. Intuitively speaking, the amount of information that flows
into the component is larger than the amount of information that flows out.
Thus, if a fault would be present in the implementation of the component the
loss of information occurring because of the DRR might include information
that indicated the presence of a fault.
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Discussion

Consider again the component in Figure 3.1. Suppose that the component
has been implemented incorrectly. Instead of computing the predicate ‘less
than 6’ it computes the predicate ‘less than 5’. Assume that testing the
component consists of selecting a number of inputs at random, and compar-
ing the produced output values with the expected values. In this setting,
the component will not reveal its fault easily: of the ten possible test inputs,
only one (5) will cause failure and detect the fault.

Now suppose that the implementation suffers from another fault: the
predicate computed is ‘more than or equal to 6’. In this case, every possible
test input will reveal the presence of the fault. Clearly, the probability that
a fault will be detected during testing is not merely a consequence of the
DRR. The nature of the fault itself has a large influence. Therefore, to
expose the relation between the DRR and fault sensitivity we will need to
deal with the nature of faults.

The information loss viewpoint taken by Voas et. al., despite being
intuitive, does not allow us to reason about the nature of faults easily. In the
next subsection we will attempt to provide a remedy by taking a functional
viewpoint.

Domain/Range Ratio And Fault Sensitivity

Let’s first specify what we mean by faults. The specification of a component
details its allowed input, the action it will perform and its possible outputs.
In other words, the component is expected to implement a surjective function
that maps input values to the correct output values. Note that we expect
the component to implement the function, in reality it might not live up to
our expectation. The reason it might not behave as expected is the presence
of faults in the implementation. We will assume that faults do not lead to
some catastrophic failure, or non-halting behavior of the program. Instead,
faults lead to an input/output mapping that differs from the specified one;
a different function has been implemented. Consider the following definition
of faults:

Definition 1 A fault causes the implementation of a component to rep-
resent a function that maps at least one input value to an incorrect output
value. A fault is unique in the sense that each fault is associated with exactly
one function.

From the testing perspective, it is clear which faults are most easily
detected: those that cause the implementation to map each input value to a
wrong output value. This is exactly what happened in the second example.
We will refer to functions that have this property, i.e. mapping each input
to a wrong output value, as maximally fault-exposing functions.
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Suppose now that we wish to test an arbitrary component. This time
we do not know how the implementation is incorrect. We simply assume
that the implementation contains an arbitrary fault, and thus represents a
function that is different from the one required in the specification.

The number of alternate functions that the component could implement
is given by

F = mn − 1, (3.1)

with n the cardinality of the domain andm the cardinality of the range.1 We
are interested, though, in the number of maximally fault-exposing functions.
This number is given by

F ∗ = (m− 1)n. (3.2)

The ratio F ∗/F has been plotted in Figure 3.2.

10
20

30
40

50
60

70
80

90
100

m

10
20

30
40

50
60

70
80

90
n

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Plot of the function (m− 1)n/(mn − 1).

Note that the portion of the plot where m > n is not applicable for our
analysis, since we previously assumed that components implement surjec-
tive functions. The plot of F ∗/F shows that the relative number of max-
imally fault-exposing functions increases when m increases or n decreases.
The DRR (n/m) will thus indicate the relative number of maximally fault-
exposing functions for a specified component.

1We allow for functions that are not surjective.
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We now return to the topic of fault sensitivity. The implementation of
the component under test was assumed to suffer from an arbitrary fault. By
our previous finding, we can now say that a high DRR will indicate that
chances are relatively low that the implementation represents a maximally
fault-exposing function. Vice versa, a low DRR indicates that chances are
relatively high that a maximally fault-exposing function has been imple-
mented. Finally, the link between the DRR of a component and its fault
sensitivity becomes clear by observing that maximally fault-exposing func-
tions are highly fault sensitive: every possible input will reveal the fault!
Recall that fault sensitivity is indicative of a component’s testability, by
definition of Voas et. al. Thus, a high DRR indicates a highly testable
component, and vice versa.

3.3 Visibility

McGregor et. al. attempt to determine the testability of an object-oriented
system [15]. They introduce the “visibility component” measure (VC for
short), which can be regarded as an adapted version of the DRR measure
presented in Section 3.2. The VC has been designed to be sensitive to
object oriented features such as inheritance, encapsulation, collaboration
and exceptions. Furthermore, a major goal of the VC is the capability to
use it during the early phases of a development process. Calculation of the
VC will thus require accurate and complete specification documents.

The definition of the VC depends on the following terms:

Definition 2 (Explicit parameter) An object is an explicit parameter of
a method iff it is named in the method’s signature.

Definition 3 (Implicit parameter) An object is an implicit parameter of
a method iff it is ‘visible’ from within the method. The visible objects for
a method consist of the fields of the corresponding class and the accessible
fields of associated classes.

In most object oriented languages, access to the fields and methods of a class
can be restricted. For example, in Java a field declared as ‘private’ is only
accessible by methods within the same class, whereas a ‘public’ field would
be accessible by all.

Definition 4 (Constant object) An object is constant with respect to a
method iff it is not modified as a result of the execution of the method.

The VC metric is focused at class specifications, which typically lack infor-
mation needed to tell which objects are modified by a method. Therefore,
constant objects are those made constant syntactically, and are thus not
modifiable by any method.
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Definition 5 (Constant method) A method is constant iff its execution
does not cause any objects to be modified.

Again, whether or not a method can be identified as being constant depends
on the availability of sufficient information about the method’s behavior.

Using these definitions we can give a description of how a method is re-
lated to its environment. A method is declared in a certain class, which we
will refer to as the declaring class of the method. The method declaration
consists of a signature and a body. A method’s signature specifies its input
and output, while the method’s body provides the implementation of the
desired functionality. By definition 2, the objects named in the signature
make up the method’s explicit parameters. Explicit parameters can be di-
vided further into parameters that serve to supply the method with data,
parameters that are meant to hold the results of the method, the return
value of the method and exception objects thrown by the method. We will
refer to the first two types of explicit parameters as explicit input parameters
and explicit output parameters, respectively.

A method’s signature is not its only source of visible objects. The
use of data (objects) that are not local to a method is very common in
object-oriented programming. Definition 3 aggregates the non-local objects
a method could possibly access, and refers to them as the method’s implicit
parameters. Again, we have objects that provide the method with data, the
implicit input parameters, and objects that are modified by the method, the
implicit output parameters. With respect to the calculation of the metric,
the set of implicit input parameters would have to be considered equal to
the set of implicit output parameters, since it is impossible to tell which
objects will be modified given only program specifications. For an overview
of a method and its inputs and outputs, see Figure 3.3.

The definition of the VC of a (non-constant) method now follows:

VC =
number of inputs

number of outputs
, (3.3)

where the number of inputs is given by the sum of the number of implicit-
and explicit input parameters, and the number of outputs is given by the
sum of the number of implicit- and explicit output parameters, the number
of exceptions thrown and the number of returned values (either zero or one).
Constant objects are excluded from the count.

A method’s testability is given by the method’s VC multiplied by a factor
C, which is determined by the number of unique objects that are either
explicit input parameters, implicit input parameters, returned objects or
exceptions. McGregor et. al. argue that this is a reasonable choice, since the
factor C is a count of the objects that may have been modified incorrectly
by the method. The assumption is that a large number of (potentially)
incorrectly modified objects will allow the method to be easily tested, and
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Figure 3.3: Overview of the inputs and outputs of a method.

vice versa, a small number of incorrectly modified objects will cause the
method to be hard to test. Subsequently, the testability of a class is given
by the minimum testability of its methods, with constant methods being
left out of the calculation.

Discussion

By the assumption that a large number of possibly incorrectly modified
objects will allow a method to be easily tested, a large visible object space
is to be rewarded by the metric. However, the VC itself is not very sensitive
to a growing size of the visible object space; a growing object space will
cause the VC to approach 1 rather quickly, since both the explicit inputs
and explicit outputs will often be relatively few in number. The testability
metric is made more sensitive to the size of the visible object space through
the introduction of the factor C, which will typically be dominated by the
number of implicit input parameters.

Above we mentioned that the VC is sensitive to important features of
object-oriented systems. We will now discuss how the VC is influenced by
these features.

• Inheritance is a mechanism which allows classes to share their fields
and methods with each other. Participating classes are involved in
an inheritance relation. For each pair of classes that are part of the
relation, one, the child, inherits a subset2 of the fields and methods

2The content of the subset is a result of the inheritance rules a specific OO programming
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of the other, the parent. Of course the child class is also capable of
defining new fields and methods itself. As a result, a class with a large
number of parents and ancestors tends to have a large number of fields
and methods as well.

In terms of Figure 3.3, a class with a large number of parents and
ancestors tends to have large visible object space. As we observed
above, a large visible object space will result in a high value for the
testability metric. Thus, the testability metric will tend to reward
classes that have many parents and ancestors.

• Encapsulation is not a concept that originates from the object-oriented
paradigm. However, object-orientation capitalizes on the notion of
‘shielding’ data from modification by otherwise unrelated code. An
object is essentially a container for data and operations that are re-
lated specifically to the data. Most object-oriented languages support
encapsulation, by allowing the programmer to specify access restric-
tions on both the fields and methods of an object.

Encapsulation of data and operations limits the visibility of these data
and operations to other components of the system. As a result, the
visible object space of methods of the other components will be re-
duced. A smaller visible object space will yield smaller values for the
testability metric.

• Collaboration occurs when two (or more) objects work together to
implement some functionality. A typical construction consists of the
collaborating objects having fields that contain references to the other
objects. Through these references the objects can access the fields and
methods of the others. Note that the set of fields and methods that
can be accessed by others can be restricted by encapsulation.

Much like the effect of inheritance, collaboration expands the visi-
ble object space of the methods of each collaborating object. Thus,
compared to the situation without collaboration, these methods will
receive higher values for the testability metric.

• Exceptions are objects that are generated in exceptional (error) con-
ditions. Information about the exceptional condition that occurred is
contained in the exception, which facilitates its handling. In a sense,
exceptions are outputs of a method, but they are unlikely to be valid
output.

The number of exceptions a method can possibly generate are added
to a method’s outputs for the calculation of the VC metric. This
number is included in the factor C, as well. Therefore, the number of

language uses.
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exceptions will positively influence the value of the testability metric
for the method.

The behavior of the testability metric based on the VC appears to have
some undesirable properties. If one would aim at maximizing the metric
during development of a program, one would have to go against good pro-
gramming practice to reach that goal. For example, properly encapsulated
data will reduce the visible object space for other methods, which is consid-
ered to be a desirable property according to programming practice, but it
does reduce the testability metric. Furthermore, inheritance positively in-
fluences the testability metric, while programming practice advises to keep
inheritance hierarchies shallow. In their paper [15], McGregor et. al. also
remark that classes that have many parents or ancestors are possibly ‘com-
plex’ to test, yet the metric doesn’t seem to incorporate that idea.

