
A Framework for SGLR Parsing in Java

C. J. Boogerd
February 2005

Master’s Thesis Computer Science
Supervisors: prof. dr. P. Klint, dr. M. G. J. van den Brand

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

Table of Contents 1

1 Introduction 3
1.1 The ASF+SDF Meta Environment 3
1.2 Problem Statement . 4
1.3 Overview . 4
1.4 Acknowledgements . 5

2 Language Technology 6
2.1 LR Parsing . 6
2.2 GLR: The Algorithm . 8

2.2.1 GSS Example . 10
2.3 SGLR: GLR Extended . 11

2.3.1 The Algorithm . 12
2.3.2 Disambiguation: reject productions 16

3 SGLR in the Meta Environment 19
3.1 Introduction . 19
3.2 The ATerm library . 20

3.2.1 Maximal subterm sharing 20
3.3 The AsFix tree format . 21
3.4 ApiGen explained . 21

4 The SGLR-Java Implementation 23
4.1 Requirements . 23
4.2 Trajectory . 24
4.3 Architecture . 24
4.4 Optimization issues . 25

4.4.1 Heavy Factories . 25
4.4.2 Building AsFix2ME parsetrees 26

1

4.4.3 List optimizations . 28
4.5 Results . 29
4.6 SGLR and SGLR-Java compared 30

5 Case study: Elkhound 38
5.1 The Hybrid Technique . 38
5.2 Applied to SGLR . 38
5.3 Results . 42

6 Conclusions 45
6.1 Problems and solutions . 45
6.2 Future Work . 46

Bibliography 47

A ADT specifications 48
A.1 Parsetree format . 48
A.2 Parsetable format . 50

B SDF grammars 53
B.1 GSS Example Grammar . 53

B.1.1 Booleans . 53
B.1.2 BoolCon . 54

B.2 Elkhound test grammars . 54
B.2.1 EFa Grammar . 54
B.2.2 EEb Grammar . 55

C Parse Table Excerpts 56
C.1 Boolean Parse Table . 56

2

Chapter 1

Introduction

When developing tools for language analysis and compilation, efficient and flexible
parsing methods are vital building blocks. However, most widely-used determin-
istic techniques are limited to a very restricted class of grammars, usually LL(k)
or LR(k). Since the greater part of modern programming languages do not fit
these classes, one is forced to introduce workarounds when developing a language
specification, thereby complicating maintenance. The Generalized LR parsing al-
gorithm processes possible alternative derivations in parallel, and is as such able
to support the full class of context-free languages. The ASF+SDF Meta Environ-
ment features a scannerless implementation of this algorithm, but due to heavy
code modifications over the years this was not an appealing tool for use in further
experiments. This was the reason for work on a re-implementation of the SGLR
parser, taking particular care in ensuring a flexible architecture that would allow
frequent use in new experiments.

1.1 The ASF+SDF Meta Environment

The SGLR parser is one of the main components of the ASF+SDF Meta Envi-
ronment. How the implementation relates to its surroundings will be the topic of
discussion in chapter 3. Here only a short introduction is given, more information
can be found in the Meta Environment manual [5].

The Meta Environment is an interactive language development environment
that can be used for a number of purposes:

• Development of syntax and semantics descriptions for formal languages

• Development of analysis and transformation techniques for formal languages

3

The strength of the Meta Environment can be found in the interactive support for
the writing of these language specifications, and the automatic tool generation from
the specifications. Moreover, both the syntax and semantics of the formal lan-
guages can be described in one formalism, namely ASF+SDF.

ASF+SDF stems from the combination of the Syntax Definition Formalism
(SDF) and the Algebraic Specification Formalism (ASF). A language specification
usually consists of a syntax definition in SDF and a specification of semantics in
ASF. ASF uses conditional term rewriting to define semantic behaviour, the syntax
of these terms is user-defined with the help of SDF. Thus, ASF+SDF is the tool
that enables users to implement concise language definitions as well as language
transformation and analysis rules. In addition, these definitions can be modular
due to SGLR’s support for the full class of context-free languages.

1.2 Problem Statement

Over the years, several of the components that make up the Meta Environment
have been migrated to Java. As a central part of this environment, it is important
that SGLR too takes this step. Moreover, the current C implementation has gone
through too many optimization cycles to be a good candidate for further modifica-
tion, thereby severely limiting the research that can be pursued in this area. It is
therefore imperative that a new implementation, written in Java, is designed with
further experimentation in mind. Finally, if this new implementation is to be a sub-
stitute for the current C implementation, some effort must be spent in ensuring a
good performance.

1.3 Overview

We will start our journey in chapter 2 by reviewing the well-known LR algorithm,
serving as a vantage point in our discussion on the GLR algorithm. The SGLR
algorithm as described by Visser [8] is briefly discussed, and we will see how the
implementation relates to its surroundings, i.e. the Meta Environment and its parse
tree and parse table format in chapter 3. All this information is then summarised
in chapter 4 in the form of implementation requirements and architecture. Some of
the issues encountered are highlighted, and the results in terms of performance and
flexibility are presented. In chapter 5 the dynamic combination of LR and GLR as
used in Elkhound was implemented and evaluated against our default implemen-
tation as a proof experiment. This is meant to be both a test of validity for the
framework and a starting point for future experimental work. Finally, conclusions
and open issues are discussed in chapter 6.

4

1.4 Acknowledgements

5

Chapter 2

Language Technology

Our work is centered around the SGLR algorithm, an extension of the GLR al-
gorithm. Therefore, in this section an in-depth explanation of these algorithms is
provided. We will do this incrementally by starting from the well-known LR algo-
rithm and working our way towards GLR and SGLR.

2.1 LR Parsing

One of the best-known efficient parsing techniques for context-free languages is the
LR algorithm. This algorithm performs a Left to right scan of the input, and pro-
duces a Rightmost derivation, hence the name. The name is sometimes annotated
with a number indicating the lookahead symbols used while parsing. Based on the
LR algorithm, various improved techniques have been introduced, such as Sim-
ple LR, Look-ahead LR, and Canonical LR, each able to deal with more languages
than the last. While we will not go into a full length discussion about those, we will
describe the working of LR itself as it serves as the basis of the GLR algorithm.

The architecture of an LR parser consists of an input stream, a stack, a parse
table holding an action-table and goto-table, and an output stream. These are all
centered around the parser core, which contains the parsing logic. This view is
perhaps better expressed with the help of figure 2.1. Usually a scanner is used to
tokenize the input before delivering it to the parser. This in order to profit from the
less complex parts of the language by applying simpler and more efficient parsing
techniques, therefore speeding up the parsing process. This approach has some
drawbacks, however. These will be discussed later in section 2.3.

The stack contains a history of states the parser has visited, we consider the
state on top of the stack to be the current state. The action table contains a num-
ber of actions that change our current state, depending upon the current state and

6

Figure 2.1: LR Parser Architecture

current token. In case of a reduce action, the next state is looked up using the goto
table. The actions that can be encountered in the action table are a shift, a reduce,
or an accept. If no action is defined for the current state and token, a parse error is
omitted.

shift A shift n indicates that the next state will ben. That is,n is pushed onto the
stack and the current token is discarded.

reduce A reducen tells us that a reduction with grammar rulen should be per-
formed. This means that the stack is popped for each symbol on the right
hand side of rulen and the next state is looked up in the goto table. This is
done by looking at the current token and the state on top of the stack after
popping it.

accept An accept means that the current input is recognised and terminates the
parser successfully. With the list of grammar rules as given by the reduction
actions we have now obtained a rightmost derivation.

When thinking of parsing in terms of automata and their input strings, we see
that the algorithm itself is merely a means to interpret the actual automaton, which
is encoded in the parse table. Similarly, parse table construction is not part of the
LR algorithm, so it will not be discussed here. We will only note that an LR parse
table may contain shift/reduce or reduce/reduce conflicts because of ambiguities in

7

the grammar. That is, for a given parser state and token there are more than one
possible actions. As the original LR algorithm is deterministic, it cannot cope with
this, therefore restricting the number of languages that can be parsed. A number
of solutions have been proposed to deal with this problem, such as SLR, LALR
and Canonical LR. While parsing ever increasing sets of languages, none of them
works on the full set of context-free languages. One of the solutions that does is
the Generalized LR approach.

2.2 GLR: The Algorithm

A plausible idea to handle conflicts in a parse table is just to try all the possible
derivations in parallel. If one of the derivations is incorrect, we will end our search
there and continue with the other ones. Should more than one derivation terminate
successfully, we can report the ambiguity by returning the two possible derivations
and possibly applying filters to choose the correct one. Running multiple complete
parsers in parallel will not be cost-efficient, however. We will need an efficient way
of organizing logic and data. The stack as used in the different parallel derivations
can be probably be shared for a large part. This line of thought has been encoded
in the Graph Structured Stack (GSS).

