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Chapter 1

Introduction

Extract-Enrich-View paradigm: RSCRIPT is a small scripting
language based on the relational calculus. It is intended for an-
alyzing and querying the source code of software systems: from
finding uninitialized variables in a single program to formulat-
ing queries about the architecture of a complete software system.
RSCRIPT fits well in the extract-enrich-view paradigm shown in
Figure 1.1:
Extract: Given the source text, extract relevant information from
it in the form of relations. Examples are the CALLS relation that
describes direct calls between procedures, the USE relation that
relates statements with the variables that are used in the state-
ments, and the PRED relation that relates a statement with its
predecessors in the control flow graph. The extraction phase is
outside the scope of RSCRIPT but may, for instance, be imple-
mented using ASF+SDF [4] and we will give examples how to do
this.
Enrich: Derive additional information from the relations extracted
from the source text. For instance, use CALLS to compute proce-
dures that can also call each other indirectly (using transitive clo-
sure). Here is where RSCRIPT shines.
View: The result of the enrichment phase are again bags and re-
lations. These can be displayed with various tools like, Dot [15],
Rigi [19] and others. RSCRIPT is not concerned with viewing but
we will give some examples anyway.

Application of Relations to Program Analysis Many algorithms for program analysis are usually pre-
sented as graph algorithms and this seems to be at odds with the extensive experience of using term rewrit-
ing for tasks as type checking, fact extraction, analysis and transformation. The major obstacle is that
graphs can and terms cannot contain cycles. Fortunately, every graph can be represented as a relation and
it is therefore natural to have a look at the combination of relations and term rewriting.

Once you start considering problems from a relational perspective, elegant and concise solutions start
to appear. Some examples are:

• Analysis of call graphs and the structure of software architectures.

• Detailed analysis of the control flow or dataflow of programs.

• Program slicing.

• Type checking.

• Constraint problems.

7
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Figure 1.1: The extract-enrich-view paradigm

What’s new in RSCRIPT? Given the considerable amount of related work to be discussed below, it is
necessary to clearly establish what is and what is not new in our approach:

• We use sets and relations like Rigi [19] and GROK [12] do. After extensive experimentation we have
decided not to use bags and multi-relations like in RPA [9].

• Unlike several other systems we allow nested sets and relations and also support n-ary relations as
opposed to just binary relations but don’t support the complete repertoire of n-ary relations as in
SQL.

• We offer a strongly typed language with user-defined types.

• Unlike Rigi [19], GROK [12] and RPA [9] we provide a relational calculus as opposed to a relational
algebra. Although the two have the same expressive power, a calculus increases, in our opinion,
the readability of relational expressions because they allow the introduction of variables to express
intermediate results.

• We integrate an equation solver in a relational language. In this way dataflow problems can be
expressed.

• We introduce an location datatype with associated operations to easily manipulate references to
source code.

• There is some innovation in syntactic notation and specific built-in functions.

• We introduce the notion of an RSTORE that generalizes the RSF tuple format of Rigi. An RSTORE
consists of name/value pairs, where the values may be arbitrary nested bags or relations. An RSTORE
is a language-independent exchange format and can be used to exchange complex relational data
between programs written in different languages.

8
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1.1 Background
Relation-oriented Languages There is a long tradition in Computer Science to organize languages
around one a more prominent data types such as lists (Lisp), strings (SNOBOL), arrays (APL) or sets
(SETL). We use sets and relations as primary datatypes and the sets and set formers in SETL [21] are the
best historic reference for them. Set formers have later on be popularized in various functional languages
since they were introduced in KRC [25]. An overview of languages centered around collection types such
as sets and bags is given in [22]. Database languages in general and SQL in particular are described in [26].
The connection between comprehensions and relational algebra is described in [27, 24]. A further analysis
of this topic is given in [6].

Systems supporting relational programming include RELVIEW [2] (intended for the interactive cre-
ation and visualization of relations and the prototyping of graph algorithms), ...

Relations and Program Analysis The idea to represent relational views of programs is already quite old.
For instance, in [17] all syntactic as well as semantic aspects of a program were represented by relations
and SQL was used to query them. Due to the lack of expressiveness of SQL (notably the lack of transitive
closures) and the performance problems encountered, this approach has not seen wider use. In Rigi [19], a
tuple format (RSF) is introduced to represent relations and a language (RCL) to manipulate them. In [20] a
source code algebra is described that can be used to express relational queries on source text. In [5] a query
algebra is formulated to express direct queries on the syntax tree. It also allows the querying of information
that is attached to the syntax tree via annotations. Relational algebra is used in GROK [12] and Relation
Partition Algebra (RPA) [9, 10, 16] to represent basic facts about software systems and to query them. In
GUPRO [8] graphs are used to represent programs and to query them. In F(p)–` [7] a Prolog database and
a special-purpose language are used to represent and query program facts.

The requirements for a query language for reverse engineering are discussed in [11].

1.2 Plan for this Tutorial
In Chapter 2 we first provide a motivating example of our relational approach. In Chapter 3 follows
a complete description of all the features in RSCRIPT. In the following Chapters 4 and 5 all built-in
operators and functions are described. The most interesting part of this tutorial is probably Chapter 6
where we present a menagerie of larger examples ranging from computing the McCabe complexity of
code, analyzing the component structure of systems, to program slicing. Chapter 8 describes how to run
an RSCRIPT. Two appendices complete this tutorial: Appendix A summarizes all built-in operators and
Appendix B summarizes all built-in functions.
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Chapter 2

A Motivating Example

Suppose a mystery box ends up on your desk. When you
open it, it contains a huge software system with several
questions attached to it:

• How many procedure calls occur in this system?

• How many procedures contains it?

• What are the entry points for this system, i.e., pro-
cedures that call others but are not called them-
selves?

• What are the leaves of this application, i.e., pro-
cedures that are called but do not make any calls
themselves?

• Which procedures call each other indirectly?

• Which procedures are called directly or indirectly from each entry point?

• Which procedures are called from all entry points?

There are now two possibilities. Either you have this superb programming environment or tool suite that
can immediately answer all these questions for you or you can use RSCRIPT.

Preparations To illustrate this process consider the workflow in Figure 2.1. First we have to extract the
calls from the source code. Recall that RSCRIPT does not consider fact extraction per se so we assume that
this call graph has been extracted from the software by some other tool. Also keep in mind that a real call
graph of a real application will contain thousands and thousands of calls. Drawing it in the way we do later
on in Figure 2.2 makes no sense since we get a uniformly black picture due to all the call dependencies.
After the extraction phase, we try to understand the extracted facts by writing queries to explore their
properties. For instance, we may want to know how many calls there are, or how many procedures. We
may also want to enrich these facts, for instance, by computing who calls who in more than one step.
Finally, we produce a simple textual report giving answers to the questions we are interested in.

Now consider the call graph shown in Figure 2.2. This section is intended to give you a first impression
what can be done with RSCRIPT. Please return to this example when you have digested the detailed
description of RSCRIPT in Chapters 3, 4 and 5.

RSCRIPT supports some basic data types like integers and strings which are sufficient to formulate and
answer the questions at hand. However, we can gain readability by introducing separately named types for
the items we are describing. First, we introduce therefore a new type proc (an alias for strings) to denote
procedures:

11
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Figure 2.1: Workflow for analyzing mystery box.

type proc = str

Suppose that the following facts have been extracted from the source code and are represented by the
relation Calls:

rel[proc , proc] Calls = {<"a", "b">, <"b", "c">, <"b", "d">,
<"d", "c">, <"d","e">, <"f", "e">, <"f", "g">, <"g", "e">}.

This concludes the preparatory steps and now we move on to answer the questions.

How many procedure calls occur in this system? To determine the numbers of calls, we simply deter-
mine the number of tuples in the Calls relation, as follows:

int nCalls = # Calls

The operator # determines the number of elements in a bag or relation and is explained in Section 4.5.4. In
this example, nCalls will get the value 8.