The VC and its related testability metric are based on the definition
of testability in terms of information loss and fault sensitivity, which was
discussed in Section 3.2. In fact, the VC can be seen as an adaptation of the
DRR for object-oriented programs. There two problems with the definition
of the VC. First, the focus on the use of specification documents – instead
of source code – causes the VC to be rather insensitive to the number of
implicit parameters; since we cannot determine which implicit parameters
will actually be used by a method, the number of implicit input parameters
will be equal to the number of implicit output parameters. This problem
could be remedied by applying the metric to actual source code.

Second, the metric estimates the amount of information flowing into a
component by counting the number of input parameters. Arguably, this
estimation is bound to be very inaccurate; objects are very flexible, and
could represent structures ranging from a simple number to highly complex
composites.

3.4 Observability And Controllability

Freedman applies an approach common in hardware testing to software spec-
ifications [8]. Two notions are relevant to Freedman’s so-called ‘domain
testability’. First, the notion of ‘observability’ intuitively captures the de-
gree to which a component can be observed to generate the correct output
for a given input. A component is not observable if so-called ‘input inconsis-
tencies’ can occur. An input inconsistency is present if a component yields
distinct outputs for equal inputs. For example, the piece of Java code in
Figure 3.4 contains a method that is not observable.

The method is not observable because calling notObservable(1) two
times in a row will yield the values 1 and 2. Note that we are not concerned
here with the expected behavior of the method! The example shows a pos-
sible source of input inconsistencies: the method relies on the state of its
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class Example {
int field = 0;

int notObservable(int input) {
field = field + input;
return field;

}
}

Figure 3.4: Example of a non-observable method.

environment. In other words, the method is not strictly a function of its
input, but instead it is a function of the union of its input and the state of
its current environment. The example in Figure 3.5 shows the same method
adapted in such a way that is has become observable.

class Example {
int field = 0;

int observable(int input, int added) {
return added + input;

}
}

Figure 3.5: Example of an observable method

Now the method is no longer reliant on the state of its environment,
and it has become observable. To use an analog of hardware testing: we
have added a pin. The parameter added takes over the role of field in
the method. Having observable components during testing is desirable since
observability will guarantee that the component is reliant on its input values
only.

Second, the notion of ‘controllability’ relates to the possibility of a com-
ponent generating all values of its specified output domain. If no input value
exists that causes the component to generate a certain value of the output
domain then an ‘output inconsistency’ is present, and the component is not
controllable. For an example, look at the method in Figure 3.6.

Depending on the value of input is, the method will return either 1 or 0.
Thus, the remaining integer values cannot be generated at all. Adapting the
method such that it becomes controllable yet retains its functionality, entails
limiting its specified output domain to the values the method is capable of
generating. In the case of our example, the output domain should clearly
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class Example {
int notControllable(int input) {

if(input > 0)
return 1;

else
return 0;

}
}

Figure 3.6: Example of a non-controllable method

be changed to the boolean type. Figure 3.7 shows a controllable version of
the method.

class Example {
boolean controllable(int input) {

if(input > 0)
return true;

else
return false;

}
}

Figure 3.7: Example of a controllable method

Adapting (the specification of) a component such that it becomes ob-
servable and controllable can be done by introducing extensions. Observable
extensions add inputs to account for previously implicit states in the com-
ponent. Controllable extensions modify the output domain such that all
specified output values can be generated. Freedman proposes to measure
the number of bits required to implement observable and controllable ex-
tensions to obtain an index of observability and controllability.

Discussion

Freedman originally applied his notions of observability and controllability to
programs specified and developed using the procedural paradigm. Our focus
here is the object-oriented paradigm, and it seems that the applicability
of these notions is debatable. Object-oriented programming makes heavy
use of (global) state. Objects typically contain data fields and methods are
written to access and modify these fields, like in the non-observable example
above. An input inconsistency occurred there because of field not being
considered as part of the input of the method. However, from the object-
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oriented viewpoint, it would seem to be more natural if the fields of an object
are considered to be part of a method’s input. Without its containing object,
a (non-static) method would not even exist; they are bound together. See
Section 3.3 for an approach that does take (global) state into account.

Controllability poses another problem. Consider a method that is spec-
ified to return an object of some type. What is the domain of the object
type? The answer is not clear-cut, and the next question seems to be: when
are two objects different? Typically the programmer is allowed to (re-)define
the equality relation of objects. As a result, defining object equality becomes
a concern during the specification of the component.

As stated before, the notions of observability and controllability have
their origin in the hardware testing industry. There, these notions help
to specify components that implement well-behaved, surjective functions.
Components of this nature are more easily tested because of the absence of
input and output inconsistencies. However, the application of these notions
to object-oriented programming is not very natural.

3.5 Test-critical Dependencies

Jungmayr’s approach is aimed at finding the dependencies between program
components that have a large influence on the program’s testability [14]. He
defines testability as the effort required to test a component. Dependencies
between components require dependee components to be considered during
testing of the dependent components, thus increasing effort needed for test-
ing. Removing dependencies between components can therefore improve the
testability of a system. Identifying those local dependencies that have a large
influence on global testability is worthwhile, since removing dependencies by
refactoring is expensive.

A dependency between components (classes) A and B exists if and only
if:

• A uses a method or field of B,

• A has a field of type B, or

• A inherits from B.

The components of a system together with the dependency relation can
be represented as a directed graph. An edge in such a graph represents one
(dependent, dependee) pair from the dependency relation. A dependency
graph can contain cycles, which are likely to have a large influence on global
testability. During the testing of each component in the cycle it is necessary
to consider all other components in the cycle. The dependencies that break
dependency cycles when they are removed are elements of a feedback de-
pendency set. Jungmayr hypothesizes that feedback dependencies are good
candidates of test-critical dependencies.



32 Related Work

In order to identify test-critical dependencies, four system level metrics
are defined. These are:

• Average Component Dependency (ACD)

ACD =
1

n
×

n
∑

i=1

CDi,

where n is the total number of components and CDi the number of
components that component i depends on. Note that both direct
and indirect dependencies are included in the count. For example,
suppose that component A depends on component B, and component
B depends on component C. Now, A is directly dependent on B and
indirectly dependent on C. In the absence of other dependencies, the
CD of A would be 2.

• Number of Feedback Dependencies (NFD)

NFD = |Dfb|,

where Dfb is a feedback dependency set for the dependency cycles,
and Dfb ⊆ D, the set of all dependencies.

• Number of Stubs needed to Break Cycles (NSBC)

NSBC = |Cfb|,

where Cfb is a feedback component set, i.e. the set of components that
are either the source or target of a feedback dependency, and Cfb ⊆ C,
the set of all components.

• Number of Components within Dependency Cycles (NCDC)

NCDC = |Cic|,

where Cic is the set of components that are involved in a dependency
cycle.

For every identified dependency, above metrics are computed for the
system. Then, for every dependency the metrics are recalculated for the
system with that particular dependency removed. The relative reduction
of the metrics when a particular dependency has been removed is the final
indication used to identify the test-critical dependencies.

Based on several case studies, Jungmayr concludes that a small number
of dependencies have a large influence on his set of testability metrics. Also,
the removal of feedback dependencies leads to a reduction of the metrics
that is above average.
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Discussion

Jungmayr’s approach is based on the assumption that dependencies between
components will increase the effort needed for testing. His work does not
verify whether or not there is a relationship between component dependen-
cies and testing effort. In our work we try to find our which source code
factors are related to the testing effort. The notion of component depen-
dency, albeit in a slightly different form, is included in our initial model of
testability (see Chapter 2) and the FOUT and RFC metrics (Chapter 4).

3.6 Conclusion

In this section we will discuss the relation of the work presented in this
chapter to our approach, which we described in Chapter 2. We will show
how the various source code factors presented in this chapter can be regarded
as test case generation factors or test case construction factors.

First, let’s consider fault sensitivity (Section 3.1), and derived factors
like visibility (Section 3.3) and the DRR (Section 3.2). The fault sensitivity
of a component is defined as the probability that the component will reveal
a fault during testing, given that a fault is indeed present. The testing of
a component consists of running a constant number of test cases, which are
selected at random from a uniform distribution. Thus, given that we know
the fault sensitivity of a component, we know the probability of finding a
fault for the constant number of test cases. If we would require to find faults
with a higher probability, the number of test cases should be increased; vice
versa, if we would be content with a lower probability, the number of test
cases could be decreased. In this sense, the fault sensitivity of a component
is a test case generation factor. Since both the DRR and the visibility
component measures aim at estimating the fault sensitivity of a component,
they belong in the category of test case generation factors as well.

Second, observability (Section 3.4) of a component indicates whether or
not the component suffers from input inconsistencies (i.e. the component
yields different outputs for equals inputs). Testing a component in the pres-
ence of input inconsistencies is not an effective practice, thus it is necessary
to compensate such that the component becomes observable. Freedman
proposes to adapt the component by introducing observable extensions; a
different approach would be to properly initialize the (global) state before
testing. Either solution requires additional effort from the tester’s part,
hence observability belongs in the test case construction category.

Third, controllability (Section 3.4) is related to the inconstructible test
cases of Subsection 2.2.2. A component is controllable if and only if all of its
specified output values can be generated. Conversely, a component is not
controllable if and only if at least one of its specified output values cannot
be generated for all of its input values. Thus, it might not be possible to
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create a test case for a certain output value of a non-controllable component.
Consequently, if we would use the specification of a component to generate
test cases, controllability would be a test case construction factor.

Finally, we consider the dependency relation of Jungmayr, which was
defined in Section 3.5. Class A depends on class B if either A inherits
from B or A accesses a member, i.e. a method or field, of B. We have
argued in Section 2.2.1 that inheritance is a generation factor. Regarding
the second part of the definition, in Section 2.2.2 we argued that use of
members of other classes is a test case construction factor. Consequently,
we put Jungmayr’s dependency relation in both the test case construction
and test case generation categories.



Chapter 4

Metrics

The evaluation of metrics is the core topic of this thesis. In this chapter we
define our set of metrics, and set up the experiments to evaluate them. A
description of the methods used for the experiments concludes the chapter.

4.1 Source-based Metrics

In this section we describe the metrics we have selected for our experiments.
To give each metric a concise and unambiguous definition, we use (a subset
of) the notation introduced by Briand et. al. in [5]. For ease of reference,
we first provide the relevant notation.