The GSS is the central data structure during parsing. It contains all the stacks
of the parallel running parsers. The indvidual stacks are now being represented
using stack nodes, therefore the resulting collection of parallel stacks should not
be seen as a collection of replicated stacks, but more as a graph consisting of stack
nodes. A stack node is simply an object containing a state and a number of links to
other stack nodes. In this way, a stack node defines one level of the stack, and has
a pointer to one level lower on the stack. Due to the possible ambiguous character
of the grammar, one stack node may contain pointers to more than one stack node,
or a stack node might be referred to by more than one stack node. The former case
can be thought of as one derivation with multiple possible ’sub’-derivations, the
latter as multiple derivations sharing a common ’sub’-derivation. The difference
with a normal stack can be observed in figure 2.2. A portrayal of splitting stacks
can be seen in figure 2.3.

Structuring our information this way imposes additional conditions on our
GSS. For one, while in an LR parser it is obvious what the current state is, this
is slightly more complex in the GSS. While conceptually, we have multiple run-
ning parallel derivations, practically, our GSS knows only stack nodes and their
interconnections. There is no way of telling where the top level of the stack is. For
this, we need a list of active stack-nodes. These represent in fact the derivations
being tried in parallel at a given point in the parsing process. When processing a

8

Figure 2.2: Normal stack vs. GSS

Figure 2.3: Parallel stacks vs. GSS

token, we will iterate over this list so all derivations are tried before moving on to
the next token. Because only shifts modify the input stream, we will synchronize
the parallel parsers on shift actions. That is, every parallel parser performs all nec-
essary reduce action until a shift action is encountered, in which case it will wait
for the other parsers to finish reducing.

Furthermore, parse tree construction is altered by the fact that we need to main-
tain data for all the possible derivations that are being processed. This makes it
impossible to store the recognised non-terminals on the stack itself since a joining
stack would need to have multiple different derivations at the same time! A suitable
solution would be to attach this information to the links that tie the GSS together,
as they denote the different parallel derivations.

Finally, the way in which the stacks are modified differs from the usual stack.

9

If a new states is pushed onto a stack, a new stack node is created with states
and a link to the former top stack node. If however, there is already a stack node
with statespresent, a new link is added to the existing stack node. Popping a stack
means we have to follow all links attached to its top stack node, adding the stack
nodes found this way to the list of active stacks, while removing the old top stack
node.

A more formal description can be extracted from the pseudocode by Rekers [3].
This algorithm was modified by Visser [8] to obtain the SGLR algorithm that we
present in section 2.3.1. First however, we will go through a step by step example
to illustrate the workings of the Graph Structured Stack.

2.2.1 GSS Example

For this example we use a modified version of the Booleans grammar as comes
with the SDF distribution. The full SDF source of this grammar can be found in
appendix B.1, and the states visited during parsing are available in appendix C.1
for reference purposes. For sake of simplicity, parse trees have been simplified and
layout nodes have been purged from the GSS. The contents of the GSS have been
displayed in figure 2.4 at every shift of a character, using ”T&F|T” as input string.

1. The character ”T” has been shifted and recognised. We can see in the SHIFTER
procedure in section 2.3.1 that we create a new stack node with a link to the
originating stack node (state), this link containing a parse tree equal to the
current token.

2. Character ”T” has been recognised as type Boolean and character ”&” has
been shifted.

3. Character ”&” has been recognised as literal ”&” and character ”F” has been
shifted.

4. Character ”|” has been shifted and the sentence T&F has been recognised as
a Boolean. This step serves as a good illustration of how reduction actions
are performed. As can be seen in the DO-REDUCTIONS procedure in sec-
tion 2.3.1, first we enumerate the reduction paths in the GSS. In this case,
starting from state 59, there is only one. The trees along the path are col-
lected and then used in the creation of a new stack node and link as is done
in REDUCER. Finally, there is only a shift action for state 46 meaning that
the other branch in the GSS is discontinued in the next step.

5. Character ”|” has been typed as a literal ”|” and ”T” has been shifted.

10

6. Finally, the whole sentence T&F|T is reduced to a Boolean which is recog-
nised as a start symbol, thereby succesfully terminating the parse.

Figure 2.4: GSS Example

2.3 SGLR: GLR Extended

SGLR uses the same algorithm basis as GLR, the only difference is that each char-
acter is a token, so that we in fact discard the scanning phase. Hence the name:

11

Scannerless GLR. Scanners are used to speed up the parsing process by taking
advantage of the less complex parts of a grammar. This lexical analysis is often
based on regular expression matching using a set of default heuristics, such as
prefer keyword or longest match. But most programming languages have an am-
biguous lexical syntax, so that special care is needed when developing a grammar
that would work with this architecture. This may be solved by a well-defined inter-
action between scanner and parser, whereby the scanner can use the parser to make
decisions in a case of ambiguity. Another possibility is to extend the scanner it-
self with the functionality needed to make those more complicated decisions. Both
approaches complicate scanner design and result in a slower scanning phase. Al-
ternatively, we can integrate the lexical analysis into the context-free analysis. This
has a couple of consequences: first, this means every single character becomes a
token, and the need for a scanner disappears. Secondly, a number of the lexical
ambiguities cease to exist, while a more expressive way of disambiguation may be
provided in the language specification formalism to address the others.

2.3.1 The Algorithm

This is the algorithm as taken from Visser [8] and used as a basis for the imple-
mentation. We will discuss each of the parts briefly. PARSE takes a parse table
and input term and contains the main loop during parsing. The list ofactive-stacks
is initialized to contain only the initial state, the succeeding loop iterates over the
characters to be processed. If there are no active stacks, theaccepting-stackvari-
able is checked to see if there is any, an error is omitted otherwise.

PARSE(table, file)
global accepting-stackB ∅
global active-stacksB {new stack with state init(table)}
do

global current-tokenB get-next-char(file)
PARSE-CHARACTER()
SHIFTER()

while current-token, EOF∧ active-stacks, ∅
if accepting-stackcontains a link to the initial stack with treet
then

return t
else

return parse-error

PARSE-CHARACTER handles the list of stacks that are involved in perform-

12

ing reductions,for-actor. This list is initialized to the list of active stacks (it is
re-initialized for every shift cycle later on in SHIFTER). New stack nodes cre-
ated in reduction actions are added to this list, or tofor-actor-delayedif they are
rejectable. How this works exactly we will see further on in REDUCER.

PARSE-CHARACTER()
global for-actorB active-stacks
global for-actor-delayedB ∅
global for-shifterB ∅

while for-actor, ∅ ∨ for-actor-delayed, ∅ do
if for-actor= ∅ then

for-actorB {pop(for-actor-delayed)}
for eachstackst∈ for-actor do

if ¬ all links of stackst rejectedthen
ACTOR(st)

ACTOR obtains the available actions for the state inst and the current token.
Reduce actions are handled immediately, while shift actions are saved on thefor-
shifter list for later use in SHIFTER. In case of an accept, the current stack node
is saved asaccepting-stack. In case of an error, or there are actions available for
the current state and token, we simply proceed with the next stack in PARSE-
CHARACTER. This because the parse only needs to be terminated in case all
branches of the GSS die.

ACTOR(st)
for eachactiona ∈ actions(s, current-token) do

casea of
shift(s)⇒ for-shifterB {〈st, s〉} ∪ for-shifter
reduce(α→ A)⇒ DO-REDUCTIONS(st, α→ A)
accept⇒ accepting-stackB st

DO-REDUCTIONS enumerates all the possible reduction paths for ruleα →

A from nodest, and collects the trees found on the links traveled. These are passed
on to REDUCER to handle each individual path.

DO-REDUCTIONS(st, α→ A)
pathsB the paths from stackst to stackst0of length|α|
for eachpath∈ pathsdo

kidsB the trees of the links which formpath
REDUCER(st0, goto(state(st0), α→ A), α→ A, kids)

13

REDUCER handles a reduction given the reduction path information found in
DO-REDUCTIONS. A stack node containing the new states is created if it does
not exist already inactive-stacks(else branch). The new node is linked to nodest0
having as tree the application ofα → A to kids. The new stack node is added to
both active-stacksand for-actor, or in case of a rejectable stack node,for-actor-
delayed. If there exists a stack node with states in active-stacks(if branch), the
links of that stack node are checked to see if there is a direct link tost0. If there
is such a link, an ambiguity has been found and the current treet is added to the
ambiguity node of this link. Otherwise the new link is created with treet and
added to the stack node. The newly added link might create new reduction paths
from earlier processed stack nodes. This triggers a re-examination of all the active
stacks in DO-LIMITED-REDUCTIONS. To see how this can happen, have a look
at the illustrative example in figure 2.6.