How many procedures contains it? We get the number of procedures by determining which names
occur in the tuples in the relation Calls and then determining the number of names:

set[proc] procs = carrier(Calls)
int nprocs = # procs

The built-in function carrier determines all the values that occur in the tuples of a relation. In this case,
procs will get the value {"a", "b", "c", "d", "e", "f", "g"} and nprocs will thus get
value 7. A more concise way of expressing this would be to combine both steps:

int nprocs = # carrier(Calls)

12



RSCRIPT Tutorial Chapter 2. A Motivating Example

Figure 2.2: Graphical representation of the calls relation

What are the entry points for this system? The next step in the analysis is to determine which entry
points this application has, i.e., procedures which call others but are not called themselves. Entry points
are useful since they define the external interface of a system and may also be used as guidance to split a
system in parts.

The top of a relation contains those left-hand sides of tuples in a relation that do not occur in any
right-hand side. When a relation is viewed as a graph, its top corresponds to the root nodes of that graph.
Similarly, the bottom of a relation corresponds to the leaf nodes of the graph. See Section 5.5.2 for more
details. Using this knowledge, the entry points can be computed by determining the top of the Calls
relation:

set[proc] entryPoints = top(Calls)

In this case, entryPoints is equal to {"a", "f"}. In other words, procedures "a" and "f" are the
entry points of this application.

What are the leaves of this application? In a similar spirit, we can determine the leaves of this applica-
tion, i.e., procedures that are being called but do not make any calls themselves:

set[proc] bottomCalls = bottom(Calls).

In this case, bottomCalls is equal to {"c", "e"}.

Which procedures call each other indirectly? We can also determine the indirect calls between proce-
dures, by taking the transitive closure of the Calls relation:

rel[proc, proc] closureCalls = Calls+

In this case, closureCalls is equal to

{<"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">, <"d","e">, <"f", "e">,
<"f", "g">, <"g", "e">, <"a", "c">, <"a", "d">, <"b", "e">, <"a", "e">}

Which procedures are called directly or indirectly from each entry point? We know now the entry
points for this application ("a" and "f") and the indirect call relations. Combining this information, we
can determine which procedures are called from each entry point. This is done by taking the right image
of closureCalls. The right image operator determines yields all right-hand sides of tuples that have a
given value as left-hand side:

set[proc] calledFromA = closureCalls["a"]

yields {"b", "c", "d", "e"} and

set[proc] calledFromF = closureCalls["f"]

yields {"e", "g"}.

13
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Which procedures are called from all entry points? Finally, we can determine which procedures are
called from both entry points by taking the intersection of the two sets calledFromA and calledFromF

set[proc] commonProcs = calledFromA inter calledFromF

which yields {"e"}. In other words, the procedures called from both entry points are mostly disjoint
except for the common procedure "e".

Wrap-up These findings can be verified by inspecting a graph view of the calls relation as shown in
Figure 2.2. Such a visual inspection does not scale very well to large graphs and this makes the above form
of analysis particularly suited for studying large systems.

14



Chapter 3

The RSCRIPT Language

,]

RSCRIPT is based on binary relations only and has no
direct support for n-ary relations with labeled columns
as usual in a general database language. However, some
syntactic support for n-ary relations exists. We will ex-
plain this further below.
An RSCRIPT consists of a sequence of declarations for
variables and/or functions. Usually, the value of one of
these variables is what the writer of the script is inter-
ested in.
The language has scalar types (Boolean, integer, string,
location) and composite types (set and relation). Ex-
pressions are constructed from comprehensions, func-
tion invocations and operators. These are all described
below.

3.1 Types and Values

3.1.1 Elementary Types and Values
Booleans The Booleans are represented by the type bool and have two values: true and false.

Integers The integer values are represented by the type int and are written as usual, e.g., 0, 1, or 123.

Strings The string values are represented by the type str and consist of character sequences surrounded
by double quotes. e.g., "a" or "a long string".

Locations Location values are represented by the type loc and serve as text coordinates in a specific
source file. They should always be generated automatically but for the curious here is an example how they
look like: area-in-file("/home/paulk/example.pico", area(6, 17, 6, 18, 131,
1)).

3.2 Tuples, Sets and Relations
Tuples Tuples are represented by the type <T1, T2>, where T1 and T2 are arbitrary types. An example
of a tuple type is <int, str>. RSCRIPT directly supports tuples consisting of two elements (also know

15
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as pairs). For convenience, n-ary tuples are also allowed, but there are some restrictions on their use, see
the paragraph Relations below. Examples are:

• <1, 2> is of type <int, int>,

• <1, 2, 3> is of type <int, int, int>,

• <1, "a", 3> is of type <int, str, int>,

Sets Sets are represented by the type set[T], where T is an arbitrary type. Examples are set[int],
set[<int,int>] and set[set[str]]. Sets are denoted by a list of elements, separated by comma’s
and enclosed in braces as in {E1, E2, ..., En}, where theEi (1 ≤ i ≤ n) are expressions that yield
the desired element type. For example,

• {1, 2, 3} is of type set[int],

• {<1,10>, <2,20>, <3,30>} is of type set[<int,int>],

• {<"a",10>, <"b",20>, <"c",30>} is of type set[<str,int>], and

• {{"a", "b"}, {"c", "d", "e"}} is of type set[set[str]].

Relations Relations are nothing more than sets of tuples, but since they are used so often we provide
some shorthand notation for them.

Relations are represented by the type rel[T1, T2], where T1 and T2 are arbitrary types; it is a short-
hand for set[<T1, T2>]. Examples are rel[int,str] and rel[int,set[str]]. Relations
are denoted by {<E11, E12>, <E21, E22>, ..., <En1, En2>}, where the Eij are expressions
that yield the desired element type. For example, {<1, "a">, <2, "b">, <3,"c">} is of type
rel[int, str].

Not surprisingly, n-ary relations are represented by the type rel[T1, T2, ..., Tn] which is a
shorthand for set[<T1, T2, ..., Tn>]. Most built-in operators and functions require binary rela-
tions as arguments. It is, however, perfectly possible to use n-ary relations as values, or as arguments or
results of functions. Examples are:

• {<1,10>, <2,20>, <3,30>} is of type rel[int,int] (yes indeed, you saw this same
example before and then we gave set[<int,int>] as its type; remember that these types are
interchangeable.),

• {<"a",10>, <"b",20>, <"c",30>} is of type rel[str,int], and

• {{"a", 1, "b"}, {"c", 2, "d"}} is of type rel[str,int,str].

3.2.1 User-defined Types and Values
Alias types Everything can be expressed using the elementary types and values that are provided by
RSCRIPT. However, for the purpose of documentation and readability it is sometimes better to use a
descriptive name as type indication, rather than an elementary type. The type declaration

type T1 = T2

states that the new type name T1 can be used everywhere instead of the already defined type name T2. For
instance,

type ModuleId = str
type Frequency = int

introduces two new type names ModuleId and Frequency, both an alias for the type str. The use of
type aliases is a good way to hide representation details.
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Composite Types and Values In ordinary programming languages record types or classes exist to intro-
duce a new type name for a collection of related, named, values and to provide access to the elements of
such a collection through their name. In RSCRIPT, tuples with named elements provide this facility. The
type declaration

type T = <T1 F1 ,..., Tn Fn>

introduces a new composite type T , with n elements. The i-th element Ti Ni has type Ti and field name
Fi. The common dot notation for field access is used to address an element of a composite type. If V is a
variable of type T , then the i-th element can be accessed by V .Fi. For instance,1

type Triple = <int left, str middle, bool right>
Triple TR = <3, "a", true>
str S = TR.middle

first introduces the composite type Triple and defines the Triple variable TR. Next, the field selection
TR.middle is used to define the string S.

Implementation Note. The current implementation severely restricts the re-use of field names in differ-
ent type declarations. The only re-use that is allowed are fields with the same name and the same type that
appear at the same position in different type declarations.