4.1.1 Notation

Definition 6 (Classes) An object-oriented system has of a set of classes,
C. For every class c ∈ C we have the following:

• Parents(c) ⊂ C, the set of classes from which c inherits directly.

• Children(c) ⊂ C, the set of classes that inherit directly from c.

• Ancestors(c) ⊂ C, the set of classes from which c inherits either di-
rectly or indirectly.

From the definitions it follows that Parents(c) ⊆ Ancestors(c) ⊂ C.

Definition 7 (Methods) Let c ∈ C, then we have:

• MIn(c), the set of methods that c inherits.

• MD(c), the set of methods that c newly declares, i.e. m ∈ MD(c) iff
m is declared in c and m /∈MIn.

• MIm(c), the set of methods that c implements, i.e. c defines a body for
m. Clearly, for each m ∈MIm(c) either m ∈MIn or m ∈MD.
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• M(c) = MD(c) ∪MIn(c), the set of methods of c.

• M(C) = ∪c ∈ CM(c), the set of all methods.

Definition 8 (Method Invocations) Let c ∈ C, m ∈ MIm(c) and m′ ∈
M(C), then we have:

• MI(m), the set of methods invoked by m. m′ ∈MI(m) iff the body of
m contains an invocation of method m′.

Definition 9 (Fields) Let c ∈ C, then we have:

• FIn(c), the set of fields that c inherits.

• FD(c), the set of fields that c newly declares, i.e. f ∈ FD(c) iff f is
declared in c and f /∈ FIn.

• F (c) = FIn ∪ FD, the set of fields of c.

• F (C) = ∪c ∈ C F (c), the set of all fields.

Definition 10 (Field References) Let m ∈ MIm(c) for some c ∈ C and
f ∈ F (C), then we have:

• f ∈ FR(m) iff the body of m contains a reference to f .

We now introduce the metrics that we evaluate in our experiments. A
similar set of metrics has been proposed by Binder to measure structural
testability factors of the source code [3]. However, Binder did not provide an
operational definition of the metrics. In the following subsections we define
each metric operationally.

Binder distinguishes two structural factors that influence the testability.
First, complexity factors, which influence the ‘complexity’ of the develop-
ment of test cases. Second, scope factors, which influence the amount of
test cases that need to be developed. Binder’s complexity and scope factors
are similar to our test case construction and test case generation factors,
respectively. The major reason for our selection of these metrics is the close
match between our model and Binder’s. Compared to several other metrics
presented in the literature (see Chapter 2), our metrics have the additional
advantage of being easier to implement and understand.

Many of the metrics that Binder proposes originate from an object-
oriented metrics suite by Chidamber and Kemerer [7]. Chidamber and Ke-
merer also suggest that some of their metrics have a bearing on the testing
effort; in particular, their Coupling Between Objects (CBO) and Response
For Class (RFC) metrics. Other metrics from Chidamber and Kemerer’s
suite that are included in our set are Depth Of Inheritance Tree (DIT),
Number Of Children (NOC), Weighted Methods Per Class (WMC) and
Lack Of Cohesion Of Methods (LCOM).

For the following subsections, let c ∈ C where C is the set of classes for
some object-oriented system.
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4.1.2 Depth Of Inheritance Tree (DIT)

DIT(c) = |Ancestors(c)|

The definition of DIT relies on the assumption that we deal with object-
oriented programming languages that allow each class to have at most one
parent class; only then will the number of ancestors of c correspond to the
depth of c in the inheritance tree. Our subject language – Java – complies
to this requirement, however C++ does not.

4.1.3 Fan Out (FOUT)

FOUT(c) = |{d ∈ C − {c} : uses(c, d)}|

where uses(c, d) is a predicate that is defined by:

uses(c, d) ↔ (∃m ∈MIm(c) : ∃m′ ∈MIm(d) : m′ ∈MI(m)) ∨
(∃m ∈MIm(c) : ∃a ∈ F (d) : a ∈ FR(m))

In words, uses(c, d) holds if and only if a method of c either calls a method
of d, or a method of c references a field of d.

The FOUT metric we use is an adaptation of Chidamber and Kemerer’s
CBO metric. In a sense, FOUT is a one-way version of CBO; it only counts
the number of classes that c uses, not the classes it is used by. The definition
of CBO follows from the definition of FOUT if uses(c, d) is replaced by
uses(c, d) ∨ uses(d, c).

4.1.4 Lack Of Cohesion Of Methods (LCOM)

LCOM(c) =

(

1
a

∑

f∈FD(c) µ(f)
)

− n

1− n

where a = |FD(c)|, n = |MIm(c)| and µ(g) = |{m ∈MIm(c) : g ∈ FR(m)}|,
the number of implemented methods of class c that reference field g.

This definition of LCOM is proposed by Henderson-Sellers in [10]. It is
easier to both compute and interpret compared to Chidamber and Kemerer’s
definition of the metric. The metric yields 0, indicating perfect cohesion, if
all the fields of c are accessed by all the methods of c. Conversely, complete
lack of cohesion is indicated by a value of 1, which occurs if each field of c is
accessed by exactly 1 method of c. It is assumed that each field is accessed
by at least one method, furthermore, classes with one method or no fields
pose a problem; it is assumed that they do not occur.
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4.1.5 Lines Of Code Per Class (LOCC)

LOCC(c) =
∑

m ∈ MIm(c)

LOC(m)

where LOC(m) is the number of lines of code of method m, ignoring both
blank lines and lines containing only comments.

4.1.6 Number Of Children (NOC)

NOC(c) = |Children(c)|

4.1.7 Number Of Fields (NOF)

NOF(c) = |FD(c)|

4.1.8 Number Of Methods (NOM)

NOM(c) = |MD(c)|

4.1.9 Response For Class (RFC)

RFC(c) = |M(c) ∪m∈M(c) MI(m)|

The RFC of c is a count of the number of methods of c and the number of
methods of other classes that are potentially invoked by the methods of c.

4.1.10 Weighted Methods Per Class (WMC)

WMC(c) =
∑

m ∈ MIm(c)

VG(m)

where VG(m) is McCabe’s cyclomatic complexity number[27] for method m.

4.2 Setting Up The Experiments

Now that we have defined a set of metrics, it is time to set up experiments
to evaluate them. Empirical study within the field of software engineering
is relatively rare. As a result, no unified approach for such experiments
has been adopted yet. We use the GQM/MEDEA1 framework proposed by
Basili et. al. in [6]. First, we state the goal of our experiments:

1Goal Question Metric / MEtric DEfinition Approach
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Goal: To assess the capability of the proposed source-based metrics to
predict the testing effort.

Next, we describe our perspective on the goal, and relevant factors of the
environment, the context of the experiments.

Perspective: We evaluate the source-based metrics at the class level, and
limit the testing effort to the unit testing of classes. Thus, we are
assessing whether or not the values of the source-based metrics can
predict the required amount of effort needed for unit testing a class.

Environment: The experiments are targeted at Java systems, which are
unit tested at the class level using the JUnit testing framework. Fur-
ther relevant factors of the study systems will be described in Chapter
5.

To help us translate the goal into measurements, we pose questions that
pertain to the goal:

Question 1: Are the values of the source-based metrics for a class associ-
ated with the required testing effort for that class?

Answering this question directly relates to reaching the goal of the exper-
iments. However, to answer it, we must first quantify ‘testing effort’. To
indicate the testing effort required for a class we use the size of the corre-
sponding test suite.

The (projected) size of software has been used as an indicator for many
attributes, including defect ratios, cost, maintenance effort, development
effort and development time. Well-known cost models such as Boehm’s
COCOMO[4] and Putnam’s SLIM model[18] relate development cost and
effort to software size. Test suites are software in their own right; they have
to be developed and maintained just like ‘normal’ software.

Now we refine our original question, and obtain the following new ques-
tion:

Question 2: Are the values of the source-based metrics for a class associ-
ated with the size of corresponding the test suite?

Subsequently, we must decide on how to quantify the size of a test suite. For
our experiments we use the dLOCC (Lines Of Code for Class) and dNOTC
(Number of Test Cases) metrics to indicate the size of a test suite. The ‘d’
prepended to the names of these metrics denotes that they are the dependent
variables of our experiment. The dLOCC metric is defined like the LOCC
metric. The dLOCC metric is applicable because typical use of JUnit would
be to test a class using a single test class. The dNOTC metric provides a
different perspective on the size of a test suite, and will be defined in Section
4.3.

Having quantified test suite size, we arrive at the final question:
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Figure 4.1: Methods overview.

Question 3: Are the values of the source-based metrics for a class associ-
ated with the dLOCC and dNOTC metrics of the corresponding test
suite?

From Question 3 we derive the hypotheses that our experiments will test:

H0(m,n): There is no association between source-based metric m and test
suite metric n,

H1(m,n): There is an association between source-based metric m and test
suite metric n,

where m ranges over our set of source-based metrics, and n is either the
dLOCC or dNOTC of associated test suites. In the next section we will
show how we evaluate these hypotheses.

4.3 Methods

Figure 4.1 gives an overview of the methods used for the experiments. The
approach we have taken is based on the process of reverse engineering, which
is defined in [16]. We will discuss each of the steps depicted in Figure 4.1
involved, and the tools that we used to support them.

1. Facts about the subject system are gathered from system artifacts
during the extraction phase. An artifact is an entity that is either
part of the system or closely related to the system. Example artifacts
are the system’s source code or documentation, but also developers or
business procedures. The extracted facts are subsequently stored in
a repository. A repository may consist of a database, a collection of
plain files or other storage mechanisms.

2. Next, the facts contained in the repository are used during the ab-
straction phase, to derive additional (meta-)facts about the system
and store them in the repository.



4.3 Methods 41

3. Finally, during the presentation phase a subset of the (meta-)facts
contained in the repository is selected and presented to the client of
the reverse engineering process.

Although the goal of our experiments is not the analysis of a certain
system – but the evaluation of metrics – our approach is largely the same.
The extraction phase consists of the calculation of the value of each metric
for every class of the subject system, and the storage of these values in a
repository. The Eclipse tool platform [17] is used to calculate the source-
based metrics. An existing plug-in for Eclipse, the “Eclipse metrics plug-in
(version 1.08)” by Frank Sauer2, was extended to calculate our set of metrics
for a given system, and store the results in a relational database3.

The systems that are subject to our case studies (see Chapter 5) both
are unit tested at the class level using the JUnit testing framework4. The
JUnit framework allows the user to create (and run) classes that are capable
of unit testing a part of the system. A typical practice would be to create
a test class for every class of the system. In the case of our study systems,
there is approximately one test class responsible for the unit testing of each
class. The sizes of the test classes, i.e. their dLOCC and dNOTC values, are
determined using the same tool that we used to measure the system classes.