1. First, a reduction action with length 2 is performed on stack node 3, creating
a new node with state 6 and a link to stack node 1.

2. Then, on the other branch a reduction action with length 1 is performed,
linking the existing stack node with state 2 to the node with state 4, this
creates another path for the previous reduction action on stack node 3.

3. In DO-LIMITED-REDUCTIONS that reduction action is perfomed again,
leading to the creation of a new stack node 7.

Finally, if α → A is a reject production, the links involved will be marked as re-
jected.

14

REDUCER(st0, s, α→ A, kids)
t B application ofα→ A to kids

if ∃ st1∈ active-stacks: state(st1) = s
if ∃ a direct linknl from st1to st0then

addt to the possibilities of the ambiguity node at tree(nl)
if α → A is a reject productionthen mark link nl as
rejected

else
add a linknl from st1to st0with treet
if α → A is a reject productionthen mark link nl as
rejected
for eachst2∈ active-stacks such that¬ all links ofst2re-
jected∧
st2< for-actor∧
st2< for-actor-delayeddo

for eachreduce(α→ A) ∈ actions(state(st2), current-
token) do

DO-LIMITED-REDUCTIONS(st2, α→ A, nl)
else

st1B new stack with states
add a linknl from st1to st0with treet
active-stacksB {st1} ∪ active-stacks

if rejectable(state(st1)) then
for-actor-delayedB push(st1, for-actor-delayed)

else
for-actorB {st1} ∪ for-actor-delayed

if α→ A is a reject productionthen mark linknl as rejected

DO-LIMITED-REDUCTIONS works similar to DO-REDUCTIONS, but only
reduction paths going through linknl are considered.

DO-LIMITED-REDUCTIONS(st, α→ A, l)
pathsB the paths from stackst to stackst0of length|α| going
through linkl
for eachpath∈ pathsdo

kidsB the trees of the links that formpath
REDUCER(st0, goto(state(st0), α→ A), α→ A, kids)

15

SHIFTER marks the transition to a new character. First, the list of active stacks
is re-initialized to the empty list. Then, for every tuple〈s, st0〉 a new stack node
is created with states and a link to nodest0 having as tree the current token. If
a stack node with states already exists, the new link is added to this node. This
mechanism ensures that stacks that cannot perform a shift will not be alive in the
next iteration.

SHIFTER()
active-stacksB ∅
t B current-token

for each 〈s, st0〉 ∈ for-shifterdo
if ∃ st1∈ active-stacks: state(st1) = s then

add a link fromst1to st0with treet
else

st1B new stack with states
add a link fromst1to st0with treet
active-stacksB {st1} ∪ active-stacks

This algorithm is only slightly different from the one by Rekers. The abandon-
ing of the scanner actually has no influence on the algorithm itself, as this simply
creates one-character tokens. The most important change is the support for reject
productions.

2.3.2 Disambiguation: reject productions

Disambiguation can be applied in one of three phases, namely during parse ta-
ble construction, during parsing, or after parsing as a filter on a parse forest. The
earlier it is applied, the faster the resulting parsing process will be. Post-parsing
disambiguation will be implemented in a separate package and is not an issue here.
Neither are the disambiguation methods as are implemented during parse table gen-
eration. For both we refer to [7]. The one method that remains and does play a role
during parsing, involving reject production, is to be accounted for the additional
change in algorithm with regard to GLR. Reject productions have been introduced
in order to implement keyword reservation. Suppose we have a language definition
describing Java, and it contains rules to define lexicals and keywords.

[a-zA-Z][a-zA-Z0-9_]* -> LEX

"static" -> KEYWORD

In this case the sequence ”static” can be both recognised as being a lexical and

16

a keyword. Because we do not want to allow variables named ”static”, we add an
extra restriction.

"static" -> LEX {reject}

This is the SDF-way of specifying that this sequence may not be recognised
as a lexical. The parse table generator treats these production rules as normal
productions, which means that we will have extra ”branching” in the GSS during
parsing of this sequence. Namely, it will be recognised as a lexical twice, resulting
in an ambiguity node. This node can then simply be ignored as being an invalid
representation. As it is best that disambiguation is applied as early as possible, this
filtering takes place during parsing and tree construction. To understand how that
can be done, we merely need to look at how the data is represented in the GSS.
An ambiguous parse results in a stack node repeatedly trying to create a link to
one other stack node. The existing link will then be updated to hold the ambiguity
node containing the newly added tree and the earlier present trees. The desired
behaviour can be achieved by marking the link as rejected and refraining from
performing actions on stack nodes whose links are all rejected.

Figure 2.5: Reject Production Example

Figure 2.5 exemplifies this idea by showing the resulting stack nodes when
parsing the sequence ”static”. The link from node 1 to 0 represents the literal
”static” being recognised as a KEYWORD, while the link from node 2 to 0 rep-
resents both the literal ”static” being recognised as a LEX and the sequence of
characters s, t, a, t, i, c being recognised as a LEX. Since the former is the reject
production, this link is rejected, and further actions are only performed on stack
node 1.

17

Figure 2.6: New reduction path example

18

Chapter 3

SGLR in the Meta Environment

SGLR plays an important role in the Meta Environment. Because it interacts with
different components of that environment, this interaction is an extra restriction
on the implementation. Serialization and transfer of the tree-like structures, such
as parse tables and parse trees, are accomplished using the ATerm library. The
specific format in which these parse table and parse tree ATerms are created is
called AsFix. Additionally, the API code to access these structures was generated
using a tool called ApiGen. Since these aspects together make up a large and
critical part of our implementation, they have been discussed here separately. The
actual implementation of algorithmics is covered in chapter 4.

3.1 Introduction

In the Meta Environment, SGLR is used to parse specifications written in SDF
and produce a parse forest. This forest is in turn fed to the parse table generator
to obtain a parse table for that specification (that is, the language defined by that
specification). The resulting parse table can then be used in conjunction with SGLR
to parse or recognise terms in that language. This process is visualised in figure
3.1.

The figure suggests that there are certain formats in which parse tables and
parse trees must appear, namely the ATerm structure and AsFix format we men-
tioned earlier. The interface to these structures has been generated by ApiGen, and
to achieve a better understanding of this part of the implementation, we will start
with elaborating on the features of the ATerm library.

19

Figure 3.1: SGLR in the Meta Environment

3.2 The ATerm library

The ATerm datatype (short for Annotated Term) is designed to be used for the ex-
change of tree-like data structures between (distributed) applications. In the Meta
Environment this typically includes abstract syntax trees, generated code, and for-
matted source texts. More specific to SGLR, this also encompasses parse trees
and parse tables. Currently, ATerm libraries are available for C and Java. One
of the more prominent features of the ATerm implementation is maximal subterm
sharing. This has been the means of keeping the ATerm representation as small as
possible, and it has raised some issues in our own implementation, which is the
reason for highlighting this feature.

3.2.1 Maximal subterm sharing

Maximal subterm sharing ensures that only one instance of any given term is
present in memory. This is enforced by only creating terms that do not exist al-
ready. Upon creation of a new term, the present set of terms must be checked to
see if a similar term already exists, and if so, a shared term is returned. This pro-
cess is therefore invisible to the user. In order to minimise the penalty that results
from the checking, pointers to all the existing terms are stored in a hash table for a
quick lookup. This approach has a couple of effects:

• By using the maximal subterm sharing principle, the in-memory term size is

20

reduced significantly, leading to a decrease in execution time.

• The equality check on ATerms is very cheap, since it amounts to a pointer
equality check.

• Because sharing is transparent to the user, modifying existing terms can lead
to unpredictable behaviour. This is why ATerms are immutable after cre-
ation.

Use of the ATerm library has raised some issues in SGLR-Java. For one, the last
mentioned property severely penalties ATerm list manipulation. How this has influ-
enced the SGLR-Java implementation can be found in section 4.4.3. Moreover, the
Java ATerm library uses the factory design pattern to accomplish maximal subterm
sharing. This issue has been elaborated in section 4.4.1, while maximal subterm
sharing in Java is described in [6]. For a more intimate discussion of ATerms and
their maximal sharing in general, see [4].