Type equivalence An RSCRIPT should be well-typed, this means above all that identifiers that are used
in expressions have been declared, and that operations and functions should have operands of the required
type. We use structural equivalence between types as criterion for type equality. The equivalence of two
types T1 and T2 can be determined as follows:

• Replace in both T1 and T2 all user-defined types by their definition until all user-defined types have
been eliminated. This may require repeated replacements. This gives, respectively, T ′1 and T ′2.

• If T ′1 and T ′2 are identical, then T1 and T2 are equal.

• Otherwise T1 and T2 are not equal.

3.3 Comprehensions
We will use the familiar notation

{E1, ..., Em | G1, ..., Gn}

to denote the construction of a set consisting of the union of successive values of the expressionsE1, ..., Em.
The values and the generated set are determined by E1, ..., Em and the generators G1, ..., Gn. E is com-
puted for all possible combinations of values produced by the generators.

Each generator may introduce new variables that can be used in subsequent generators as well as in the
expressions E1, ..., Em. A generator can use the variables introduced by preceding generators. Generators
may enumerate all the values in a set or relation, they may perform a test, or they may assign a value to
variables.

3.3.1 Generators
Enumerator Enumerators generate all the values in a given set or relation. They come in two flavors:

• T V : E: the elements of the set S (of type set[T]) that results from the evaluation of ex-
pression E are enumerated and subsequently assigned to the new variable V of type T . Examples
are:

1The variable declarations that appear on lines 2 and 3 of this example are explained fully in Section 3.4.
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– int N : {1, 2, 3, 4, 5},

– str K : KEYWORDS, where KEYWORDS should evaluate to a value of type set[str].

• <D1, ..., Dn> : E: the elements of the relation R (of type rel[<T ′1,...,T
′
n], where T ′i

is determined by the type of each targetDi, see below) that results from the evaluation of expression
E are enumerated. The i-the element (i = 1, ..., n) of the resulting n-tuple is subsequently combined
with each target Di as follows:

– If Di is a variable declaration of the form Ti Vi, then the i-th element is assigned to Vi.

– If Di is an arbitrary expression Ei, then the value of the i-th element should be equal to the
value of Ei. If they are unequal, computation continues with enumerating the next tuple in the
relation R.

Examples are:

– <str K, int N> : <"a",10>, <"b",20>, <"c",30>}¡

– <str K, int N> : FREQUENCIES, where FREQUENCIES should evaluate to a value
of type rel[str,int].

– <str K, 10> : FREQUENCIES, will only generate pairs with 10 as second element.

Test A test is a boolean-valued expression. If the evaluation yields true this indicates that the current
combination of generated values up to this test is still as desired and execution continues with subsequent
generators. If the evaluation yields false this indicates that the current combination of values is unde-
sired, and that another combination should be tried. Examples:

• N >= 3 tests whether N has a value greater than or equal 3.

• S == "coffee" tests whether S is equal to the string "coffee".

In both examples, the variable (N, respectively, S) should have been introduced by a generator that occurs
earlier in the enclosing comprehension.

Assignment Assignments assign a value to one or more variables and also come in two flavors:

• T V <- E: assigns the value of expressionE to the new variable V of type T .

• <R1, ..., Rn> <- E: combines the elements of the n-tuple resulting from the evaluation of
expressionE with each Ti as follows:

– If Ri is a variable declaration of the form T Vi, then the i-th element is assigned to Vi.

– If Ri is an arbitrary expression Ei, then the value of the i-th element should be equal to the
value of Ei. If they are unequal, the assignment acts as a test that fails (see above).

Examples of assignments are:

• rel[str,str] ALLCALLS <- CALLS+ assigns the transitive closure of the relation CALLS
to the variable ALLCALLS.

• bool Smaller <- A <= B assigns the result of the test A <= B to the Boolean variableSmaller.

• <int N, str S, 10> <- E evaluates expressionE (which should yield a tuple of type <int,
str, int>) and performs a tuple-wise assignment to the new variables N and S provided that the
third element of the result is equal to 10. Otherwise the assignment acts as a test that fails.
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3.3.2 Examples of Comprehensions
• {X | int X : {1, 2, 3, 4, 5}, X >= 3} yields the set {3,4,5}.

• {<X, Y> | int X : {1, 2, 3}, int Y : {2, 3, 4}, X >= Y} yields the relation
{<2, 2>, <3, 2>, <3, 3>}.

• {<Y, X> | <int X, int Y> : {<1,10>, <2,20>}} yields the inverse of the given re-
lation: {<10,1>, <20,2>}.

• {X, X * X | X : {1, 2, 3, 4, 5}, X >= 3} yields the set {3,4,5,9,16,25}.

3.4 Declarations

3.4.1 Variable Declarations
A variable declaration has the form

T V = E

where T is a type, V is a variable name, and T is an expression that should have type T . The effect is
that the value of expression E is assigned to V and can be used later on as V ’s value. Double declarations
are not allowed. As a convenience, also declarations without an initialization expression are permitted and
have the form

T V

and only introduce the variable V . Examples:

• int max = 100 declares the integer variable max with value 100.

• The definition

rel[str,int] day = {<"mon", 1>, <"tue", 2>, <"wed",3>,
<"thu", 4>, <"fri", 5>, <"sat",6>, <"sun",7>}

declares the variable day, a relation that maps strings to integers.

3.4.2 Local Variable Declarations
Local variables can be introduced as follows:

E where T1 V1 = E1, ..., Tn Vn = En end where

First the local variables Vi are bound to their respective values Ei, and then the value of expression E is
yielded.

3.4.3 Function Declarations
A function declaration has the form

T F(T1 V1, ..., Tn Vn) = E

Here T is the result type of the function and this should be equal to the type of the associated expression
E. Each Ti Vi represents a typed formal parameter of the function. The formal parameters may occur in E
and get their value when F is invoked from another expression. Example:

• The function declaration

rel[int, int] invert(rel[int,int] R) = {<Y, X> | <int X, int Y> : R }

yields the inverse of the argument relationR. For instance, invert({<1,10>, <2,20>}) yields
{<10,1>, <20,2>}.
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Parameterized types in function declarations The types that occur in function declarations may also
contain type variables that are written as & followed by an identifier. In this way functions can be defined
for arbitrary types. Examples:

• The declaration

rel[&T2, &T1] invert2(rel[&T1,&T2] R) = {<Y, X> | <&T1 X, &T2 Y> : R }

yields an inversion function that is applicable to any binary relation. For instance,

– invert2({<1,10>, <2,20>}) yields {<10,1>, <20,2>}, and

– invert2({<"mon", 1>, <"tue", 2>}) yields {<1, "mon">, <2, "tue">}.

• The function

<&T2, &T1> swap(&T1 A, &T2 B) = <B, A>

can be used to swap the elements of pairs of arbitrary types. For instance,

– swap(<1, 2>) yields <2,1> and

– swap(<"wed", 3>) yields <3, "wed">.

3.5 Assertions
An assert statement may occur everywhere where a declaration is allowed. It has the form

assert L: E

where L is a string that serves as a label for this assertion, and E is a boolean-value expression. During
execution, a list of true and false assertions is maintained. When the script is executed as a test suite (see
Section 8.3) a summary of this information is shown to the user. When the script is executed in the standard
fashion, the assert statement has no affect. Example:

• assert "Equality on Sets 1": {1, 2, 3, 1} == {3, 2, 1, 1}

3.6 Equations
It is also possible to define mutually dependent sets of equations:

equations
initial

T1 V1 init I1
...
Tn Vn init In

satisfy
V1 = E1

...
Vn = En

end equations

In the initial section, the variables Vi are declared and initialized. In the satisfy section, the actual
set of equations is given. The expressions Ei may refer to any of the variables Vi (and to any variables
declared earlier). This set of equations is solved by evaluating the expressions Ei, assigning their value to
the corresponding variables Vi, and repeating this as long as the value of one of the variables was changed.
This is typically used for solving a set of dataflow equations. Example:
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• Although transitive closure is provided as a built-in operator, we can use equations to define the
transitive closure of a relation. Recall that

R+ = R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ ....