The dNOTC metric is calculated by counting the number of invocations
of JUnit ‘assert’ methods that occur in the code of a test class. JUnit pro-
vides the tester with a number of different ‘assert’ methods, for example
‘assertTrue’, ‘assertFalse’ or ‘assertEqual’. The operation of these methods
is the same: the parameters passed to the method are tested for compli-
ance to some condition, depending on the specific variant. For example,
‘assertTrue’ tests whether or not its parameter evaluates to ‘true’. If the
parameters do not satisfy the condition, the framework generates an excep-
tion that indicates a test has failed. Thus, the tester uses the set of JUnit
‘assert’ methods to compare the expected behavior of the class-under-test
to its current behavior. As a result, by counting the number of invocations
of ‘assert’ methods, we count the number of comparisons of expected and
current behavior. We consider the latter to be an appropriate definition of
a test case.

To summarize the extraction phase; both system classes and test classes
are measured using an Eclipse plug-in, which stores the resulting values in
a relational database.

Next, during the abstraction phase we calculate Spearman’s rank-order
correlation coefficient, rs, for each source-based metric of the system classes
and both the dLOCC and dNOTC metrics of the corresponding test classes.
Spearman’s rank-order correlation coefficient (rs hereafter) is a measure of

2Information available at http://sourceforge.net/projects/metrics
3MySQL, information available at http://www.mysql.com.
4Information available at http://www.junit.org.
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association between two variables that are measured in at least an ordinal
scale [19]. The measurements are ranked according to both variables. Sub-
sequently, the measure of association is derived from the level of agreement
of the two rankings on the rank of each measurement. The value of rs can
range from -1, indicating perfect negative correlation, to 1, indicating perfect
positive correlation. An rs value of 0 indicates no correlation.

The rs is a non-parametric statistic, which allows its application even if
the distribution of the data is not known. This fact is the main motivation
for our use of rs, since we indeed lack knowledge about the distribution of
the metric values. As a side note, recent work by Wheeldon and Counsell
shows that several measures of object-oriented systems, including coupling
and method or field counts, induce power law distributions [28]. A power
law distribution implies that small values are extremely common, while very
large values are extremely rare. Possibly, different statistics could be appli-
cable to our experiments since some of our metrics are similar to those of
Wheeldon and Counsell.

In order to test the hypotheses based on the observed value of rs, we
estimate the significance of the observed value of rs by first calculating the
t statistic. The t statistic is defined as follows:

t = rs

√

N − 2

1− rs2

where N is the number of measurements, i.e. the number of class – test class
pairs. The statistical significance of the value of t indicates the probability
that the observed value of rs is a chance event. If the value of rs(m,n) is a
chance event, we would be in error if we would use it to reject H0(m,n), and
accept the converse H1(m,n)). Thus, the statistical significance of the value
of t will allow us to reject H0(m,n) ,and accept H1(m,n), with a certain
level of confidence.

To calculate rs, we need to find the corresponding test class for every
system class. The JUnit documentation suggests that test classes should be
named after the class they test, by appending “Test” to the class’ name.
Since this convention is used in both our study systems, we are able to
associate a class and its test class in an automated way.

Both rs and t are calculated for each source-based metric m and the
dLOCC and dNOTC metrics of the test suite. First, the values for all classes
for source-based metric m are fetched from the repository. Subsequently,
each value for a class is paired with both the dLOCC and dNOTC values of
the corresponding test class. The resulting pairs are then used to calculate
rs. Finally, t is derived from the value of rs and the number of pairs involved,
and the statistical significance (p) of t is obtained from a standard table
[19]. This process is repeated for all the source-based metrics in our set, and
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finally the results are presented in a table (see Chapter 5).5

4.4 Implementation

To support our experiments, we implemented a tool to calculate the metrics
described in this chapter. The tool is based on the “Eclipse metrics plug-
in (version 1.08)” by Frank Sauer, and hence is built on the technology
provided by the Eclipse tool platform [17]. Functionality to calculate many
of our metrics was already present in that version of the plug-in. We added
support for the FOUT, RFC and dNOTC metrics, and adapted the existing
implementations of the field and method counts to better reflect our NOF
and NOM metrics. The Eclipse platform extension mechanism allowed us
to quickly integrate the new metrics in the plug-in. Furthermore, the Java
tools provided by Eclipse could be used well for the implementation of the
metrics.

Secondly, we extended the export mechanism of the plug-in with the
possibility to store the measurement results in a MySQL database. The
original plug-in offered exporting of the results to an XML file, but this did
not suffice for our purpose. The size of our case studies resulted in XML files
that were very large and hard to process. The use of a relational database
made it possible to efficiently store and access the data.

Finally, the original plug-in operates in an interactive modus. The user
can view the metric values in a window while browsing a Java project in
the Eclipse user-interface. For our purpose operation in a batch modus is
more appropriate. We wanted to be able to calculate the metrics for all the
classes of some Java system, without being required to do any browsing using
the user-interface. The Eclipse platform allows plug-ins to run without the
user-interface attached, effectively handing control to the plug-in itself. We
implemented the necessary classes to run the plug-in in such a ‘head-less’
state, and allowing it to be invoked from the command line.

The calculation process itself is straightforward. Assuming the plug-in
has been invoked from the command line, i.e. it is operating in batch modus,
the following steps occur:

• The hierarchy of Java elements, i.e. methods, types, classes and pack-
ages, is traversed.

• For each Java element:

– The appropriate metrics are calculated for the category of the
Java element.

– The metric values are stored in a data structure in memory.

5Thanks to Adam Booij for his help with the calculation of the statistics, and his help
with statistics in general.
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• The stored metric values are exported to the database.

The set of appropriate metrics for a Java element is determined by the con-
figuration of the plug-in. Each metric is associated with a variable indicating
the category of Java elements for which it is appropriate. For example, all
of the metrics defined in this chapter are appropriate at the class level.

The interactive modus is simpler in operation. When the user selects a
Java element in the Eclipse environment, all appropriate metrics are calcu-
lated and their values are displayed in a window. There is no export phase
occurring in the interactive modus, unless the user requests it. However, we
have not implemented the database export functionality for the interactive
modus.

The calculation of our metrics uses the Eclipse Java parser to obtain
an abstract syntax tree (AST) representation of the Java element. Subseq-
uently, the AST is used to calculate the actual metric value. Many of our
metrics traverse the AST using visitors, which originate from the visitor
design pattern, defined by [9]. The support of the Eclipse platform for this
kind of traversal allowed us to implement the new metrics with little effort.

We have implemented the tool mainly to support our experiments, and
consider it to be in a prototypical phase. Only two weeks were spent on
development of the tool. There are two main problems present in the current
implementation:

• Memory usage is rather excessive. For example, the calculation of the
complete set of metrics for the DocGen program (see Section 5.1) re-
quires about 300 megabytes of memory. We are aware of two main
causes for this problem. First, the Eclipse platform loads many un-
needed components, even when the plug-in operates in batch modus
and does not use the user interface. Second, the database access
mechanism is sub-optimal. We have reused this functionality from
the DocGen program itself, which in turn uses Apple’s WebObjects
object-relational mapping. Our current solution requires that many
objects need to exist in memory at the same time.

• The reuse of DocGen’s database access functionality also present us
with another limitation. Because of licensing issues, the plug-in cannot
be distributed in the public domain.



Chapter 5

Case Studies

In this chapter we describe the two software systems that were used for our
experiments. The first is DocGen, a source code documentation tool in de-
velopment at the Software Improvement Group. The second is Apache Ant,
an automation tool for software development. Both systems are suitable can-
didates for study for a number of reasons. First, because of an internship
at the Software Improvement Group, the DocGen source code was readily
available to us. Apache Ant is an open source project, and hence we were
also able to obtain its source code easily. Second, both systems are unit
tested at the class level, which is the perspective we assume in this thesis.
Third, both systems use the JUnit testing framework to implement their test
suites. Finally, DocGen and Ant are both large Java systems, containing
138 and 111 test classes, respectively.

The results of the experiments are presented and discussed at the end of
the chapter. The intermediate results of the measurements are included in
Appendix A.

5.1 DocGen

DocGen is a documentation generator, developed by the Software Improve-
ment Group (SIG)1. It processes source code of other programs, and gener-
ates technical documentation based on facts that are contained in the source
code. The documentation consists of graphical representations of control-
flow and data-flow dependencies, metrics, relevant pieces of source code,
and other kinds of information. All the different kinds of the documenta-
tion are integrated into a web site, which allows the user to navigate the
documentation by following hyperlinks. This section is based on a number of
interviews done with the developers of DocGen. The interviews also served
to obtain an intuitive notion of test difficulties as they occur in practice.
During the discussion of the results, we will see that some of our metrics

1Information available at http://www.software-improvers.com.
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are able to identify at least one of the classes that was mentioned as being
badly testable. For further details on these interviews, see Appendix B.

DocGen is an instance of the reverse engineering concept, which we de-
scribed in Section 4.3. The program first reads the source code, and extracts
facts from it. For example, it records function call relationships between
modules. The facts are stored in a repository. Subsequently, additional
facts are inferred from the facts already in the repository. For example,
some modules may not be called by any other module; a possible case of un-
reachable code. Based on the configuration of DocGen, derived facts such
as unreachable code may be included in the documentation. Finally, the
program generates a web site representing the entire documentation of the
source code. The ideas and technologies that are the foundation of DocGen
are described by van Deursen and Kuipers in [20].

The DocGen program is moderately large; its Java source code is about
3 megabytes in size, and contains roughly 90,000 lines of code. There are
66 packages, which contain 640 classes in total. Of these 640 classes, 138
classes have an associated test class. These are the classes that will be used
for our experiment. DocGen is still in development, thus it evolves quickly.
Furthermore, many different customized versions are both developed and
maintained. Our experiment is based on the demonstration version of Doc-
Gen, dated May 19, 2003.

In addition to a description of the software itself, we provide informa-
tion about the process that supports the development and maintenance of
DocGen. The development of DocGen is based on Kent Beck’s eXtreme
Programming methodology [1]. We highlight some of the practices in use at
the SIG. Refer to Appendix B for further details.

Testing Unit tests are continuously developed by the programmers them-
selves, if possible in a test-first fashion. Test-first development entails
the creation of tests prior to the development of the actual code. Ad-
ditionally, customers provide test cases of their own, which test the
acceptance level of DocGen (see Section 1.2).

Refactoring The software is restructured to obtain higher quality code,
while the behavior of the software is kept intact.

Pair programming Programmers working on production code work in
pairs, on a single machine.

Collective ownership Each team member can access and modify any
piece of code in the system.