3.3 The AsFix tree format

The parse trees that are emitted by SGLR abide by a certain signature, this format is
called AsFix. Currently, versions ”2” and ”2ME” are supported, with the latter be-
ing the format of choice in the various Meta Environment applications. AsFix2ME
is simply AsFix2 with flattened lexicals, lists and layout. The exact transformation
from AsFix2 to AsFix2ME as used in our implementation is described in section
4.4.2. The format of both can be found in appendix A.1.

3.4 ApiGen explained

When working with the ATerm library in a given application, there is always a layer
of code that incorporates certain structural knowledge of the format of these terms.
In SGLR for example, these would be the layers responsible for parse table access
and parse tree construction. This approach leaves us vulnerable to any change in
parse table or parse tree format.

Since many applications in the Meta Enviroment use the ATerm library, this
was the incentive for developing ApiGen, a tool that generates implementations of
abstract syntax trees. The result is a strongly typed data structure featuring maxi-
mal subterm sharing, that can be used either as a separate tool or as an internal data
structure. Using ApiGen involves a number of steps: first, an SDF specification
that describes the signature of the tree is written. That specification is then used

21

to collect all the necessary information into an Annotated Data Type (ADT) spec-
ification. Using one of the backends provided by ApiGen we can then generate
an interface to the tree in either C or Java. An overview of this sequence can be
seen in figure 3.2. In SGLR Java, the parse tree and parse table API’s have been
created in the described manner. The resulting ADT specifications can be found in
appendix A. For more information on ApiGen we refer to [1] and [6].

Figure 3.2: ApiGen generation sequence

22

Chapter 4

The SGLR-Java Implementation

The SGLR algorithm as described in section 2.3 has been implemented in Java.
Our discussion on the implementation process will include its requirements in sec-
tion 4.1 and the way the implementation process was shaped ,in section 4.2. The
actual design is then presented in section 4.3, after which we present the issues
encountered. Performance results can be found in section 4.5, and a comparison
between the old an new implementation is made in section 4.6.

4.1 Requirements

The current implementation of the SGLR algorithm has been written in C, and has
been modified over the years to add features and improve performance. The down-
side of these modifications is a reduction in applicability and maintainability. For
example, Unicode is no longer supported in this implementation due to the heavily
modified character handling. As maintainability is an issue, extending the current
implementation for the sake of experimentation is a tedious process. Therefore, a
new implementation must both be correct in the general case and easily extendable.
A correct straightforward implementation would satisfy the former, while the latter
involves some more concepts. Apart from the aforementioned requirements, this
implementation is meant to be a part of the Meta Environment, and should there-
fore be tailored to interact with different parts of that environment. Summarising,
we can state that the implementation must meet the following requirements:

• It should display behaviour similar to the old SGLR implementation in terms
of correctness

• It should be easily maintainable and extendable

23

• It must allow extension from LR to GLR

• It must support reading input terms and parsetables in the ATerm format

• It must be able to omit parsetrees in the AsFix2/AsFix2ME ATerm format

Finally, the implementation process itself influences the design as well. This is
the reason behind the third criterion, and it seems therefore a good idea to elaborate
the different steps in the process before presenting the actual design.

4.2 Trajectory

Since we want a complete new implementation, a fresh perspective is preferred
over the salvaging of old code. Therefore, we refrain from any help the old im-
plementation might offer us and work only with the algorithm. To minimise pro-
gramming errors and deepen our understanding of the workings of this algorithm,
we will model our first steps on the theory inventarisation as described in chapter
2. That is, we will work incrementally and the first prototype to be built will be
an LR parser. After validating correctness we can then extend the prototype to full
GLR, and test it accordingly. This path culminates in a working SGLR parser, but
a very straightforward implementation: the next step will therefore be a series of
optimizations. The final step will be to extend the program for a new optimization
taken from Elkhound. This part is discussed in chapter 5.

4.3 Architecture

The requirements enumerated in section 4.1 show us that we need to use a mod-
ular approach where input, output, the parsetable and parsetree structures and the
LR/GLR core logic must be considered separate entities. Moreover, if we want to
build an SGLR parser on the foundations of an LR parser their algorithmic code
should be separated somehow. This should not be too difficult if we treat the SGLR
parser as an LR parser working on a Graph Structured Stack instead of an ordi-
nary stack. Consequently, a good starting point for the architecture would be the
schematic view of an LR parser as has been presented earlier in figure 2.1.

Implementing access for a parsetable and create methods for parsetrees can
be quite cumbersome. And maintaining that code in case of modifications in the
underlying formats may prove to be even more challenging. This is were ApiGen
comes in. It creates the necessary access and creation methods from a simple
specification describing the format of these structures. To shield the rest of the
implementation from changes in these formats, we will build an additional layer

24

with high-level access on top of the generated code. This way we not only limit
the maintainance needed in case of format changes, we also prevent the shattering
of code responsible for parsetree and parsetable throughout the program.

When we define the supplying of parameters and options the responsibility of
a user interface, we have gather sufficient information to define our architecture.
The result can be observed in figure 4.1

Figure 4.1: SGLR Parser Architecture

4.4 Optimization issues

By following the trajectory as described in section 4.2, we were able to build an
LR prototype and extend it to a working SGLR variant. While the trajectory de-
scriptions itself gives a good idea of the implementation history, some issues were
raised in the process, and the most interesting of these have been presented in this
section.

4.4.1 Heavy Factories

After completing a straightforward implementation and running some initial cor-
rectness tests, profiling revealed that the program spent an unusal amount of time
initializing Factory instances. To understand this problem, we will briefly high-
light the Factory design pattern that is used by both ApiGen and the ATerm library
before discussing the issue and its solution.

25

In section 3.2.1 the maximal subterm sharing feature of the ATerm library was
briefly explained. The Java ATerm library uses the factory design pattern to enforce
this subterm sharing. There is only one class to create and manipulate ATerm in-
stances, this way the set of existing ATerm instances can be checked upon creation
of a new ATerm. This class is calledPureFactory, and it is used by the code gen-
erated by ApiGen to create and manipulate the ATerms underlying the generated
data structure. The structural information regarding these ATerms is captured in the
Factory class, that is responsible for creation and manipulation of the objects im-
plemented by the generated code. ThisFactory class in turn uses aPureFactory
for the manipulation of the underlying ATerms.

Because of the maximal subterm sharing feature, a program that uses the ATerm
library can have at most one instance of aPureFactory at a time. As ATerm
equality is defined in terms of a pointer equation, comparing two ATerms created
by differentPureFactory instances leads to unexpected results. However, we can
still create multipleFactory instances using the samePureFactory and have the
expected behaviour with regard to ATerms.

On top of the parse tree and parse table API generated by ApiGen, a high-level
API was defined. This was done in order to make the implementation more robust
to changes in generated code, to provide high-level access, and to generally pre-
vent the shattering of code responsible for parse tree manipulation and parse table
access. Initially this was accomplished using onePureFactory instance and mul-
tiple Factory instances. Because theFactory class incorporates all the structural
information needed to create the ATerms that represent the higher-level data struc-
tures, it initialises a signifant number of these upon creation. For example, creation
of the tree application pattern looks like this:

pattern_Tree_Appl = factory.parse("appl(<term>,<term>)");

fun_Tree_Appl = factory.makeAFun("_Tree_appl", 2, false);

proto_Tree_Appl = new sglr.ptable.types.tree.Appl(this);

Some 100 other pattern ATerms and their respective objects are created as well in
every instance of theFactory class. It makes sense therefore, to limit the number
of instances as instantiation can be quite costly. Adapting the high-level API to
have only one instance of theFactory class thus lead to a major improvement
in performance. For example, parsing a 508 bytes Pico program took 23 seconds
before, and approximately 1 second after the modification.

4.4.2 Building AsFix2ME parsetrees

After dealing with the first issue, the implementation could parse any context-free
language correctly, and construct the corresponding parsetree in AsFix2 format.

26

The AsFix2 format embeds a lot of information that is not used frequently, and it
is therefore not the format of choice in the Meta Environment. When reading the
ADT parsetree specification in appendix A.1, one notices that there are multiple
ways of expressing a similar tree construct. This is because the specification de-
fines two parsetree formats; a small set of modifications defined on a parsetree in
AsFix2 lead to a more compact parsetree in the AsFix2ME format. These modifica-
tions are applied traversing the original parstree top-down and have been visualised
in figure 4.2, where the ”iterations” case is similar to the ”lexicals” case. They can
be summarised as follows:

literals The old-style literal node is an application node with the corresponding
characters as its children. This is replaced by one simple literal leaf (that is,
having no children).

layout Layout in an AsFix2 parsetree is represented quite intricately encoding the
precise structure of the whitespace. When encountering an ’optional layout’
node denoting a whitespace subtree, the subtree is traversed, collecting its
character leafs, and the layout node anew is created anew using the collected
characters as its direct children. This way the whitespace subtree is flattened
to one with depth 1.

lexicals Similar to the whitespace, the subtree found under a lex - cf injection
is flattened. This time a lexical list-node is created with the characters as
its children. This can be seen as a specific case of the general iterations
transformation defined below.

iterations Lists are defined recursively causing a high number of list nestings in
the resulting AsFix2 parsetree. These are flattened by traversing a list sub-
tree and collecting the first non-list nodes encountered. The node is then
created anew using a new-style list node and the collected subtrees as its
direct children.