This can be expressed as follows.

rel[int,int] R = {<1,2>, <2,3>, <3,4>}

equations
initial

rel[int,int] T init R
satisfy

T = T union (T o R)
end equations

The resulting value of T is as expected:

{<1,2>, <2,3>, <3,4>, <1, 3>, <2, 4>, <1, 4>}
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Chapter 4

Built-in Operators

The built-in operators can be subdivided in several broad
categories:

• Operations on Booleans (Section 4.1): logical op-
erators (and, or, implies and not).

• Operations on integers (Section 4.2): arithmetic
operators (+, -, *, and /) and comparison oper-
ators (==, !=, <, <=, >, and >=).

• Operations on strings (Section 4.3): comparison
operators (==, !=, <, <=, >, and >=).

• Operations on locations (Section 4.4). comparison
operators (==, !=, <, <=, >, and >=).

• Operations on sets or relations (Section 4.5): mem-
bership tests (in, notin), comparison operators
(==, !=, <, <=, >, and >=), and construction oper-
ators (union, inter, diff).

• Operations on relations (Section 4.6): composition
(o), Cartesian product (x), left and right image op-
erators, and transitive closures (+, *).

The following sections give detailed descriptions and ex-
amples of all built-in operators.

4.1 Operations on Booleans

bool1 and bool2 yields true if both arguments have the value true and false otherwise
bool1 or bool2 yields true if either argument has the value true and false otherwise
bool1 implies bool2 yields false if bool1 has the value true and bool2 has value false, and

true otherwise
not bool yields true if bool is false and true otherwise
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4.2 Operations on Integers

int1 == int2 yields true if both arguments are numerically equal and false otherwise
int1 != int2 yields true if both arguments are numerically unequal and false other-

wise
int1 <= int2 yields true if int1 is numerically less than or equal to int2 and false

otherwise
int1 < int2 yields true if int1 is a numerically less than int2 and false otherwise
int1 >= int2 yields true if int1 is numerically greater than or equal to int2 and false

otherwise
int1 > int2 yields true if int1 is numerically greater than int2 and false otherwise
int1 + int2 yields the arithmetic sum of int1 and int2
int1 - int2 yields the arithmetic difference of int1 and int2
int1 * int2 yields the arithmetic product of int1 and int2
int1 / int2 yields the integer division of int1 and int2

4.3 Operations on Strings

str1 == str2 yields true if both arguments are equal and false otherwise
str1 != str2 yields true if both arguments are unequal and false otherwise
str1 <= str2 yields true if str1 is lexicographically less than or equal to str2 and false

otherwise
str1 < str2 yields true if str1 is a lexicographically less than str2 and false otherwise
str1 >= str2 yields true if str1 is lexicographically greater than or equal to str2 and

false otherwise
str1 > str2 yields true if str1 lexicographically greater than str2 and false otherwise

4.4 Operations on Locations

loc1 == loc2 yields true if both arguments are identical and false otherwise
loc1 != loc2 yields true if both arguments are unequal and false otherwise
loc1 <= loc2 yields true if loc1 is textually contained in or equal to loc2 and false

otherwise
loc1 < loc2 yields true if loc1 is strictly textually contained in loc2 and false other-

wise
loc1 >= loc2 yields true if loc1 textually encloses or or is equal to loc2 and false

otherwise
loc1 > loc2 yields true if loc1 strictly textually encloses loc2 and false otherwise

Examples In the following examples the offset and length part of a location are set to 0; they are not
used when determining the outcome of the comparison operators.

• area-in-file("f", area(11, 1, 11, 9, 0, 0)) <
area-in-file("f", area(10, 2, 12, 8, 0, 0)) yields true.

• area-in-file("f", area(10, 3, 11, 7, 0,0)) <
area-in-file("f", area(10, 2, 11, 8, 0, 0)) yields true.

• area-in-file("f", area(10, 3, 11, 7, 0, 0)) <
area-in-file("g", area(10, 3, 11, 7, 0, 0)) yields false.
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4.5 Operations on Sets or Relations

4.5.1 Membership Tests
any in set yields true if any occurs as element in set and false otherwise
any notin set yields false if any occurs as element in set and true otherwise
tuple in rel yields true if tuple occurs as element in rel and false otherwise
tuple notin rel yields false if tuple occurs as element in rel and true otherwise

Examples

• 3 in {1, 2, 3} yields true.

• 4 in {1, 2, 3} yields false.

• 3 notin {1, 2, 3} yields false.

• 4 notin {1, 2, 3} yields true.

• <2,20> in {<1,10>, <2,20>, <3,30>} yields true.

• <4,40> notin {<1,10>, <2,20>, <3,30>} yields true.

Note If the first argument of these operators has type T , then the second argument should have type
set[T].

4.5.2 Comparisons
set1 == set2 yields true if both arguments are equal sets and false otherwise
set1 != set2 yields true if both arguments are unequal sets and false otherwise
set1 <= set2 yields true if set1 is a subset of set2 and false otherwise
set1 < set2 yields true if set1 is a strict subset of set2 and false otherwise
set1 >= set2 yields true if set1 is a superset of set2 and false otherwise
set1 > set2 yields true if set1 is a strict superset of set2 and false otherwise

4.5.3 Construction
set1 union set2 yields the set resulting from the union of the two arguments.
set1 inter set2 yields the set resulting from the intersection of the two arguments.
set1 \ set2 yields the set resulting from the difference of the two arguments.

Examples

• {1, 2, 3} union {4, 5, 6} yields {1, 2, 3, 4, 5, 6}.

• {1, 2, 3} union {1, 2, 3} yields {1, 2, 3}.

• {1, 2, 3} union {4, 5, 6} yields {1, 2, 3, 4, 5, 6}.

• {1, 2, 3} inter {4, 5, 6} yields { }.

• {1, 2, 3} inter {1, 2, 3} yields {1, 2, 3}.

• {1, 2, 3, 4} \ {1, 2, 3} yields {4}.

• {1, 2, 3} \ {4, 5, 6} yields {1, 2, 3}.
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4.5.4 Miscellaneous
# set yields the number of elements in set.
# rel yields the number of tuples in rel.

Examples

• #{1, 2, 3} yields 3.

• {<1,10>, <2,20>, <3,30>} yield 3.

4.6 Operations on Relations
rel1 o rel2 yields the relation resulting from the composition of the two arguments
set1 x set2 yields the relation resulting from the Cartesian product of the two arguments
rel [-, set ] yields the left image of the rel
rel [-, elem ] yields the left image of the rel
rel [ elem ,-] yields the right image of rel
rel [ set ,-] yields the right image of rel
set [ elem ] yields the right image of rel
rel [ set ] yields the right image of rel
rel + yields the relation resulting from the transitive closure of rel
rel * yields the relation resulting from the reflexive transitive closure of rel

Composition: o The composition operator combines two relations and can be defined as follows:

rel[&T1,&T3] compose(rel[&T1,&T2] R1, rel[&T2,&T3] R2) =
{<V, Y> | <&T1 V, &T2 W> : R1, <&T2 X, &T3 Y> : R2, W == X }

Example

• {<1,10>, <2,20>, <3,15>} o {<10,100>, <20,200>} yields {<1,100>, <2,200>}.

Cartesian product: x The product operator combines two sets into a relation and can be defined as
follows:

rel[&T1,&T2] product(set[&T1] S1, set[&T2] S2) =
{<V, W> | &T1 V : S1, &T2 W : S2 }

Example

• {1, 2, 3} x {9} yields {<1, 9>, <2, 9>, <3, 9>}.

Left image: [-, ] Taking the left image of a relation amounts to selecting some elements from the
domain of a relation.