Continuous integration The entire system is built and tested periodi-
cally. Every night, all the customized versions of DocGen are built
and their suites of unit tests are run.
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Coding standards The development of code is governed by simple rules
on formatting, variable naming and structure. For example, a method
should not have more than 12 statements, and should have at most
one return statement.

As implied by the above practices, the testing of DocGen is not a separate
process; it is an integral part of the development process. However, two
issues are relevant to any kind of testing process. First, what testing criterion
is used by the process, i.e. what needs to be tested before testing is complete?
At the SIG, every method should be ‘tested’. The test cases are created in
an ad-hoc fashion, i.e. the programmer selects a test case based on personal
preference. Commonly, bug reports are also converted into test cases that
should capture the bug2. The level of compliance to the testing criterion
– the code coverage – is not subject to measurement. Second, what kind
of tool support is available to the testing process? Test suites for DocGen
use the JUnit testing framework3. Additionally, these test suites are run
automatically by means of a nightly build system.

5.2 Apache Ant

Ant is a build tool, and is being developed as a subproject of the Apache
web server4. A build tool is used to automate many tasks related to the
source code of a program, like compilation, execution and packaging. Many
other tools exist that solve the same problem, including well-known Unix
tools like Make. Ant aims at being portable, i.e. capable of running on
multiple platforms, and at being easily extensible through the use of Java.

Ant’s source code is large; about 6 megabytes, which contain roughly
170,000 lines of Java code. There are 887 classes contained in 87 packages.
Again, our experiment uses the classes that have an associated test class;
there are 111 such classes. The Ant source code is kept in a public CVS
repository, which can be read by anyone. For our experiment we use source
code from the 1.5.3 branch, dated April 16, 2003.

Since Ant is a subproject of the Apache Software Foundation5, its devel-
opment process is a derivative of the Apache project. In turn, the Apache
project is a derivative of the popular open source model. Typically, an open
source project consists of a number of contributors from around the world,
who communicate and work together via the Internet. The open source
model is not a full-fledged development methodology. Its main concerns are
project management and adherence to a number of beliefs, including the
free availability of source code. As such, there are few rules governing the

2‘Bug’ has approximately the same meaning as ‘fault’.
3Information available at http://www.junit.org.
4Information available at http://ant.apache.org
5Information available at http://www.apache.org
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actual development of Ant, save for a number of guidelines regarding the
formatting of the code.

The testing process at the Ant project is similar to the testing process
at the SIG. The programmers develop JUnit test cases during development,
and run these tests nightly. Additionally, the functional correctness of the
entire system is verified every night by running Ant in a typical production
environment. There is no explicit testing criterion; test cases are created
based on the preference of the programmers. Consequently, no measurement
of the level of compliance to the testing criterion is done. Bug reports are
again used as a source of test cases.

However, there is one major difference between the testing of Ant and
the testing of DocGen. The developers of Ant did not start using the cur-
rent testing procedure until late in the development process. 6 The DocGen
development team applied their testing approach from the start of the de-
velopment of DocGen. Hence, the classes of DocGen have been subject to
a more homogeneous, while still ad-hoc, testing effort.

5.3 Results

In this section we present the results of the experiments described in Chapter
4. Tables 5.1 and 5.2 hold the results for DocGen and Ant, respectively.
Both tables contain a left-hand sub-table, and a right-hand sub-table. Each
row of the left-hand sub-table contains the values of Spearman’s rank-order
correlation coefficient (rs) for source-based metric m and both test suite
metrics dLOCC and dNOTC. Likewise, each row of the right-hand sub-
table contains the statistical significance (p) of the t value derived from each
rs value (as described in Section 4.3).

The data sets used to compute the results are displayed by scatter plots
in Appendix A.

rs(m,n) dLOCC dNOTC

DIT -.03664592 -.05901525
FOUT .55386912 .45727837
LCOM .16598053 .20712411
LOCC .51296391 .51827393
NOC -.02741486 .00241445
NOF .24776041 .23295498
NOM .35544872 .40061438
RFC .53718219 .51978219
WMC .42194549 .45878546

p(m,n) dLOCC dNOTC

DIT .66958345 .49172625
FOUT 1.835e-12 1.718e-08
LCOM .05170138 .01478843
LOCC 1.254e-10 7.479e-11
NOC .74958827 .97757806
NOF .00339098 .00596598
NOM .00001884 1.123e-06
RFC 1.102e-11 6.447e-11
WMC 2.544e-07 1.521e-08

Table 5.1: Measurement results for DocGen.

6Personal communication.
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rs(m,n) dLOCC dNOTC

DIT -.04563442 -.20101756
FOUT .46451949 .30677602
LCOM .43654512 .38164878
LOCC .50017995 .32537468
NOC .05374263 -.02614728
NOF .45469619 .29441482
NOM .53194369 .36896505
RFC .52615509 .34120996
WMC .53065411 .34769972

p(m,n) dLOCC dNOTC

DIT .63436382 .03438547
FOUT 2.811e-07 .00105723
LCOM 1.670e-06 .00003581
LOCC 2.276e-08 .00049297
NOC .57533668 .78530921
NOF 5.352e-07 .00170940
NOM 1.879e-09 .00006753
RFC 3.018e-09 .00024754
WMC 2.090e-09 .00018465

Table 5.2: Measurement results for Ant.

Based on these results, we evaluate hypotheses H0(m,n) and H1(m,n).
These were defined in Chapter 4, but are repeated here for ease of reference:

H0(m,n): There is no association between source-based metric m and test
suite metric n,

H1(m,n): There is an association between source-based metric m and test
suite metric n,

where m ranges over our set of source-based metrics, and n is either the
dLOCC or dNOTC of associated test suites. By definition of rs, and cor-
relation measures in general, if two variables are independent, i.e. there is
no association between them, then rs = 0. Thus if our results show that
if rs(m,n) 6= 0 for some m and n, then there is an association between m
and n. In other words, if rs(m,n) 6= 0, we can reject H0(m,n) and accept
the converse, H1(m,n). The statistical significance p(m,n) indicates the
probability that the observed value of rs(m,n) is a chance event. Therefore,
if the value of p(m,n) is low, we can confidently reject H0(m,n), and ac-
cept H1(m,n). We can reject H0(m,n) at a certain confidence level of x, if
1− p(m,n) < x.

For DocGen we can reject H0(m,n) and accept H1(m,n) at the 99%
level of confidence for source-based metrics FOUT, LOCC, NOF, NOM,
RFC and WMC, and both test suite metrics dLOCC and dNOTC. For Ant
we can reject and accept the same hypotheses at the 99% confidence level,
and additionally reject H0(m,n) and accept H1(m,n) for source-bases met-
ric LCOM and both test suite metrics. The source-based metrics which
are significantly correlated to the test suite metrics at the 99% confidence
level, are set in boldface in Tables 5.1 and 5.2. Some of the source-based
metrics are significantly correlated with one of the test suite metrics if the
confidence level is lowered to 95%. For DocGen the LCOM metric is signifi-
cantly correlated with dNOTC at the 95% level of confidence, while for Ant
the correlation between DIT and dNOTC is significant at the 95% level of
confidence.
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5.4 Discussion

In addition to the measurement results of Tables 5.1 and 5.2, we calculated
the correlations among the source-based metrics themselves. These correla-
tions are contained in Table A in Appendix A. A first observation is that
many of the source-based metrics are correlated among each other. Further-
more, both systems appear to have groups of metrics that are all strongly
correlated to each other, and not to metrics outside their group. For Doc-
Gen, the metrics FOUT, LOCC, NOM, RFC and WMC form such a group.
Likewise, Ant has a group consisting of the metrics FOUT, LOCC, NOM,
NOF, RFC and WMC.

Second, we observe that none of the source-based metrics yields a much
better correlation with the test suite metrics than the LOCC metric (see
Tables 5.1 and 5.2). Indeed, according to Hotelling’s t test for the difference
between two correlation coefficients [11], none of our source-based metrics
is a significantly better predictor of the test suite metrics than LOCC. It
should be noted that the use of the term ‘predictor’ does not imply that
the metrics are capable of predicting absolute values. Due to our use of
Spearman’s rank order correlation coefficient, a correlation between metrics
indicates the ability of one metric to predict the rank of the value of the
other metric. Hotelling’s t is defined as:

t = (ryz − rxz)

√

(n− 3)(1 + rxy)

2((((1− r2
xy)− r2

xz)− r2
yz) + 2rxyrxzryz)

where rxy denotes Spearman’s correlation coefficient between metrics x and
y. For example, to calculate whether the correlations between FOUT and
dNOTC, and RFC and dNOTC are significantly different, we calculate
t for ryz, rxz and rxy equal to rs(RFC, dNOTC), rs(FOUT, dNOTC) and
rs(FOUT, RFC), respectively. n represents number of samples, so in the
case of DocGen n = 138. The difference between the correlations is sig-
nificant if the absolute value of t is greater than the critical value for the
number of samples, n, and the desired confidence level. For the confidence
level of 99% and our number of samples, the critical value of t is 2.576. The
sign of the value of t determines whether the metric x is a better or worse
predictor than metric y. A positive value of t which is greater than the
critical value makes x a significantly better predictor than y. Conversely,
a negative value of t that is smaller than the critical value with a negative
sign makes x a significantly worse predictor than y. Hotelling’s t values for
the source-based metrics versus LOCC are displayed in Table 5.3.

A number of our source-based metrics, while not significantly better
predictors than LOCC, are not significantly worse either. For DocGen the
most notable are the FOUT and RFC metrics (the WMC metric predicts
only dNOTC equally well as LOCC). For Ant we find a larger set, consisting
of FOUT, LCOM, NOF, NOM, RFC and WMC.
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DocGen dLOCC dNOTC

DIT -4.953 -5.219
FOUT 0.744 -1.069
LCOM -4.218 -3.784
NOC -5.231 -5.597
NOF -3.405 -3.676
NOM -2.896 -3.908
RFC 0.729 0.045
WMC -3.362 -2.177

Ant dLOCC dNOTC

DIT -5.046 -4.577
FOUT -1.015 -0.485
LCOM -0.692 0.554
NOC -3.849 -2.774
NOF -0.776 -0.480
NOM 0.653 0.810
RFC 0.949 0.524
WMC 1.670 1.104

Table 5.3: Hotelling’s t values for the source-based metrics versus LOCC.