The resulting parsetree is significantly smaller and will thus result in faster in-
terchange between applications. However, the process of first building a parsetree
in one format, then traversing it completely to build yet another, is not very effi-
cient. It might be interesting to see whether the AsFix2ME parsetree can be built
directly. The main problem is, that the current filter is defined top-down while the
parser constructs the parsetree bottom-up. That means that the filter must be rede-
fined in terms of a bottom-up traversal, and though there are some dificulties, this
can be accomplished relatively straightforward if we have a good understanding of
the workings of the original top-down filter. So we will reformulate the filter per
section:

27

literals This basically remains the same operation. The moment a literal produc-
tion is encountered, a new-style literal leaf is created instead of an old-style
application node.

layout This is slightly more complex, as it forces us to postpone tree construct
production. If a layout production is encountered, the current children are
collected and stored for later use. If acf(opt(layout)) production is en-
countered (see figure 4.2) the stored children are collected to be used to cre-
ate the node as usual.

lexicals Again similar to the layout production, the children are ”forwarded” until
a lex - cf injection production is encountered, in which case the node is
created as usual.

iterations There were two possible courses in this case. One, the children could be
”forwarded” until a non-list node is encountered, saving the list production
as it would be needed to create the final list node. This would mean that all
the children of every non-list node to be created need to be checked to see
if one of them is a list node ”pending creation”. Moreover, it would mean
the need for yet another piece of data to be stored explicitly. That is why
the second solution was chosen: the list node is created as usual, and there
is a check to see if there are any list children. If there are, their children
are added to the list of children for the current node, removing the list child
itself. This means the child nodes need to be checked only in case of a list
node.

4.4.3 List optimizations

The last issue to be elaborated evolves around the most widely-used data structure
in SGLR-Java: the list. Manipulation of ATerm lists proved to be quite expensive
due to the way they are constructed.

ATerm lists are implemented as (head, tail) constructs. That is, a list[1,2,3]

is represented as[1,[2,[3]]]. This has everything to do with the fact that, due
to the maximal subterm sharing feature, ATerms are immutable after creation. For
example, take the listl1 defined as[1,2,3] and the elemente defined as4. If e
needs to be inserted at the beginning ofl1, this can now be easily accomplished by
creating a new list witheas its head andl1 as its tail. If, on the other hand,eneeds
to be appended tol1, it needs to be created anew. Recall that the last element of
l1 is in fact a list with one element, and this list is immutable. As this is valid for
all the ”sublists” inl1, e.g.[1,[2,[3]]], [2,[3]] and[3], these all need to be
created anew. The process has been implemented by creating a new list[4] and

28

repeatedly inserting the elements fetched froml1. Summarising, this has a number
of effects on the list operations:

insert This operation is of constant complexity, and forms the basis of a number
of the other important list manipulation operations.

append This operation is defined in terms ofinsert operations, and the com-
plexity is therefore linear in the number of elements in the list the element is
appended to.

concat Similar to append, this operation is defined in terms ofinsert and is
linear in the number of elements of the first list.

It seems therefore wise to use more efficient data structures wherever possible.
Especially in the methods responsible for parse tree construction, these ATerm
lists were used intensively, even for temporary data. The use of these lists was
eliminated wherever possible, and a more efficient use of theinsert operation
provided a good solution for the other cases. The result was a general parse time
decrease of approximately 50%.

4.5 Results

In the evaluation of SGLR-Java, three important issues were considered: correct-
ness, performance, and source code properties. The last issue is discussed in sec-
tion 4.6, in this section we will deal with the former two. Correctness was enforced
by using the old SGLR regression tests and comparing output and expected output.
Parsetrees produced by the Java implementation are equal to the old version mod-
ulo ambiguities, for which many filters have not been implemented yet. The other
issue was performance. What is the time performance behaviour of the new imple-
mentation compared to the old one? To test this, two sets of real-world programs,
in C and Java, were prepared and fed to both implementations. These tests have
been performed on an Intel Pentium 4 2.8GHz with 512MB memory running Linux
kernel 2.6.9. The time characteristics of both runs have been plotted in figures 4.3
and 4.4. To minimize the influence of the JVM startup time on SGLR-Java’s per-
formance the average parsing time over 50 parses in one run was used to represent
the parsing time for a specific input. The influence of the JVM startup time is
discussed a little later one in this section. Additionally, figures 4.5 and 4.6 show
the performance of both implementations on theEFa andEEb grammars These
grammars were used for evaluating the hybrid technique discussed in chapter 5.

It can be observed that, apart for a large constant overhead, the time complexity
for both implementations is roughly equivalent, though it appears as if some more

29

performance improvements should be made in the parse tree construction process.
How much of that overhead is due to the Java interpreter remains an interesting
experiment. Attempts to compile the code to machine code using GCJ have been
unsuccessful because of the lacking support for the latest Java API version.

In the Meta Environment SGLR is used as a continuously running process wait-
ing for input terms and their associated parse tables. This means that startup time
is eliminated, and some data can be cached, such as the parse tables. While startup
time might not be a major factor in the old implementation, startup of the Java
Virtual Machine might have a significant impact on the performance of SGLR-
Java, especially on smaller inputs. Gaining a better understanding of this factor
will therefore give us a better prediction of the performance when used in the Meta
Environment.

By simulating the continuous run and feeding ever-increasing numbers of the
same input the startup overhead was approximated. The inputs were parsed 1 time,
then 5, 10, 20 and 50 times in one run. The input terms used were those of the C
and Java test batch mentioned before. The results can be seen in figures 4.7 and
4.8, where the average parse time per input is displayed for a number of inputs
(sizes given in bytes). These figures show that startup time indeed has a significant
impact on performance, especially for small inputs, but even for larger ones.

4.6 SGLR and SGLR-Java compared

Though performance is an important criterion, simplicity in the source code is
perhaps even more important. After all, the incentive was a need for experimenting.
This section is therefore dedicated to evaluating this aspect of the implementation.
A good starting point might be to look at the number of lines of code. Stripping
both SGLR and SGLR-Java from excess whitespace and comments, the former
amounts to a total of approximately 5600 lines while the latter is limited to slightly
more than 1600 lines. The last figure does not include the API’s generated by
ApiGen, as this part is not meant to be maintained by hand anyway. However,
SGLR implements a number of postparsing filters that SGLR-Java lacks. Close to
950 lines were found to be associated with that functionality. That still leaves the
balance in favour of SGLR-Java. Part of this can be attributed to the fact that SGLR
uses its own memory management system, while SGLR-Java leaves that up to the
JRE garbage collector. Another issue is that SGLR needs to have its parse table and
parse tree access defined up to the term signature level. To illustrate this, two sets
of methods from old and new implementation representing the same functionality
were compared. In particular, the following improvements can be noted:

• A number of small, functional methods replaces the two large functions.

30

This increases both readabilty and maintainability.

• The object hierarchy automatically solves the need for a large switch.

• No structural ATerm information is present in the new set of methods, this
makes the code more robust to changes and also provides better typing of the
different entities.

The example considers the lookahead functionality in both implementations, start-
ing with the old one:

for(; permitted && !ATisEmpty(las); las = ATgetNext(las)) {

ATermList cc;

lookahead morelooks;

ATerm la = ATgetFirst(las);

if(ATmatch(la,

"look(char-class(<term>),[<list>])",

&cc,

&morelooks)) {

if(SG_CharInCharClass(c, cc)) {

permitted = ATisEmpty(morelooks)

? ATfalse

: SG_CheckLookAhead(morelooks);

}

}

}

TheSG_CharInCharClass function is found elsewhere in fileparser.c. Apart
from being more reading material, this function is part of one very large file instead
of defined as a method on a lookahead object. This leaves the developer desiring
insight into the mainparser.c file with circa 870 lines to digest.