The left image operator takes a relation and an element E and produces a set consisting of all elements
Ei in the domain of the relation that occur in tuples of the form <Ei, E>. It can be defined as follows:

set[&T1] left-image(rel[&T1,&T2] R, &T2 E) =
{ V | <&T1 V, &T2 W> : R, W == E }

The left image operator can be extended to take a set of elements as second element instead of a single
element:

set[&T1] left-image(rel[&T1,&T2] R, set[&T2] S) =
{ V | <&T1 V, &T2 W> : R, W in S }

26



RSCRIPT Tutorial Chapter 4. Built-in Operators

Examples Assume that Rel has value {<1,10>, <2,20>, <1,11>, <3,30>, <2,21>} in
the following examples.

• Rel[-,10] yields {1}.

• Rel[-,{10}] yields {1}.

• Rel[-,{10, 20}] yields {1, 2}.

Right image: [ ] and [ ,-] Taking the right image of a relation amounts to selecting some elements
from the range of a relation.

The right image operator takes a relation and an element E and produces a set consisting of all elements
Ei in the range of the relation that occur in tuples of the form <E, Ei>. It can be defined as follows:

set[&T2] right-image(rel[&T1,&T2] R, &T1 E) =
{ W | <&T1 V, &T2 W> : R, V == E }

The right image operator can be extended to take a set of elements as second element instead of a single
element:

set[&T2] right-image(rel[&T1,&T2] R, set[&T1] S) =
{ W | <&T1 V, &T2 W> : R, V in S}

Examples Assume that Rel has value {<1,10>, <2,20>, <1,11>, <3,30>, <2,21>} in
the following examples.

• Rel[1] yields {10, 11}.

• Rel[{1}] yields {10, 11}.

• Rel[{1, 2}] yields {10, 11, 20, 21}.

These expressions are abbreviations for, respectivelyRel[1,-], Rel[{1},-]. and Rel[{1, 2},-].
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Chapter 5

Built-in Functions

The built-in functions can be subdivided in several broad
categories:

• Elementary functions on sets and relations
(Section 5.1): identity (id), inverse (inv),
complement (compl), and powerset (power0,
power1).

• Extraction from relations (Section 5.2): do-
main (domain), range (range), and carrier
(carrier).

• Restrictions and exclusions on relations (Sec-
tion 5.3): domain restriction (domainR),
range restriction (rangeR), carrier restriction
(carrierR), domain exclusion (domainX),
range exclusion (rangeX), and carrier exclusion
(carrierX).

• Functions on tuples (Section 5.4): first element (first), and second element (second).

• Relations viewed as graphs (Section 5.5): the root elements (top), the leaf elements (bottom),
reachability with restriction (reachR), and reachability with exclusion (reachX).

• Functions on locations (Section 5.6): file name (filename), beginning line (beginline), first
column (begincol), ending line (endline), and ending column (endcol).

• Functions on sets of integers (Section 5.7): sum (sum), average (average), maximum (max), and
minimum (min).

The following sections give detailed descriptions and examples of all built-in functions.

5.1 Elementary Functions on Sets and Relations

5.1.1 Identity Relation: id
Definition:

rel[&T, &T] id(set[&T] S) = { <X, X> | &T X : S}
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Yields the relation that results from transforming each element in S into a pair with that element as first
and second element. Examples:

• id({1,2,3}) yields {<1,1>, <2,2>, <3,3>}.

• id({"mon", "tue", "wed"}) yields {<"mon","mon">, <"tue","tue">, <"wed","wed">}.

5.1.2 Deprecated: Set with unique elements: unique
Definition:

set[&T] unique(set[&T] S) = primitive

Yields the set (actually the set) that results from removing all duplicate elements from S. This function
stems from previous versions when we used bags instead of sets. It now acts as the identity function and is
deprecated. Example:

• unique({1,2,1,3,2}) yields {1,2,3}.

5.1.3 Inverse of a Relation: inv
Definition:

rel[&T2, &T1] inv (rel[&T1, &T2] R) = { <Y, X> | <&T1 X, &T2 Y> : R }

Yields the relation that is the inverse of the argument relation R, i.e. the relation in which the elements of
all tuples in R have been interchanged. Example:

• inv({<1,10>, <2,20>}) yields {<10,1>,<20,2>}.

5.1.4 Complement of a Relation: compl
Definition:

rel[&T1, &T2] compl(rel[&T1, &T2] R) = (domain(R) x range(R)) \ R}

Yields the relation that is the complement of the argument relation R, using the carrier set of R as universe.
Example:

• compl({<1,10>} yields {<1, 1>, <10, 1>, <10, 10>}.

5.1.5 Powerset of a Set: power0
Definition:

set[set[&T]] power0(set[&T] S) = primitive

Yields the powerset of set S (including the empty set). Example:

• power0({1, 2, 3, 4}) yields

{ {}, {1}, {2}, {3}, {4},{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4},
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}

5.1.6 Powerset of a Set: power1
Definition:

set[set[&T]] power1(set[&T] S) = primitive

Yields the powerset of set S (excluding the empty set). Example:

• power1({1, 2, 3, 4}) yields

{ {1}, {2}, {3}, {4},{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4},
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}
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5.2 Extraction from Relations

5.2.1 Domain of a Relation: domain
Definition:

set[&T1] domain (rel[&T1,&T2] R) = { X | <&T1 X, &T2 Y> : R }

Yields the set that results from taking the first element of each tuple in relation R. Examples:

• domain({<1,10>, <2,20>}) yields {1, 2}.

• domain({<"mon", 1>, <"tue", 2>}) yields {"mon", "tue"}.

5.2.2 Range of a Relation: range
Definition:

set[&T2] range (rel[&T1,&T2] R) = { Y | <&T1 X, &T2 Y> : R }

Yields the set that results from taking the second element of each tuple in relation R. Examples:

• range({<1,10>, <2,20>}) yields {10, 20}.

• range({<"mon", 1>, <"tue", 2>}) yields {1, 2}.

5.2.3 Carrier of a Relation: carrier
Definition:

set[&T] carrier (rel[&T,&T] R) = domain(R) union range(R)

Yields the set that results from taking the first and second element of each tuple in the relation R. Note that
the domain and range type of R should be the same. Example:

• carrier({<1,10>, <2,20>}) yields {1, 10, 2, 20}.

5.3 Restrictions and Exclusions on Relations

5.3.1 Domain Restriction of a Relation: domainR
Definition:

rel[&T1,&T2] domainR (rel[&T1,&T2] R, set[&T1] S) =
{ <X, Y> | <&T1 X, &T2 Y> : R, X in S }

Yields a relation identical to the relation R but only containing tuples whose first element occurs in set S.
Example:

• domainR({<1,10>, <2,20>, <3,30>}, {3, 1} yields {<1,10>, <3,30>}.

5.3.2 Range Restriction of a Relation: rangeR
Definition:

rel[&T1,&T2] rangeR (rel[&T1,&T2] R, set[&T2] S) =
{ <X, Y> | <&T1 X, &T2 Y> : R, Y in S }

Yields a relation identical to relation R but only containing tuples whose second element occurs in set S.
Example:

• rangeR({<1,10>, <2,20>, <3,30>}, {30, 10} yields {<1,10>, <3,30>}.
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5.3.3 Carrier Restriction of a Relation: carrierR
Definition:

rel[&T,&T] carrierR (rel[&T,&T] R, set[&T] S) =
{ <X, Y> | <&T X, &T Y> : R, X in S, Y in S }

Yields a relation identical to relation R but only containing tuples whose first and second element occur in
set S. Example:

• carrierR({<1,10>, <2,20>, <3,30>}, {10, 1, 20}) yields {<1,10>}.

5.3.4 Domain Exclusion of a Relation: domainX
Definition:

rel[&T1,&T2] domainX (rel[&T1,&T2] R, set[&T1] S) =
{ <X, Y> | <&T1 X, &T2 Y> : R, X notin S }

Yields a relation identical to relation R but with all tuples removed whose first element occurs in set S.
Example:

• domainX({<1,10>, <2,20>, <3,30>}, {3, 1}) yields {<2, 20>}.