Third, we observe that some of the source-based metrics do a better job
at predicting one of the test suite metrics over the other. Using Hotelling’s
t test, we determine which source-based metrics do a significantly better job
at predicting dLOCC over dNOTC. For DocGen, the correlation between
the test suite metrics dLOCC and dNOTC is 0.838, while for Ant that
correlation is 0.767. Now let ryz, rxz and rxy be equal to rs(dLOCC, z),
rs(dNOTC,z) and rs(dLOCC, dNOTC), and z ranges over the source-based
metrics. Then we find that, for DocGen, the FOUT metric is a significantly
better predictor of dLOCC over dNOTC, but only at the 95% confidence
level. The t value is 2.367, while the critical value for 138 samples at the 95%
confidence level is 1.960. No other metrics are significantly better predictors
of dLOCC over dNOTC for DocGen. For Ant, the source-based metrics that
predict dLOCC significantly better over dNOTC are: FOUT, LOCC, RFC,
NOF, NOM and WMC. Their t values are 2.722, 3.090, 3.332, 2.752, 2.937
and 3.306, respectively. Note that they are all significant at the 99% level,
i.e. the t values are larger than 2.576.

Fourth, Figure A.2 shows that, for DocGen, the FOUT metric does a
good job at identifying the class which has the largest dLOCC and dNOTC
values for its associated test class. The class in question is the CobolModel
class, which is identified in the same way by the LOCC, NOM, RFC and
WMC metrics. In other words, the class with the highest fan out, number
of lines of code, number of methods, response set size and weighted methods
number, is associated with the test class which has both the highest number
of lines of code and number of test cases. Note that the CobolModel class was
mentioned as being hard to test during interviews at the SIG (see Appendix
B), which were performed prior our measurements. On the other hand, the
QueuedComponent class was also mentioned during the interviews as being
hard to test. However, its values for the metrics are not much different from
the averages, hence our metrics do not identify the QueuedComponent class.
Apparently the DocGen developers consider the QueuedComponent class to
be badly testable for reasons that are not captured by our set of metrics.
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However, Figure A.11 does not show the same result for Ant. None of
the metrics that identify the class with the largest test class for DocGen,
are capable of identifying that class for Ant. Furthermore, these metrics
appear to have many more outliers in the case of Ant compared to Doc-
Gen. The fact that the unit testing effort of Ant was started late in its
development may explain this difference, because, on the one hand, starting
from the moment unit testing became needed, developers would probably
have started to develop classes with testing in mind. On the other hand,
the classes that existed before unit testing was introduced have probably
not been exposed to the same amount of testing as the classes that were
developed afterwards. In other words, the implicit testing criterion is likely
different for classes that were created before testing was started, and classes
that were created afterwards. Furthermore, the nature of the project itself
may have an influence. The Ant project is an open source project, con-
sisting of people working at very different locations. In contrast, the SIG
development team works together at one location, and hence is more likely
to have better coordination and cooperation. Also, practices like test-first
development and pair programming guarantee that test cases are developed
more-or-less similarly for every class of DocGen.

Finally, we discuss the source-based metrics individually.

Depth Of Inheritance Tree (DIT)

For both case studies, the results show no significant correlation between
the DIT metric and both test suite metrics dLOCC and dNOTC. Would a
testing criterion have caused the DIT metric to measure a test case genera-
tion factor, and assuming that the test suites satisfied the testing criterion,
we would have observed a correlation between the DIT metric and, at least,
the dNOTC metric. We conclude that for our case studies the DIT metric
does not measure a test case generation factor. Because there is also no cor-
relation between DIT and the dLOCC metric, we conclude that DIT does
not measure a test case construction factor either.

In Section 2.2.1 we discussed how inheritance can be a test case genera-
tion factor, i.e. influence the number of required test cases. For example, a
testing criterion could require that all –inherited and newly defined– meth-
ods of a class are tested in the context of the class. As we concluded, no
such criterion is in use for neither DocGen nor Ant.

Note that if we would allow our confidence level to go down to 95%, the
observed correlation between the DIT and dNOTC metrics would become
significant for the Ant system. However, the correlation is still a very weak
one.
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Fan Out (FOUT)

The FOUT metric has moderate and weak (but significant) correlation with
the dNOTC (number of test cases) metric for DocGen and Ant, respectively.
We conclude that the FOUT metric measures a test case generation factor
of both systems. Since neither project has defined a testing criterion, we
cannot confirm that the fan out of a class really is a test case generation
factor. Our conclusion is thus limited to the observation that the implicit
testing criteria of the Ant and DocGen projects cause the FOUT metric to
measure a test generation factor.

We showed that FOUT is a significantly better predictor of the dLOCC
metric than of the dNOTC metric (at the 95% confidence level for DocGen,
99% for Ant). Thus, the association between the fan out of a class and the
size of its test suite is significantly stronger than the association between the
fan out and the number of test cases. The fan out of a class measures the
number of other classes that the class depends on. In the actual program,
these classes will have been initialized before they are used. In other words,
the fields of the classes will have been set to the appropriate values before
they are used. When a class needs to be (unit) tested, however, the tester
will need to take care of the initialization of the (objects of) other classes
and the class-under-test itself. The amount of initialization required before
testing can be done will thus influence the testing effort, and by assumption,
the dLOCC metric.

We conjecture that the association between the FOUT and dLOCC met-
rics is a result of two factors. First, we saw before that for both systems
the FOUT metric measures a test case generation factor, i.e. there is corre-
lation between the FOUT and dNOTC metrics. The dNOTC and dLOCC
metrics are also strongly correlated, which explains part of the association
between FOUT and dLOCC. Second, the FOUT metric measures a test case
construction factor, i.e. the amount of initialization required for testing.

Lack Of Cohesion Of Methods (LCOM)

The LCOM metric is associated to the test suite metrics in case of Ant,
though not in the case of DocGen. Observe that Table A shows that for
both systems the LCOM and NOF metrics are moderately correlated. In
case of DocGen, the correlation is even fairly strong. Thus, it seems that for
our case studies, classes that are not cohesive (high LCOM value) tend to
have a high number of fields, and similarly, classes that are cohesive tend to
have a low number of fields. Similar correlations exist between the LCOM
and NOM metrics. Thus, in-cohesive classes tend to have a high number of
fields and methods, and cohesive classes tend to have a low number of fields
and methods. These effects are intuitively sound: it is harder to create a
large cohesive class than it is to create a small one.
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For DocGen, the correlations between the NOF and NOM metrics and
the test suite metrics is significant but weak, while for Ant the correlations
are moderate. We conjecture that for DocGen the lack of correlation between
LCOM and the test suite metrics occurs because of the weak correlation
between the NOF and NOM metrics and the test suite metrics. Conversely,
because of a moderate correlation between the NOF and NOM metrics and
the test suite metrics for Ant, we observe a moderate correlation between
the LCOM metric and the test suite metrics.

Similar to the correlation between the DIT and dNOTC metric for Ant,
the correlation between the LCOM and dNOTC metrics becomes significant
for the DocGen system if the level of confidence is lowered to 95%. However,
the correlation is still very weak.

Lines Of Code Per Class (LOCC)

For DocGen, the LOCC metric has moderately strong correlations with both
the dLOCC and dNOTC metrics. For Ant, the correlation with dLOCC is
also moderately strong, but the correlation with dNOTC is weak. Again,
regarding the test case generation, we suffice by concluding that LOCC
measures a test case generation factor of both DocGen and Ant. Because
both projects lack an explicitly defined testing criterion, we are unable to
confirm whether or not the lines of code of a class is the test case generation
factor that we have measured.

The number of lines of code is a rather blunt aspect of the source code.
As such, there is no clear direct link between the textual length of a class
and the size of its test suite. However, the LOCC metric is correlated with
many of the other source-based metrics (see Table A). For DocGen, strong
correlations exist with FOUT, NOM, RFC and WMC, while for Ant the
LOCC metric correlates strongly with FOUT, NOF, NOM, RFC and WMC.
We conjecture that the correlations between LOCC and the test suite metrics
are a result of the strong correlations between LOCC and the other metrics.

Number Of Children (NOC)

The NOC metric has no significant association with either test suite metric
for both study systems. In the context of unit testing at the class level, the
number of child classes of a class seems of little relevance to the testability.
First, the child classes are tested by their own test classes. Second, any other
effects of having child classes (polymorphism) are not of concern during
testing of the parent class, but during the testing of classes that use the
parent class. Objects of the child classes could be used instead of objects of
the parent class, possibly requiring more testing. In any case, such effects
lie outside of the scope of this thesis. We focus on the factors of a class that
influence the required testing effort for that same class.
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Number Of Fields (NOF)

The correlations between NOF and dNOTC are weak for both DocGen and
Ant. By the same argument as for FOUT, we conclude that NOF measures
a test case generation factor, but only weakly.

The fields of the class-under-test need to be initialized before testing can
be done. We argued before that the amount of required initialization influ-
ences the testing effort and the dLOCC metric. Thus, we expect correlation
between the NOF and dLOCC metrics. However, for DocGen the correla-
tion we observe is only weak (but significant), while for Ant it is moderate.
Neither is the correlation between NOF and dLOCC significantly better
than the correlation between NOF and dNOTC for DocGen, though it is for
Ant. A possible explanation is given by the definition of the NOF metric.
In Chapter 4 NOF(c) is defined by NOF(c) = |FD(c)|. In words, NOF(c) is a
count of the number of fields class c (newly) declares. The number of fields
that class c inherits from its ancestors is therefore not included in the count.
If classes tend to use fields they have inherited, the NOF metric may not be a
sufficient predictor of the initialization required for testing. Whether or not
this explains the difference between the observed correlations for DocGen
and Ant remains subject of further research.

Additionally, for Ant there seems to be a fairly strong correlation be-
tween the NOF and FOUT metrics, while for DocGen that correlation is
weak (see Table A). We showed how the FOUT metric could measure a test
case construction factor; the amount of initialization required for testing.
An alternate explanation for the moderate correlation between FOUT and
dLOCC for Ant, and the weak correlation for DocGen, uses the strength of
the correlation between the NOF and FOUT metrics. For Ant, the NOF
metric is a fairly strong predictor of the FOUT metric, and vice versa. Fur-
thermore, since we showed how the FOUT metric could predict the dLOCC
metric, we could conclude that this link explains the strength of the corre-
lation between NOF and dLOCC for Ant. Similarly, for DocGen the cor-
relation between NOF and FOUT is weak, and as a result, the correlation
between NOF and dLOCC is weak.