ATbool SG_CharInCharClass(int c, register ATermList cc)

{

ATerm ccitem;

for(; !ATisEmpty(cc); cc = ATgetNext(cc)) {

ccitem = ATgetFirst(cc);

switch(ATgetType(ccitem)) {

case AT_INT:

31

if(c == ATgetInt((ATermInt) ccitem))

return ATtrue;

break;

case AT_APPL:

if(c >= ATgetInt((ATermInt) ATgetArgument(

(ATermAppl) ccitem,

0))

&& c <= ATgetInt((ATermInt) ATgetArgument(

(ATermAppl) ccitem,

1)))

return ATtrue;

break;

case AT_LIST:

{

register ATermList l = (ATermList) ccitem;

assert(0 &&

"Hypothesis: This should never happen\n");

for(; !ATisEmpty(l); l = ATgetNext(l))

if(c == ATgetInt((ATermInt) ATgetFirst(

(ATermList) l)))

return ATtrue;

}

break;

}

}

return ATfalse;

}

The LookAhead object, part of this example, consists of a list of CharRange ob-
jects. These in turn can be either a single number, i.e.3 or a list of two numbers
denoting a range, such as[38,76]. ApiGen created the complete classes neces-
sary for manipulation, and on top of that a high-level API was defined. Thanks
to ApiGen, this does not encode the level of structural detail present in the old
implementation.

for (index = 0; index < las.size(); index++) {

number = read();

if (number == CharacterIterator.DONE ||

!las.inRange(index, number)) {

index++;

permitted = true;

32

break;

}

}

Where theinRangemethod on the LookAhead object works on a list of CharRange
objects:

public boolean inRange(int number) {

for (int i = 0; i < size(); i++) {

if (fetch(i).inRange(number)) {

return true;

}

}

return false;

}

The CharRange class has two subclasses, a Character class for the ”single” variant,
and a Range class. This substitutes the switch as used in theSG_CharInCharClass

function by a clean object hierarchy. TheinRangemethod of the Character object:

public boolean inRange(int number) {

return single == number;

}

TheinRange method of the Range object:

public boolean inRange(int number) {

return (from <= number && number <= to);

}

Similar comparisons can be made at different locations throughout the source code.
These examples, together with an indication of the number of lines of source code,
serve to illustrate that SGLR-Java is indeed easier to comprehend and therefore a
better maintainable solution. In chapter 5 this statement is further strengthened by
giving insight into the actual implementation of an experiment using SGLR-Java.

33

Figure 4.2: AsFix2 and AsFix2ME

34

Figure 4.3: Parsing performance in C

Figure 4.4: Parsing performance in Java

35

Figure 4.5: Recognise performance on EFa grammar

Figure 4.6: Recognise performance on EEb grammar

36

Figure 4.7: Impact of JVM startup time on performance (C testbatch)

Figure 4.8: Impact of JVM startup time on performance (Java testbatch)

37

Chapter 5

Case study: Elkhound

Elkhound is a parser generator based on the GLR parsing algorithm. It features a
technique that allows it to switch between GLR and LR, thereby allowing it to take
advantage of the deterministic parts of the grammar. We studied this technique and
applied it to our SGLR implementation.

5.1 The Hybrid Technique

In parsing a term using GLR, a significant part of the execution time is spent per-
forming reduce actions. While the reduce action in an LR implementation consist
merely of stack operations, in GLR we need to traverse the GSS and generally deal
with a lot of administrative overhead. It is therefore, that an increase in perfor-
mance may be gained by succesfully applying an LR-type reduce wherever possi-
ble. To be able to make this choice, Elkhound introduces the notion ofdeterministic
depth. The deterministic depth of a stack node is defined to be the number of nodes
it can visit before encountering a node with out-degree greater than one. The deter-
ministic depth of the bottom node is defined to be 1. This notion can now be used
when performing reductions in predicting the number of reduction paths. That is,
if the reduction length is smaller than the deterministic depth only one reduction
path is possible and therefore, an LR reduction can be used. How this is exploited
in Elkhound can be found in [2], we will only discuss its use in SGLR.

5.2 Applied to SGLR

The benefit of the hybrid technique heavily depends upon the number of reductions
that can actually be performed as an LR reduction. Though this seems to be work-
ing perfectly well in Elkhound’s case, the question remains whether this property

38

will remain untouched in case of a scannerless implementation. In order to find out,
we extended our implementation with support for the deterministic depth adminis-
tration and measured the number of reductions that could have been performed as
an LR reduction.

Extending the implementation formed the first real test of our framework in
terms of extensibility. Adding this extra administration turned out to be very
straightforward. First, we created aLog class that would be responsible for con-
taining, manipulating and outputting the various statistics we wished to obtain. It
consists of a default output stream, a string to hold the messages to print to that out-
put stream, and various fields to hold the statistics while they are gathered. Some
simple access and manipulation methods were included, total lines of code (in-
cluding comments and whitespace) numbering around 60. The only modifications
necessary in the existing code would be some calls to theLog access methods. In
our DO-REDUCTIONS we have all the information necessary and it was there that
we added the following lines:

if (act.getLength() == 0) {

(..)

statistics.appendReduction(0, true);

}

else {

(..)

statistics.appendReduction(

act.getLength(), trav.size() == 1);

}

whereappendReduction is:

public void appendReduction(int length, boolean simple)

In our DO-REDUCTIONS we distinguished between 0-length reductions and
other reductions because the former do not need to enumerate reduction paths. This
is where the first line is concerned: 0-length reductions are always ”simple” since
they never involve reduction paths over branches. The second line is the general
case: here isact.getLength() the length of the reduce action andtrav.size()
the number of reduction paths found. If there is only one reduction path, we can
label this reduction as ”simple” LR reduction.

This straightforward extension testifies that indeed the implementation is well-
designed. Moreover, the resulting statistics were promising, as can be observed in
figure 5.1. Using ever increasing inputs, the total number of reductions were mea-
sured and plotted together with the percentage of reductions that could be labeled

39

Figure 5.1: Percentage LR reductions

as ”simple” LR reductions. It turned out that in C almost 90%, and in Java approx-
imately 60% of the reductions were suitable. Strengthened by these results, we set
out to exploit the hybrid technique. Not all the optimizations as used in Elkhound
were valid in SGLR-Java, so we have pinpointed only two issues:

Simplified traversal Since we know there is only one reduction path, we do not
need to perform a breadth-first traversal of the GSS if we embed a reference
to the next stack node into the stack node object itself. This will eliminate
a significant amount of overhead associated with the enumeration of the re-
duction paths.

Stacknode deallocationIf there is only one reduction path, the nodes encoun-
tered during traversal can be deallocated immediately, until a ’split’-node is
encountered, i.e. a node with in-degree greater than 1. This would require
an extra administration of reference counts for each stack node. As we use
the Java garbage collector for our memory management, this feature has not
been implemented yet.

These two optimizations both depend on the reduction length for their effi-
ciency. As can be seen in figure 5.2, the average reduction length is approximately
1.4 and 1.2 for our C and Java test sets. It can be expected that the benefit of these
two optimizations will therefore be limited in these cases.

40

Figure 5.2: Average reduction length

To test the actual value of these optimizations, we implemented the simplified
traversal. In order to know when this should be applied, we extended the stack
node objects with support for the deterministic depth administration. This entailed
an extra field, initialized to 1 in new objects, and an update mechanism in case
a link is added to the stack node. If the stack node already contains a link to
another stack node, the deterministic depth is reset to 0 (else branch). If there is
no link attached, the deterministic depth is updated to the linked stack’s depth+ 1.
Moreover, the linked stack node and tree are embedded into the stack node object
itself to be able to take advantage of the simplified traversal.

if (links.size() == 0) {

linkedStack = link.getLinkedStack();

linkedTree = link.getTree();

linkRejected = link.isRejected();

deterministicDepth =

linkedStack.getDeterministicDepth() + 1;

}

else {

deterministicDepth = 0;

}

This administration, in combination with the embedding of the linked stack

41

node and tree into the stack node object itself, allows us to extend the DO-REDUCTIONS
method. We add an extra branch that checks if the current reduction action is an
LR reduction, and if so, uses the simplified traversal in the form of one tight loop.
The advantage here is not having to iterate over several lists and objects the way
happens in the usual enumeration. Finally, the REDUCER routine is called in the
usual manner with the obtained reduction path.

if (hybrid &&

st.getDeterministicDepth() >= act.getLength()) {

ParseStack current = st;

PTreeList trees = new PTreeList();

for (int i = 0; i < act.getLength(); i++) {

trees.addFirst(current.getLinkedTree());

current = current.getLinkedStack();

}

reducer(

current,

parseTable.getNextStateNumber(

current.peek(),

act.getLabel()),

parseTable.getLabelByNumber(act.getLabel()),

trees

);

statistics.appendReduction(act.getLength(), true);

}

As can be seen in section 4.5, the performance bottleneck in our implementa-
tion is building parsetrees. And this to such an extent, that any algorithmic opti-
mizations will have a very limited effect on overall parsing performance. There-
fore, a more interesting experiment will be to see what the impact of this technique
is on the performance of the algorithm itself, i.e. recognizing an input term without
building a parsetree.