5.3.5 Range Exclusion of a Relation: rangeX
Definition:

rel[&T1,&T2] rangeX (rel[&T1,&T2] R, set[&T2] S) =
{ <X, Y> | <&T1 X, &T2 Y> : R, Y notin S }

Yields a relation identical to relation R but with all tuples removed whose second element occurs in set S.
Example:

• rangeX({<1,10>, <2,20>, <3,30>}, {30, 10}) yields {<2, 20>}.

5.3.6 Carrier Exclusion of a Relation: carrierX
Definition:

rel[&T,&T] carrierX (rel[&T,&T] R, set[&T] S) =
{ <X, Y> | <&T1 X, &T2 Y> : R, X notin S, Y notin S }

Yields a relation identical to relation R but with all tuples removed whose first or second element occurs in
set S. Example:

• carrierX({<1,10>, <2,20>, <3,30>}, {10, 1, 20}) yields {<3,30>}.

5.4 Tuples

5.4.1 First Element of a Tuple: first
Definition:

&T1 first(<&T1, &T2> P) = primitive

Yields the first element of the tuple P. Examples:

• first(<1, 10>) yields 1.

• first(<"mon", 1>) yields "mon".
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5.4.2 Second Element of a Tuple: second
Definition:

&T2 second(<&T1, &T2> P) = primitive

Yields the second element of the tuple P. Examples:

• second(<1, 10>) yields 10.

• second(<"mon", 1>) yields 1.

5.5 Relations viewed as graphs

5.5.1 Top of a Relation: top
Definition:

set[&T] top(rel[&T, &T] R) = unique(domain(R)) \ range(R)

Yields the set of all roots when the relation R is viewed as a graph. Note that the domain and range type of
R should be the same. Example:

• top({<1,2>, <1,3>, <2,4>, <3,4>}) yields {1}.

5.5.2 Bottom of a Relation: bottom
Definition:

set[&T] bottom(rel[&T,&T] R) = unique(range(R)) \ domain(R)

Yields the set of all leaves when the relation R is viewed as a graph. Note that the domain and range type
of R should be the same. Example:

• bottom({<1,2>, <1,3>, <2,4>, <3,4>}) yields {4}.

5.5.3 Reachability with Restriction: reachR
Definition:

set[&T] reachR( set[&T] Start, set[&T] Restr, rel[&T,&T] Rel) =
range(domainR(Rel, Start) o carrierR(Rel, Restr)+)

Yields the elements that can be reached from set Start using the relation Rel, such that only elements in
set Restr are used. Example:

• reachR({1}, {1, 2, 3}, {<1,2>, <1,3>, <2,4>, <3,4>}) yields {2, 3}.

5.5.4 Reachability with Exclusion: reachX
Definition:

set[&T] reachX( set[&T] Start, set[&T] Excl, rel[&T,&T] Rel) =
range(domainR(Rel, Start) o carrierX(Rel, Excl)+)

Yields the elements that can be reached from set Start using the relation Rel, such that no elements in
set Excl are used. Example:

• reachX({1}, {2}, {<1,2>, <1,3>, <2,4>, <3,4>}) yields {3, 4}.
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5.6 Functions on Locations

5.6.1 File Name of a Location: filename
Definition:

str filename(loc A) = primitive

Yields the file name of location A. Example:

• filename(area-in-file("pico1.trm",area(5,2,6,8,0,0)))yields "pico1.trm".

5.6.2 Beginning Line of a Location: beginline
Definition:

int beginline(loc A) = primitive

Yields the first line of location A. Example:

• beginline(area-in-file("pico1.trm",area(5,2,6,8,0,0))) yields 5.

5.6.3 First Column of a Location: begincol
Definition:

int begincol(loc A) = primitive

Yields the first column of location A. Example:

• begincol(area-in-file("pico1.trm",area(5,2,6,8,0,0))) yields 2.

5.6.4 Ending Line of a Location: endline
Definition:

int endline(loc A) = primitive

Yields the last line of location A. Example:

• endline(area-in-file("pico1.trm",area(5,2,6,8,0,0))) yields 6.

5.6.5 Ending Column of a Location: endcol
Definition:

int endcol(loc A) = primitive

Yields the last column of location A. Example:

• endcol(area-in-file("pico1.trm",area(5,2,6,8,0,0))) yields 8.

5.7 Functions on Sets of Integers
The functions in this section operate on sets of integers. Some functions (i.e., sum-domain,sum-range,
average-domain, average-range) exist to solve the problem that we can only provide sets of in-
tegers and cannot model bags that may contain repeated occurrences of the same integer. For some calcu-
lations it is important to include these repetitions in the calculation (e.g., computing the average length of
class methods given a relation from methods names to number of lines in the method.)
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5.7.1 Sum of a Set of Integers: sum
Definition:

int sum(set[int] S) = primitive

Yields the sum of the integers in set S. Example:

• sum({1, 2, 3}) yields 6.

5.7.2 Sum of First Elements of Tuples in a Relation: sum-domain
Definition:

int sum-domain(rel[int,&T] R) = primitive

Yields the sum of the integers that appear in the first element of the tuples of R. Example:

• sum-domain({<1,"a">, <2,"b">, <1,"c">}) yields 4.

Be aware that sum(domain({<1,"a">, <2,"b"">, <1, "c">})) would be equal to 3 because
the function domain creates a set (as opposed to a bag) and its result would thus contain only one occur-
rence of 1.

5.7.3 Sum of Second Elements of Tuples in a Relation: sum-range
Definition:

int sum-range(set[int] S) = primitive

Yields the sum of the integers that appear in the second element of the tuples of R. Example:

• sum-range({<"a",1>, <"b",2>, <"c",1>}) yields 4.

5.7.4 Average of a Set of Integers: average
Definition:

int average(set[int] S) = sum(S)/(#S)

Yields the average of the integers in set S. Example:

• average({1, 2, 3}) yields 3.

5.7.5 Average of First Elements of Tuples in a Relation: average-domain
Definition:

int average-domain(rel[int,&T] R) = sum-domain(R)/(#R)

Yields the average of the integers that appear in the first element of the tuples of R. Example:

• average({<1,"a">, <2,"b">, <3,"c">}) yields 2.

5.7.6 Average of Second Elements of Tuples in a Relation: average-range
Definition:

int average(rel[&T,int] R) = sum-range(R)/(#R)

Yields the average of the integers that appear in the second element of the tuples of R. Example:

• average({<"a",1>, <"b",2>, <"c",3>}) yields 2.
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5.7.7 Maximum of a Set of Integers: max
Definition:

int max(set[int] S) = primitive

Yields the largest integer in set S. Example:

• max({1, 2, 3}) yields 3.

5.7.8 Minimum of a Set of Integers: min
Definition:

int min(set[int] S) = primitive

Yields the smallest integer in set S. Example:

• min({1, 2, 3}) yields 1.
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Larger Examples

Now we will have a closer look at some larger appli-
cations of RSCRIPT. We start by analyzing the global
structure of a software system. You may now want to
reread the example of call graph analysis given earlier
in Chapter 2 as a reminder. The component structure
of an application is analyzed in Section 6.1 and Java
systems are analyzed in Section 6.2. Next we move on
to the detection of initialized variables in Section 6.3
and we explain how source code locations can be in-
cluded in a such an analysis (Section 6.4).
As an example of computing code metrics, we de-
scribe the calculation of McCabe’s cyclomatic com-
plexity in Section 6.5. Several examples of dataflow
analysis follow in Section 6.6. A description of pro-
gram slicing concludes the chapter (Section 6.7).

6.1 Analyzing the Component Structure of an Application
A frequently occurring problem is that we know the call relation of a system but that we want to understand
it at the component level rather than at the procedure level. If it is known to which component each
procedure belongs, it is possible to lift the call relation to the component level as proposed in [16].