Number Of Methods (NOM)

The correlation between the NOM and dNOTC metrics is moderate for
DocGen and weak for Ant. As before, we conclude that NOM measures a
test case generation factor. The developers of DocGen intend to test each
method a class implements, i.e. each method for which the class defines a
method body (see Section 5.1). The extent to which each method should be
tested is not defined. Because of this ‘guideline’ –it is not specific enough
to qualify for a testing criterion– we would expect to see some correlation
between NOM and dNOTC for DocGen.
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We would not expect the number of methods of a class to measure a test
case construction factor; the number of methods a class contains should not
influence the effort needed to set up a test case. In the case of DocGen, the
NOM metric does not have a significantly better correlation with dLOCC
than with dNOTC. DocGen indeed lives up to the expectation. However, in
the case of Ant, the difference between these correlations is significant. We
offer two possible explanations. First, for Ant the correlation between the
NOM and NOF metrics is strong (see Table A), i.e. the number of methods
of a class is a strong predictor of the number of fields of a class. We saw
before how the number of fields of a class can influence the effort needed to
test, i.e. the dLOCC metric. Thus, the correlation between the NOM and
dLOCC metrics for Ant could be explained indirectly via the NOF metric.
The fact that the correlation between the NOM and NOF metrics is only
moderate for DocGen confirms this explanation.

Second, for Ant we observe a similarly strong correlation between the
NOM and FOUT metrics. By the same argument, the correlation between
the NOM and dLOCC metrics for Ant could be explained indirectly via the
FOUT metric. Again, the correlation between the NOM and FOUT metrics
is only moderate for DocGen.

Response For Class (RFC)

The correlation between RFC and dNOTC is moderate for DocGen and
weak for Ant. By the same argument as for FOUT, we conclude that RFC
measures a test case generation factor.

In Chapter 4 we defined the RFC metric by RFC(c) = |M(c) ∪m∈M(c)

MI(m)|, i.e. the RFC of c is a count of the number of methods of c and
the number of methods of other classes that are potentially called by the
methods of c. From the definition, it is clear that the RFC metric consists
of two components. First, the number of methods of class c. The strong
correlation between the RFC and NOMmetrics for both systems is explained
by this component. Second, the number of methods of other classes that
are potentially invoked by the methods of c. The invocation of methods of
other classes gives rise to fan out, hence the strong correlation between RFC
and FOUT in both systems. Given the correlations between the RFC metric
and both the NOM and FOUT metrics, the observed correlations between
the RFC and dLOCC metrics for both DocGen and Ant are as expected.

Weighted Methods Per Class (WMC)

The correlation between the WMC and dNOTC metrics is moderate for
DocGen and weak for Ant. By the same argument as for FOUT, we conclude
that WMC measures a test case generation factor.
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The WMC metric is defined in Chapter 4 by:

WMC(c) =
∑

m ∈ MIm(c)

VG(m),

where VG(m) is McCabe’s cyclomatic complexity number for method m.
We observe that the WMC metric correlates strongly with the NOM metric
for both DocGen and Ant (see Table A). Also, the relationships to the other
metrics are very similar for both WMC and NOM. An explanation is offered
by the fact that for both systems, the VG value of each method tends to be
low, and close to the average. For DocGen, we have an average VG of 1.311,
with standard deviation of 0.874 and maximum of 17. For Ant, we have an
average VG of 2.141, with standard deviation of 2.910 and maximum of 61.
Thus, for our systems the WMC metric will tend to measure the number of
methods, i.e. the NOM metric. We conclude that the same effects explain
the correlations with the test suite metrics for both WMC and NOM.

As a side note, the low average, standard deviation and maximum values
of the VG of the methods of DocGen are a result of a coding standard in
use at the SIG. According to the coding standard, each method should not
contain more than 12 lines of code. In practice, the VG of a method is
strongly correlated to the number of lines of code (WMC is also strongly
correlated to LOCC), thus a low number of lines of code will indicate a low
VG. In addition, the use of object-oriented features like polymorphism and
dynamic binding helps to reduce the VG values of methods. Constructions
like switches and abundant use of if–else statements, which both contribute
to the VG value, can be avoided and replaced by use of polymorphism.

5.5 Conclusion

We found significant associations between metrics and the test suite size
for a class for both our case studies. For DocGen, the metrics FOUT,
LOCC and RFC have been shown to have a moderately strong association
with the size of the test suite for a class. For Ant, a larger set of metrics
qualified, consisting of the metrics FOUT, LCOM, LOCC, NOF, NOM, RFC
and WMC. Conversely, the NOC and DIT metrics did not have significant
associations with the test suite size, for neither case study.

We also found that none of the metrics is significantly more correlated
to the test suite size than the LOCC metric. However, a number of metrics
for both DocGen and Ant are not significantly less correlated, either. For
DocGen the most notable are the FOUT and RFC metrics, while for Ant we
have the metrics FOUT, LCOM, NOF, NOM, RFC and WMC. Apparently
our metrics do not measure very specific factors of the source code, since a
simple count of the lines of code is equally predictive. On the other hand,
metrics like FOUT and RFC are still equally predictive of the test suite size,
but also allow more insight into the cause of their correlations.
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Chapter 6

Conclusions

In this chapter we summarize the contributions and limitations of the work
presented in this thesis. Furthermore, we provide directions for future work.

6.1 Contributions

• In Chapter 2 we provided an overview of testability aspects of software
development. These aspects were discussed and the topic of this thesis
was put into context.

• Also in Chapter 2, we presented an initial model of testability with
respect to source code factors. The model distinguishes between test
case generation factors and test case construction factors. The former
deals with source code factors that determine how many test cases
need to be developed, while the latter deals with source code factors
that influence the effort needed to develop individual test cases.

• Several approaches to testability assessment have been proposed in the
literature. In Chapter 3 we discussed the fault sensitivity approach by
Voas et. al., Freedman’s controllability and observability notions, Mc-
Gregor’s visibility component and Jungmayr’s approach to identifying
test critical dependencies. At the end of that chapter, we discussed
how these approaches relate to our own model.

• In Chapter 4 we turned towards testability metrics. Because of the
match between the testability model described by Binder in [3] and
our own model, Binder’s testability metrics were taken as a starting
point. We provided operational definitions of of the following metrics:
Depth of Inheritance Tree (DIT), Fan Out (FOUT), Lack of Cohe-
sion Of Methods (LCOM), Lines Of Code per Class (LOCC), Number
Of Children (NOC), Number Of Fields (NOF), Number Of Methods
(NOM), Response For Class (RFC) and Weighted Methods per Class
(WMC).
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• We evaluated the metrics by means of empirical study. Following the
definition of the metrics, we used the GQM/MEDEA framework to set
up our experiment. We have chosen to estimate the dependent variable
in the experiment, i.e. the testing effort for a class, by measuring the
size of the test suite associated with the class.

• At the end of Chapter 4, we provided details on the implementation
of the tool we have used to perform the measurements. The tool is
based on a plug-in for the Eclipse tool platform, and is capable of
measuring a large set of metrics for Java code. The Eclipse metrics
plug-in will be employed as part of a software analysis toolkit currently
under development at the Software Improvement Group.

• In Chapter 5, we applied our experiment to two diverse case studies.
The first is DocGen, a commercial source code documentation tool
which is being developed by the Software Improvement Group. The
second is Apache Ant, a widely-used automation tool for software de-
velopment, which is being developed under the open source model as
part of the Apache web-server project.

• The results of the case studies were used to perform a statistical evalu-
ation of the metrics. The correlations between the metrics and the test
suite size, measured by Spearman’s rank-order correlation coefficient,
were discussed at the end of Chapter 5. The discussion was based on
the model of testability presented in Chapter 2, and took into account
how external factors could have influenced the results.

• Finally, for both our case studies, we found significant associations
between our metrics and the test suite size for a class. For the Doc-
Gen system, the metrics FOUT, LOCC and RFC have been shown to
have a moderately strong association with the size of the test suite
for a class. For the Ant system, a larger set of metrics qualified, con-
sisting of the metrics FOUT, LCOM, LOCC, NOF, NOM, RFC and
WMC. Conversely, the NOC and DIT metrics did not have significant
associations with the test suite size, for neither case study.

In summary, we have seen that for two very different systems, a subset
of our metrics is capable of assessing the testing effort required for a class.
Furthermore, we have seen how our initial model of testability can be used
to explain the results. On the one hand, the results have shown us that
many of the metrics measure test case generation factors that are due to
implicit testing criteria. On the other hand, some of the metrics also seem
to measure test case construction factors. Most notably, the results allow
for explanations of the FOUT, NOF and RFC metrics in terms of test case
construction factors. Conversely, we have seen that the NOC and DIT
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metrics do not measure factors of testability. We conclude that the results
will allow us to improve both the set of metrics and the model of testability.

6.2 Limitations

• Our work considers testability from the perspective of unit testing at
the class level. While this is a useful approach to testing, in practice
many other approaches are used (see Section 1.2). For example, the
Eclipse tool framework is tested from a more functional perspective,
i.e. ‘units of functionality’ are the subjects of testing, instead of syn-
tactical elements of the source code. As a side note, the Eclipse project
employs the same testing framework (JUnit) as our case studies, yet
the approach to testing is very different.

• In our discussion of the measurement results, we found that none of the
metrics is significantly more correlated to the test suite size than the
relatively simple Lines Of Code per Class (LOCC) metric. However, a
number of metrics for both DocGen and Ant are not significantly less
correlated, either. Apparently our metrics do not measure very specific
factors of the source code. On the other hand, the fact that the LOCC
metric correlates with the test suite size provides little insight in the
source code factors that cause the correlation. Metrics like FOUT and
RFC are still equally predictive of the test suite size, but also allow
more insight into the cause of their correlations.

• For our statistical evaluation of the metrics we have used a non-
parametric statistic, i.e. Spearman’s rank-order correlation coefficient.
Non-parametric statistics are applicable when one lacks knowledge of
the distribution of the measurement data. As a result, the correla-
tions we observed in the data indicate the predictive capability of the
metrics with respect to the ranking of classes only.

• The systems we studied were both written in Java, and tested using
the JUnit testing framework. As such, the validity of our results is
further limited to systems using these technologies.

6.3 Future Directions

• To expand the perspective of testability used in this thesis, the Eclipse
tool framework is a suitable candidate for a case study. The functional
approach to testing employed by the Eclipse project is common in
larger software development organizations. On the more practical side,
the Eclipse project has a very open nature: source code, bug databases
and communication channels are all available to the public.
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• The results of our work can be used to guide the refinement of both
our initial model of testability, and the metrics themselves. A possible
approach is to analyze the source code of outliers in our measurement
data. The FOUT and RFC metrics appear to be suitable candidates
for such further investigation.

• The use of more powerful statistics than Spearman’s rank-order cor-
relation is needed to further assess the predictive capabilities of the
metrics. In section 4.3 we mentioned work by Wheeldon and Coun-
sell [28], which researches the distribution of measurement data of
object-oriented systems. They show that many coupling metrics are
distributed according to a power law distribution. Since metrics like
FOUT and RFC are related to coupling metrics, they may be dis-
tributed similarly. Consequently, more powerful statistics could be
used to assess them.

• Finally, the validity of our results could be explored for systems writ-
ten in other object-oriented languages. The definitions of our metrics
contain only a limited amount of dependency on the programming
language of our case studies.