5.3 Results

For testing purposes, we took the two grammars as were used in testing Elkhound
[2], theEFaandEEBgrammars.EFa is defined as:

E→ E + F | F F→ a | (E)

42

Figure 5.3: Recognize performance on EFa grammar

This grammar has been used in a comparison test with an LALR(1) implemen-
tation, and as such it is not ambiguous. This results in a high number of possible LR
reductions; a small decrease in constant time overhead can therefore be observed
in figure 5.3. TheEEBgrammar is defined as:

E→ E + E | b

This grammar is highly ambiguous, and has little LR reductions as a result. It
is therefore no surprise that performance with and without the hybrid technique
does not differ. Though the conceptual difference between LR and GLR reductions
can be exploited further, its usefulness will be limited because reduction lengths
appear to be small on average.

43

Figure 5.4: Recognize performance on EEb grammar

44

Chapter 6

Conclusions

This chapter represents the final step in our traject and will consist of summarizing
the problems we meant to solve, the solutions found and the issues open to further
exploration.

6.1 Problems and solutions

Throughout this thesis, we have addressed the problems as summed up in section
1.2. The solutions found include:

Experimentability The code produced has been kept clean by rigidly following
the guidelines provided by the algorithm, and ensuring a robust implemen-
tation by a modular approach. The correctness of this approach has been
established by the effortless implementation of an experiment involving the
LR/GLR hybrid technique.

Performance Time and effort have been spent in a number of optimisation cycles,
ensuring a time complexity behaviour similar to the old SGLR implementa-
tion. However, since there remains a constant factor 10 difference, additional
action is needed to make the Java implementation a worthy substitute for the
old C implementation.

Moreover, some issues were encountered in the process that have been addressed
as well:

AsFix2ME While outputting both formats. the old SGLR implementation con-
structs an AsFix2ME tree by first constructing an intermediate structure, then
an AsFix2 tree, and transforming that tree to one in AsFix2ME format. By

45

redefining the transformation step, SGLR Java supports a direct construction
of both AsFix2 and AsFix2ME parse trees, skipping the intermediate steps.

LR /GLR Hybrid Technique Apart from being a proof of concept, the experiment
yielded some results regarding the applicability of this technique in SGLR.
Measurements taken indicated that in our test batch there was an abundance
of reduction actions that qualified for this technique, but that the potential
benefits in the optimisations applied was limited due to a small average re-
duction length.

6.2 Future Work

As can be seen in the summation of addressed problems, some of the issues are
open-ended and need additional thought.

Performance There are some possibilities to improve SGLR-Java’s performance.
One might be to use a Java machine code compiler, losing the overhead as-
sociated with the Java interpreter. Another might be to use explicit memory
management, reducing memory usage and increasing locality. Finally, algo-
rithmic enhancements will lead to performance improvement. One of these
could be to sort the possible reduction paths in order to be able to skip the
expensive DO-LIMITED-REDUCTIONS step.

LR /GLR Hybrid Technique The distinction between LR and GLR reductions
can be exploited beyond the experiment conducted in chapter 5. Specifi-
cally, explicit memory management will support the improved stack node
deallocation technique that has not been implemented in the experiment.

46

Bibliography

[1] H.A. de Jong and P.A. Olivier. Generation of abstract programming interfaces
from syntax definitions.Journal of Logic and Algebraic Programming, 59:35–
61, 2004.

[2] S. McPeak and G. Necula. Elkhound: A Fast, Practical GLR Parser Generator.
In Compiler Construction, pages 73–88, 2004.

[3] J. Rekers.Parser Generation for Interactive Environments. PhD thesis, Uni-
versiteit van Amsterdam, 1992.

[4] M.G.J van den Brand, H.A de Jong, P. Klint, and P.A. Olivier. Efficient anno-
tated terms.Software – Practice& Experience, 30:259–291, 2000.

[5] M.G.J van den Brand and P. Klint.ASF+SDF Meta-environment User Man-
ual. Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands.

[6] M.G.J. van den Brand, P.E. Moreau, and J.J. Vinju. A generator of efficient
strongly typed abstract syntax trees in Java.IEE Proceedings - Software, 2005.
to appear.

[7] M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambiguation
Filters for Scannerless Generalized LR Parsers. InCompiler Construction,
volume 2304, pages 143–158, 2002.

[8] E. Visser.Syntax Definition for Language Prototyping. PhD thesis, Universiteit
van Amsterdam, 1997.

47

Appendix A

ADT specifications

Here we list the format specifications of the parse tree and parse table as used in
our implementation of SGLR. These were fed to APIGen to produce the typesafe
access api’s.

A.1 Parsetree format

[

constructor(ParseTree, top, parsetree(<top(Tree)>, <amb-cnt(int)>)),

constructor(Tree, appl, appl(<prod(Production)>, <args(Args)>)),

constructor(Tree, char, <character(int)>),

constructor(Tree, Lit, lit(<string(str)>)),

constructor(Tree, Amb, amb(<args(Args)>)), list(Args, Tree),

constructor(Production, Default, prod(

<lhs(Symbols)>,

<rhs(Symbol)>,

<attributes(Attributes)>)),

constructor(Production, List, list(<rhs(Symbol)>)),

constructor(Production, Lit, lit(<rhs(Symbol)>)),

constructor(Attributes, no-attrs, no-attrs),

constructor(Attributes, attrs, attrs(<attrs(Attrs)>)),

list(Attrs, Attr),

48

constructor(Attr, assoc, assoc(<assoc(Associativity)>)),

constructor(Attr, term, term(<term-arg(term)>)),

constructor(Attr, id, id(<module-name(str)>)),

constructor(Attr, bracket, bracket),

constructor(Attr, reject, reject),

constructor(Attr, prefer, prefer),

constructor(Attr, avoid, avoid),

constructor(Associativity, left, left),

constructor(Associativity, right, right),

constructor(Associativity, assoc, assoc),

constructor(Associativity, non-assoc, non-assoc),

constructor(Symbol, lit, lit(<string(str)>)),

constructor(Symbol, cf, cf(<symbol(Symbol)>)),

constructor(Symbol, lex, lex(<symbol(Symbol)>)),

constructor(Symbol, empty, empty),

constructor(Symbol, seq, seq(<symbols(Symbols)>)),

constructor(Symbol, opt, opt(<symbol(Symbol)>)),

constructor(Symbol, alt, alt(<lhs(Symbol)>, <rhs(Symbol)>)),

constructor(Symbol, tuple, tuple(<head(Symbol)>, <rest(Symbols)>)),

constructor(Symbol, sort, sort(<string(str)>)),

constructor(Symbol, iter-plus, iter(<symbol(Symbol)>)),

constructor(Symbol, iter-star, iter-star(<symbol(Symbol)>)),

constructor(Symbol, iter-plus-sep, iter-sep(

<symbol(Symbol)>,

<separator(Symbol)>)),

constructor(Symbol, iter-star-sep, iter-star-sep(

<symbol(Symbol)>,

<separator(Symbol)>)),

constructor(Symbol, iter-n, iter-n(<symbol(Symbol)>, <number(int)>)),

constructor(Symbol, iter-n, iter-n(<symbol(Symbol)>, <number(int)>)),

constructor(Symbol, iter-sep-n, iter-sep-n(

<symbol(Symbol)>,

<separator(Symbol)>,

<number(int)>)),

constructor(Symbol, func, func(<symbols(Symbols)>, <symbol(Symbol)>)),

constructor(Symbol, parameterized-sort, parameterized-sort(

<sort(str)>,

<parameters(Symbols)>)),

49

constructor(Symbol, strategy, strategy(<lhs(Symbol)>, <rhs(Symbol)>)),

constructor(Symbol, var-sym, varsym(<symbol(Symbol)>)),

constructor(Symbol, layout, layout),

constructor(Symbol, char-class, char-class(<ranges(CharRanges)>)),

list(Symbols, Symbol),

constructor(CharRange, character, <integer(int)>),

constructor(CharRange, range, range(<start(int)>, <end(int)>)),

list(CharRanges, CharRange)

]