First, introduce new types to denote procedure calls as well as components of a system:

type proc = str
type comp = str

Given a calls relation Calls2, the next step is to define the components of the system and to define a
PartOf relation between procedures and components.

rel[proc,proc] Calls = {<"main", "a">, <"main", "b">, <"a", "b">,
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Figure 6.1: (a) Calls2; (b) PartOf; (c) ComponentCalls

<"a", "c">, <"a", "d">, <"b", "d">}

set[comp] Components = {"Appl", "DB", "Lib"}

rel[proc, comp] PartOf = {<"main", "Appl">, <"a", "Appl">, <"b", "DB">,
<"c", "Lib">, <"d", "Lib">}

Actual lifting, amounts to translating each call between procedures by a call between components. This is
achieved by the following function lift:

rel[comp,comp] lift(rel[proc,proc] aCalls, rel[proc,comp] aPartOf) =
{ <C1, C2> | <proc P1, proc P2> : aCalls,

<comp C1, comp C2> : aPartOf[P1] x aPartOf[P2]
}

In our example, the lifted call relation between components is obtained by

rel[comp,comp] ComponentCalls = lift(Calls2, PartOf)

and has as value:

{<"DB", "Lib">, <"Appl", "Lib">, <"Appl", "DB">, <"Appl", "Appl">}

The relevant relations for this example are shown in Figure 6.1.

6.2 Analyzing the Structure of Java Systems
Now we consider the analysis of Java systems (inspired by [3]). Suppose that the type class is defined
as follows

type class = str

and that the following relations are available about a Java application:

• rel[class,class] CALL: If <C1, C2> is an element of CALL, then some method of C2 is
called from C1.

• rel[class,class] INHERITANCE: If <C1, C2> is an element of INHERITANCE, then class
C1 either extends class C2 or C1 implements interface C2.

• rel[class,class] CONTAINMENT: If <C1, C2> is an element of CONTAINMENT, then one
of the attributes of class C1 is of type C2.
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package CH.ifa.draw.standard;

import java.awt.Point;
import CH.ifa.draw.framework.*;
/**
* A LocatorHandle implements a Handle by delegating the location requests to
* a Locator object.
*/

public class LocatorHandle extends AbstractHandle {
private Locator fLocator;
/**
* Initializes the LocatorHandle with the given Locator.
*/

public LocatorHandle(Figure owner, Locator l) {
super(owner);
fLocator = l;

}
/**
* Locates the handle on the figure by forwarding the request
* to its figure.
*/

public Point locate() {
return fLocator.locate(owner());

}
}

Figure 6.2: The class LocatorHandle from JHotDraw 5.2

To make this more explicit, consider the class LocatorHandle from the JHotDraw application (ver-
sion 5.2) as shown in Figure 6.2. It leads to the addition to the above relations of the following tuples:

• To CALL the pairs <"LocatorHandle", "AbstractHandle"> and<"LocatorHandle",
"Locator"> will be added.

• To INHERITANCE the pair <"LocatorHandle", "AbstractHandle"> will be added.

• To CONTAINMENT the pair <"LocatorHandle", "Locator"> will be added.

Classes in Cycles Cyclic structures in object-oriented systems makes understanding hard. Therefore it
is interesting to spot classes that occur as part of a cyclic dependency. Here we determine cyclic uses of
classes that include calls, inheritance and containment. This is achieved as follows:

rel[class,class] USE = CALL union CONTAINMENT union INHERITANCE
set[str] ClassesInCycle =

{C1 | <class C1, class C2> : USE+, C1 == C2}

First, we define the USE relation as the union of the three available relations CALL, CONTAINMENT and
INHERITANCE. Next, we consider all pairs <C1, C2> in the transitive closure of the USE relation such
that C1 and C2 are equal. Those are precisely the cases of a class with a cyclic dependency on itself.

Probably, we do not only want to know which classes occur in a cyclic dependency, but we also want
to know which classes are involved in such a cycle. In other words, we want to associate with each class a
set of classes that are responsible for the cyclic dependency. This can be done as follows.

rel[class,class] USE = CALL union CONTAINMENT union INHERITANCE
set[class] CLASSES = carrier(USE)
rel[class,class] USETRANS = USE+
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rel[class,set[class]] ClassCycles =
{<C, USETRANS[C]> | class C : CLASSES, <C, C> in USETRANS }

First, we introduce two new shorthands: CLASSES and USETRANS. Next, we consider all classes C with
a cyclic dependency and add the pair <C, USETRANS[C]> to the relation ClassCycles. Note that
USETRANS[C] is the right image of the relation USETRANS for element C, i.e., all classes that can be
called transitively from class C.

6.3 Finding Uninitialized and Unused Variables in a Program
Consider the following program in the toy language Pico: 1

[ 1] begin declare x : natural, y : natural,
[ 2] z : natural, p : natural;
[ 3] x := 3;
[ 4] p := 4;
[ 5] if q then
[ 6] z := y + x
[ 7] else
[ 8] x := 4
[ 9] fi;
[10] y := z
[11] end

Inspection of this program learns that some of the variables are being used before they have been
initialized. The variables in question are q (line 5), y (line 6), and z (line 10). It is also clear that variable
p is initialized (line 4), but is never used. How can we automate these kinds of analysis?

Recall from Section 1 that we follow extract-enrich-view paradigm to approach such a problem.
The first step is to determine which elementary facts we need about the program. For this and many

other kinds of program analysis, we need at least the following:

• The control flow graph of the program. We represent it by a relation PRED (for predecessor) which
relates each statement with each predecessors.

• The definitions of each variable, i.e., the program statements where a value is assigned to the variable.
It is represented by the relation DEFS.

• The uses of each variable, i.e., the program statements where the value of the variable is used. It is
represented by the relation USES.

In this example, we will use line numbers to identify the statements in the program.2

Assuming that there is a tool to extract the above information from a program text, we get the following
for the above example:

type expr = int
type varname = str
expr ROOT = 1
rel[expr,expr] PRED = { <1,3>, <3,4>, <4,5>, <5,6>, <5,8>, <6,10>, <8,10> }
rel[expr,varname] DEFS = {<3,"x">, <4,"p">, <6,"z">, <8,"x">, <10,"y">}
rel[expr,varname] USES = {<5,"q">, <6,"y">, <6,"x">, <10,"z">}

This concludes the extraction phase. Next, we have to enrich these basic facts to obtain the initialized
variables in the program.

1This is an extended version of the example presented earlier in [14].
2In Section 6.4, we will use locations to represent statements.
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So, when is a variable V in some statement S initialized? If we execute the program (starting in ROOT),
there may be several possible execution path that can reach statement S. All is well if all these execution
path contain a definition of V. However, if one or more of these path do not contain a definition of V, then
V may be uninitialized in statement S. This can be formalized as follows:

rel[expr,varname] UNINIT =
{ <E, V> | <expr E, varname V>: USES,

E in reachX({ROOT}, DEFS[-,V], PRED)
}

We analyze this definition in detail:

• <expr E, varname V> : USES enumerates all tuples in the USES relation. In other words,
we consider the use of each variable in turn.

• E in reachX(ROOT, DEFS[-,V], PRED) is a test that determines whether statement S is
reachable from the ROOT without encountering a definition of variable V.

– {ROOT} represents the initial set of nodes from which all path should start.

– DEFS[-,V] yields the set of all statements in which a definition of variable V occurs. These
nodes form the exclusion set for reachX: no path will be extended beyond an element in this
set.

– PRED is the relation for which the reachability has to be determined.

– The result of reachX(ROOT, DEFS[-,V], PRED) is a set that contains all nodes that are
reachable from the ROOT (as well as all intermediate nodes on each path).

– Finally, E in reachX(ROOT, DEFS[-,V], PRED) tests whether expression E can be
reached from the ROOT.

• The net effect is that UNINIT will only contain pairs that satisfy the test just described.

When we execute the resulting RSCRIPT (i.e., the declarations of ROOT, PRED, DEFS, USES and
UNINIT), we get as value for UNINIT:

{<5, "q">, <6, "y">, <10, "z">}

and this is in concordance with the informal analysis given at the beginning of this example.
As a bonus, we can also determine the unused variables in a program, i.e., variables that are defined but

are used nowhere. This is done as follows:

set[var] UNUSED = range(DEFS) \ range(USES)

Taking the range of the relations DEFS and USES yields the variables that are defined, respectively, used
in the program. The difference of these two sets yields the unused variables, in this case {"p"}.