Appendix A

Results Of The Case Studies

This appendix contains the intermediate measurement results for both case
studies. Each source-based metric is plotted against both test suite metrics
dLOCC and dNOTC. The samples are those system classes that have an
associated test class. A table of the Spearman correlation coefficients for
each pair of metrics and both case studies is included at the end of this
appendix. The results contained in this appendix are analyzed and discussed
in Chapter 5.
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DocGen DIT FOUT LCOM LOCC NOC NOF NOM RFC WMC

DIT 1
FOUT -.0288628 1
LCOM -.0878565 .3170920 1
LOCC -.1291266 .6914187 .3793173 1
NOC .0511100 .0506100 .0134258 .2039079 1
NOF -.2518776 .3649002 .7655619 .4439602 .0520108 1
NOM .0749825 .5458229 .4806950 .8465885 .2263870 .4430824 1
RFC -.0067225 .8368887 .4198502 .8944888 .1839234 .4320281 .8669229 1
WMC -.0350667 .5790627 .4364944 .9306958 .2084994 .4213003 .9515929 .8786371 1

Ant DIT FOUT LCOM LOCC NOC NOF NOM RFC WMC

DIT 1
FOUT .1197494 1
LCOM .0201313 .3063668 1
LOCC .1415034 .9110308 .3105703 1
NOC -.0761769 -.0793997 -.0722794 .0289468 1
NOF .1049955 .6856326 .4618926 .7473582 .1090735 1
NOM .0086915 .7040327 .4356426 .8185809 .2155809 .8247434 1
RFC .1504100 .9286402 .3443800 .9440796 .0229394 .7886552 .8606042 1
WMC .1256072 .8645581 .3541613 .9747772 .0963067 .7844764 .8987452 .9452133 1
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Appendix B

Report On The Interviews

B.1 Introduction

The following reports on a series of 6 interviews done at the Software Im-
provement Group. All interviewees were involved with the development of
the DocGen program. The interviews were performed with two goals in
mind. First, we wanted to obtain an intuitive notion of test difficulties as
they occur in practice. Second, to gather information about the DocGen
program and its development process. The description of the DocGen case
study in Section 5.1 is based on this report.

As a side note, we also performed interviews at several different compa-
nies. One interview was done at Tryllian, focusing on their Agent Devel-
opment Kit (ADK). Three more interviews were done at Epictoid, which
focused on their development of animation software. Finally, an interview
was done to explore the testing efforts of the ABN-AMRO bank. Since no
additional case studies resulted from these interviews, their results have not
been included in this report.

B.2 Results

1. Which module is the most difficult to test? And which the easiest?

• How would you describe the module?

• Is the module modified frequently? Or infrequently?

. The modules that were mentioned as being the hardest to test (in
order of frequency):

• presentation package,

• QueuedComponent class,

• command package,
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• code dealing with delete rules.

. The modules that were mentioned as being the easiest to test (in
order of frequency):

• extract package,

• util package,

• regular expressions,

• model package.

2. Which module has the most test cases? And which the least?

• How would you describe the module?

• Is the module modified frequently? Or infrequently?

. The modules that were mentioned as having the most test cases (in
order of frequency):

• extract package,

• CobolFile class,

• CobolModel class,

• QueuedComponent class,

• ExtractSQLParsers class,

• code dealing with delete rules.

. The modules that were mentioned as having the least test cases (in
order of frequency):

• presentation package.

3. Which module has the most complex test cases? And which the least
complex?

• How would you describe the module?

• Is the module modified frequently? Or infrequently?

. The modules that were mentioned as having the most complex test
cases (in order of frequency):

• command package,

• CobolModel class,

• QueuedComponent class,

• Repository class.
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. The modules that were mentioned as having the least complex test
cases (in order of frequency):

• util package,

• model package,

• database package,

• regular expressions.

4. Which module reveals the most bugs during testing? And which the
least?

• How would you describe the module?

• Is the module modified frequently? Or infrequently?

. The modules that were mentioned as having the highest defect ratio
(in order of frequency):

• command package,

• QueuedComponent class,

• CobolModel class,

• updateSourceCommand class.

. The modules that were mentioned as having the lowest defect ratio
(in order of frequency):

• extract package,

• model package,

• regular expressions.

5. Does your process prescribe a specific test strategy?

• If yes: Could you describe the test strategy?

• If no: Do you apply a personal test strategy?

. There is no prescribed test strategy, however in practice the following
is done:

• A test case is written for every method.

• Test cases are generated in an ad-hoc manner.

• Test cases are derived from bug reports.

6. Does your process measure the coverage of test cases?
If yes:

• Which module has the best coverage? And which the worst?
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• How would you describe the module?

• Is the module modified frequently? Or infrequently?

. No.

7. Does your process prescribe a coding standard?

• If yes: Could you provide a brief description of the coding stan-
dard?

• If yes: Does your process verify the application of the coding
standard?

• If no: Do you apply a personal coding standard?

. Yes, there is a coding standard in use.

• The Sun Java conventions are used for variable naming, among
other things.

• A method has at most 12 statements.

• A method has a single return statement.

• Every class must be accompanied by a test class.

• Blocks of statements are always surrounded by curly braces (‘{’
and ‘}’).

Violations of the coding standard are not automatically detected, but
practices like code reviews and pair programming impose some control.

8. Does your team use test automation tools? (JUnit, for example)

• If yes: Are the tests being run periodically?

. The JUnit testing framework is used. All tests are run automatically
following the nightly build.

9. Are test results for every module available to every team member?

. Every team member is capable of running all the tests, and view
their results. The results of the nightly build are publicly available on
the local network.

10. Have the following cases caused you trouble during testing? Have you
ever modified the code to alleviate the problems? If yes: Could you
describe your modifications briefly?

• a method containing many local variables:
. Yes: 0, No: 6.
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• a method containing many conditional statements (IF-ELSE, for
example):
. Yes: 2, No: 4. Those answering yes said they split up their
methods.

• a method causing many side-effects:
. Yes: 1, No: 5.

• a method has complex objects for its arguments and return value:
. Yes: 1, No: 5.

• a class that depends on many other classes (through inheritance
or composition, for example):
. Yes: 1, No: 5.

• a class containing many private fields.
. Yes: 4, No: 2. Private fields and methods are often changed to
a less restrictive access level.

11. Do you test exception handling code?

• If no: Could you indicate why?

. In general, exception handling is not tested. Several reasons have
been given:

• The exception that was caught is simply thrown on.

• The occurrence of an exception is recorded in a log file and sub-
sequently ignored by the code.

• The exception handling code is very simple.

• Some exceptions are not expected to occur at all.

12. Do you (occasionally) define new types of exceptions?

• If yes: Do you test the handling of exceptions of this kind?

– If no: Could you indicate why?

. Custom exceptions are in use, but their handling is not different
from the predefined exceptions.

13. Could you indicate your level of (professional) experience with using
object oriented programming languages?
–

14. Could you indicate your level of (professional) experience with using
other programming languages?
–

15. Compared to testing of code written in other languages, do you think
object orientation influences the difficulty of testing?
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• If yes: Could you explain the difference in some detail?

. Both answers have been given, supported by different arguments.
Arguments in favor of object orientation making testing harder:

• Encapsulated data is harder to inspect.

• Dynamic bind makes it harder to figure out what piece of code is
executed.

• Object oriented languages rely heavily upon side effects.

• Object equality is an added concern which the tester needs cope
with.

• Object orientation allows for high levels of abstraction, which
possibly makes the interpretation of test results a difficult task.

In favor of easier testing using object oriented languages:

• Better use of abstraction allows for hiding details.

• Object orientation generally results in modular software, consist-
ing of modules that can be tested separately.

• Maintenance of the test cases can also benefit from OO-features
like inheritance.

16. Could you describe a change to your current project that would im-
prove the testing effort?

. The following suggestions were made to improve the testing effort:

• The installation of tools capable of supporting the testing of the
user interface.

• Having the application generate an intermediate output format,
which contains a minimum amount of formatting information.

• Refactor the code to obtain a better modular structure.

• To reduce the effort of setting up test cases, general test cases
should be written that take care of repetitive tasks. New test
cases can then be derived using inheritance.

• The use of a bug tracking system.

• Increasing the runtime performance of the test cases will make
running the complete set of tests frequently a viable practice.

• Code responsible for processing and code doing database access
should be be separated in a better way.
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B.3 Discussion

The results for questions 2 to 5 should point out those modules that are
hard (and easy) to test. First, the presentation package was named during
each interview as both being hard to test, and lacking any automated test
cases. This package is responsible for the user interface, which consists of a
generated web site. Judging from the answers to question 17, the reason for
these testing problems is the lack of proper tools.

Second, the modules that were mentioned as being the hardest to test,
having the most complex test cases and the highest defect ratio are the
QueuedComponent class and the command package. The QueuedComponent
class is responsible for the representation of a file that is to be processed by
the DocGen program. The command package contains classes that represent
commands which are used internally by the DocGen program to control its
components. These classes are the result of an application of the command
design pattern.

Third, if we instead look for modules that were mentioned as having the
most test cases, the most complex test cases and the highest defect ratio,
we find the CobolModel class and again the QueuedComponent class. The
CobolModel class is a layer of convenience methods on top of those provided
by the framework used for object-relational mapping (ORM). 1

On the other hand, we try to identify modules that are thought to be well
testable. First, modules that were mentioned as being the easiest to test,
having the least complex test cases and having the lowest defect ratio are the
model package and code dealing with regular expressions. Themodel package
contains many classes that are generated by the ORM framework, which
take care of data persistence and data access. Curiously, the CobolModel
class is part of this package, yet it was also mentioned as being hard to test.
Furthermore, the package contains a number of other classes like CobolModel,
i.e. containing methods dealing with object persistence in a more convenient
way. Typically, there is a class like CobolModel for every language that
DocGen supports.

Second, a module that is said to be both easiest to test, and having the
lowest defect ratio is the extract package. The extract package contains sub-
packages for every supported language, which all deal with fact extraction
from the parse tree representation of a piece of code. Parse tree traversal is
done using so-called visitor classes, which are the result of an application of
the visitor design pattern.

Finally, the util package is mentioned as being both easy to test, and
having the least complex test cases. Classes in the util package are often
static, and have a simple, well-defined responsibility like data conversion,
file operations and logging.

1Apple’s WebObjects.
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B.4 Conclusion

The three modules we have identified above, the CobolModel and Queued-
Component classes and the command package, have every sign of being badly
testable. Conversely, the model, util and extract packages appear to cause
little testing problems. Our further studies were focused on these modules.
The remaining results, which have not been discussed here, were also taken
into account.
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