A.2 Parsetable format

[

constructor(Version, Default, 4),

constructor(ParseTable, parse-table,

parse-table(<version(Version)>,

<initial-state(int)>,

<labels(Labels)>,

states(<states(States)>),

priorities(<priorities(Priorities)>))),

list(Labels, Label),

constructor(Label, Default, label(

<production(Production)>,

<number(int)>)),

list(States, State),

constructor(State, Default, state-rec(

<number(int)>,

<gotos(Gotos)>,

<actions(Actions)>)),

list(Gotos, GotoAction),

50

constructor(GotoAction, Default, goto(

<ranges(CharRanges)>,

<state-number(int)>)),

list(Actions, Action),

constructor(Action, Default, action(

<ranges(CharRanges)>,

<choices(Choices)>)),

list(Choices, Choice),

constructor(Choice, reduce, reduce(

<length(int)>,

<label(int)>,

<special-attr(SpecialAttr)>)),

constructor(Choice, lookahead-reduce, reduce(

<length(int)>,

<label(int)>,

<special-attr(SpecialAttr)>,

<lookaheads(LookAheads)>)),

constructor(Choice, shift, shift(<state-number(int)>)),

constructor(Choice, accept, accept),

constructor(SpecialAttr, none , 0),

constructor(SpecialAttr, reject, 1),

constructor(SpecialAttr, prefer, 2),

constructor(SpecialAttr, avoid , 4),

constructor(LookAhead, default, look(

<char-class(CharClass)>,

<lookaheads(LookAheads)>)),

constructor(CharClass, default, char-class(<ranges(CharRanges)>)),

list(LookAheads, LookAhead),

list(Priorities, Priority),

51

constructor(Priority, left, left-prio(<label1(int)>,<label2(int)>)),

constructor(Priority, right, right-prio(<label1(int)>,<label2(int)>)),

constructor(Priority, non-assoc, non-assoc(<label1(int)>,<label2(int)>)),

constructor(Priority, greater, gtr-prio(<label1(int)>,<label2(int)>))

]

52

Appendix B

SDF grammars

B.1 GSS Example Grammar

Shown below are the SDF specifications of the grammar as used in the GSS exam-
ple in section 2.2.1.

B.1.1 Booleans

module basic/Booleans

imports basic/BoolCon

exports

sorts Boolean

context-free syntax

BoolCon -> Boolean {cons("constant")}

lhs:Boolean "|" rhs:Boolean -> Boolean {left, cons("or")}

lhs:Boolean "&" rhs:Boolean -> Boolean {left, cons("and")}

"not" "(" Boolean ")" -> Boolean {cons("not")}

"(" Boolean ")" -> Boolean {bracket, cons("bracket")}

context-free priorities

Boolean "&" Boolean -> Boolean

Boolean "|" Boolean -> Boolean

hiddens

context-free start-symbols

Boolean

53

imports

basic/Comments

variables

"Bool"[0-9]* -> Boolean

"Bool-con"[0-9]* -> BoolCon

B.1.2 BoolCon

module basic/BoolCon

exports

sorts BoolCon

context-free syntax

"T" -> BoolCon {cons("true")}

"F" -> BoolCon {cons("false")}

hiddens

context-free start-symbols

BoolCon

B.2 Elkhound test grammars

These are the test grammars as were used in the Elkhound case study.

B.2.1 EFa Grammar

module Elkhound1

exports

context-free start-symbols

E

sorts

E F

context-free syntax

54

E "+" F -> E

F -> E

"(" E ")" -> F

"a" -> F

B.2.2 EEb Grammar

module Elkhound2

exports

context-free start-symbols

E

sorts

E

context-free syntax

E "+" E -> E

"b" -> E

55

Appendix C

Parse Table Excerpts

C.1 Boolean Parse Table

state-rec(0,

[

goto([37],9),goto([range(9,10),13,32],8),goto([300],7),goto([299],6),

goto([285],1),goto([294],2),goto([287],3),goto([257],5),goto([288],3),

goto([259],4),goto([295],3),goto([298],2),goto([286],1)

],

[

action([38,range(40,41),70,84,110,124,256],[reduce(0,286,0)]),

action([37],[shift(9)]),

action([range(9,10),13,32],[shift(8)])

]),

state-rec(1,

[

goto([40],20),goto([110],19),goto([70],18),goto([84],17),goto([289],14),

goto([261],16),goto([290],14),goto([262],15),goto([291],14),goto([293],14),

goto([296],12),goto([265],13),goto([297],12),goto([266],11),goto([292],10)

],

[

action([40],[shift(20)]),

action([110],[shift(19)]),

action([70],[shift(18)]),

action([84],[shift(17)])

]),

state-rec(6,

56

[

goto([256],29)

],[

action([256],[accept])

]),

state-rec(10,

[

goto([37],9),goto([range(9,10),13,32],8),goto([285],31),goto([294],2),

goto([287],3),goto([257],5),goto([288],3),goto([259],4),goto([295],3),

goto([298],2),goto([286],31)

],

[

action([38,range(40,41),70,84,110,124,256],[reduce(0,286,0)]),

action([37],[shift(9)]),

action([range(9,10),13,32],[shift(8)])

]),

state-rec(11,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(1,297,0)])

]),

state-rec(12,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(1,293,0)])

]),

state-rec(13,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(1,296,0)])

]),

state-rec(14,

[

goto([37],9),goto([range(9,10),13,32],8),goto([285],32),goto([294],2),

goto([287],3),goto([257],5),goto([288],3),goto([259],4),goto([295],3),

goto([298],2),goto([286],32)

],

[

action([38,range(40,41),70,84,110,124,256],[reduce(0,286,0)]),

action([37],[shift(9)]),

57

action([range(9,10),13,32],[shift(8)])

]),

state-rec(17,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(1,266,0)])

]),

state-rec(18,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(1,265,0)])

]),

state-rec(31,

[

goto([124],46),goto([264],45)

],

[

action([256],[reduce(3,299,0)]),

action([124],[shift(46)])

]),

state-rec(32,

[

goto([38],48),goto([124],46),goto([263],47),goto([264],45)

],

[

action([256],[reduce(3,299,0)]),

action([38],[shift(48)]),

action([124],[shift(46)])

]),

state-rec(45,

[

goto([37],9),goto([range(9,10),13,32],8),goto([285],53),goto([294],2),

goto([287],3),goto([257],5),goto([288],3),goto([259],4),goto([295],3),

goto([298],2),goto([286],53)

],

[

action([38,range(40,41),70,84,110,124,256],[reduce(0,286,0)]),

action([37],[shift(9)]),

action([range(9,10),13,32],[shift(8)])

]),

58

state-rec(46,

[],

[

action([range(9,10),13,32,37,40,70,84,110],[reduce(1,264,0)])

]),

state-rec(47,

[

goto([37],9),goto([range(9,10),13,32],8),goto([285],54),goto([294],2),

goto([287],3),goto([257],5),goto([288],3),goto([259],4),goto([295],3),

goto([298],2),goto([286],54)

],

[

action([38,range(40,41),70,84,110,124,256],[reduce(0,286,0)]),

action([37],[shift(9)]),

action([range(9,10),13,32],[shift(8)])

]),

state-rec(48,

[],

[

action([range(9,10),13,32,37,40,70,84,110],[reduce(1,263,0)])

]),

state-rec(53,

[

goto([40],20),goto([110],19),goto([70],18),goto([84],17),goto([289],58),

goto([261],16),goto([290],58),goto([262],15),goto([291],58),goto([293],58),

goto([296],12),goto([265],13),goto([297],12),goto([266],11)

],

[

action([40],[shift(20)]),

action([110],[shift(19)]),

action([70],[shift(18)]),

action([84],[shift(17)])

]),

state-rec(54,

[

goto([40],20),goto([110],19),goto([70],18),goto([84],17),goto([289],59),

goto([261],16),goto([290],59),goto([262],15),goto([293],59),goto([296],12),

goto([265],13),goto([297],12),goto([266],11)

],

[

59

action([40],[shift(20)]),

action([110],[shift(19)]),

action([70],[shift(18)]),

action([84],[shift(17)])

]),

state-rec(58,

[

goto([37],9),goto([range(9,10),13,32],8),goto([285],64),goto([294],2),

goto([287],3),goto([257],5),goto([288],3),goto([259],4),goto([295],3),

goto([298],2),goto([286],64)

],

[

action([38,40,70,84,110],[reduce(0,286,0)]),

action([41,124,256],[reduce(0,286,0),reduce(5,292,0)]),

action([37],[shift(9),reduce(5,292,0)]),

action([range(9,10),13,32],[shift(8),reduce(5,292,0)])

]),

state-rec(59,

[],

[

action([range(9,10),13,32,range(37,38),41,124,256],[reduce(5,291,0)])

]),

state-rec(64,

[goto([38],48),goto([263],47)

],

[

action([38],[shift(48)])

]),

60