6.4 Using Locations to Represent Program Fragments
One aspect of the example we have just seen is artificial: where do these line numbers come from that we
used to indicate expressions in the program? One solution is to let the extraction phase generate locations
to precisely indicate relevant places in the program text.

Recall from Section 3.1.1, that a location consists of a file name, a begin line, a begin position, an end
line, and an end position. Also recall that locations can be compared: a locationA1 is smaller than another
location A2, if A1 is textually contained in A2. By including locations in the final answer of a relational
expression, external tools will be able to highlight places of interest in the source text.

The first step, is to define the type expr as aliases for loc (instead of int):

type expr = loc
type varname = str
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Figure 6.3: Checking undefined variables in Pico programs using the ASF+SDF Meta-Environment. On
the left, main window of Meta-Environment with error messages related to Pico program shown on the
right.

Of course, the actual relations are now represented differently. For instance, the USES relation may
now look like

{ <area-in-file("/home/paulk/example.pico", area(5,5,5,6,106,1)), "q">,
<area-in-file("/home/paulk/example.pico", area(6,13,6,14,127,1)), "y">,
<area-in-file("/home/paulk/example.pico", area(6,17,6,18,131,1)), "x">,
<area-in-file("/home/paulk/example.pico", area(10,7,10,8,168,1)), "z">

}

The definition of UNINIT can be nearly reused as is. The only thing that remains to be changed is to
map the (expression, variable-name) tuples to (variable-name, variable-occurrence) tuples, for the benefit
of the precise highlighting of the relevant variables.

We define a new type var to represent variable occurrences and an auxiliary set that VARNAMES that
contains all variable names:

type var = loc
set[varname] VARNAMES = range(DEFS) union range(USES)

Remains the new definition of UNINIT:

rel[var, varname] UNINIT =
{ <V, VN>| var-name VN : VARNAMES,

var V : USES[-,VN],
expr E : reachX({ROOT}, DEFS[-,VN], PRED),

V <= E
}

This definition can be understood as follows:

• var-name VN : VARNAMES generates all variable names.

• var V : USES[-,VN] generates all variable uses V for variables with name VN.
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• As before, expr E : reachX(ROOT, DEFS[-,VN], PRED) generates all expressions E
that can be reached from the start of the program without encountering a definition for variables
named VN.

• V <= E tests whether variable use V is enclosed in that expression (using a comparison on loca-
tions). If so, we have found an uninitialized occurrence of the variable named VN.

In Figure 6.3 it is shown how checking of Pico programs in the ASF+SDF Meta-Environment looks
like.

6.5 McCabe Cyclomatic Complexity
The cyclomatic complexity of a program is defined as e−n+2, where e and n are the number of edges and
nodes in the control flow graph, respectively. It was proposed by McCabe [18] as a measure of program
complexity.

Experiments have shown that programs with a higher cyclomatic complexity are more difficult to un-
derstand and test and have more errors. It is generally accepted that a program, module or procedure with
a cyclomatic complexity larger than 15 is too complex. Essentially, cyclomatic complexity measures the
number of decision points in a program and can be computed by counting all if statement, case branches in
switch statements and the number of conditional loops.

Given a control flow in the form of a predecessor relation rel[stat,stat] PRED between state-
ments, the cyclomatic complexity can be computed in an RSCRIPT as follows:

int cyclomatic-complexity(rel[stat,stat] PRED) =
#PRED - #carrier(PRED) + 2

The number of edges e is equal to the number of tuples in PRED. The number of nodes n is equal to
the number of elements in the carrier of PRED, i.e., all elements that occur in a tuple in PRED.

6.6 Dataflow Analysis
Dataflow analysis is a program analysis technique that forms the basis for many compiler optimizations.
It is described in any text book on compiler construction, e.g. [1]. The goal of dataflow analysis is to
determine the effect of statements on their surroundings. Typical examples are:

• Dominators (Section 6.6.1): which nodes in the flow dominate the execution of other nodes?

• Reaching definitions (Section 6.6.2): which definitions of variables are still valid at each statement?

• Live variables (Section 6.6.3): of which variables will the values be used by successors of a state-
ment?

• Available expressions: an expression is available if it is computed along each path from the start of
the program to the current statement.

• and more.

6.6.1 Dominators
A node d of a flow graph dominates a node n, if every path from the initial node of the flow graph to n goes
through d [1, Section 10.4]. Dominators play a role in the analysis of conditional statements and loops.
In Figure 6.4, we show the function dominators that computes the dominators for a given flow graph
PRED and an entry node ROOT. First, the auxiliary set VERTICES (all the statements) is computed. The
relation DOMINATES consists of all pairs <S, S1,...,Sn}> such that

• Si is not an initial node or equal to S.
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rel[stat,stat] dominators(rel[stat,stat] PRED, int ROOT) =
DOMINATES

where
set[int] VERTICES = carrier(PRED)

rel[int,set[int]] DOMINATES =
{ <V, VERTICES \ {V, ROOT} \ reachX({ROOT}, {V}, PRED)> | int V : VERTICES }

endwhere

Figure 6.4: The function dominators

Figure 6.5: (a) Flow graph and (b) dominator tree

• Si cannot be reached from the initial node without going through S.

Consider the flow graph

rel[int,int] PRED = {
<1,2>, <1,3>,
<2,3>,
<3,4>,
<4,3>,<4,5>, <4,6>,
<5,7>,
<6,7>,
<7,4>,<7,8>,
<8,9>,<8,10>,<8,3>,
<9,1>,
<10,7>
}

and the result of applying dominators to it:
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Figure 6.6: Flow graph for various dataflow problems

{<1, {2, 3, 4, 5, 6, 7, 8, 9, 10}>,
<2, {}>,
<3, {4, 5, 6, 7, 8, 9, 10}>,
<4, {5, 6, 7, 8, 9, 10}>,
<5, {}>,
<6, {}>,
<7, {8, 9, 10}>,
<8, {9, 10}>,
<9, {}>,
<10, {}>}

The original flow graph and the resulting dominator tree are shown in Figure 6.5. The dominator tree
has the initial node as root and each node d in the tree only dominates its descendants in the tree.

6.6.2 Reaching Definitions
We illustrate the calculation of reaching definitions using the example in Figure 6.6 which was inspired by
[1, Example 10.15].

As before, we assume the following basic relations PRED, DEFS and USES about the program:

type stat = int
type var = str
rel[stat,stat] PRED = { <1,2>, <2,3>, <3,4>, <4,5>, <5,6>, <5,7>, <6,7>,

<7,4>}
rel[stat, var] DEFS = { <1, "i">, <2, "j">, <3, "a">, <4, "i">,

<5, "j">, <6, "a">, <7, "i">}
rel[stat, var] USES = { <1, "m">, <2, "n">, <3, "u1">, <4, "i">,

<5, "j">, <6, "u2">, <7, "u3">}

For convenience, we introduce a notion def that describes that a certain statement defines some vari-
able and we revamp the basic relations into a more convenient format using this new type:

type def = <stat theStat, var theVar>
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Figure 6.7: Reaching definitions for flow graph in Figure 6.6

rel[stat, def] DEF = {<S, <S, V>> | <stat S, var V> : DEFS}
rel[stat, def] USE = {<S, <S, V>> | <stat S, var V> : USES}

The new DEF relation gets as value:

{<1, <1, "i">>, <2, <2, "j">>, <3, <3, "a">>, <4, <4, "i">>,
<5, <5, "j">>, <6, <6, "a">>, <7, <7, "i">>

and USE gets as value:

{<1, <1, "m">>, <2, <2, "n">>, <3, <3, "u1">>, <4, <4, "i">>,
<5, <5, "j">>, <6, <6, "u2">>, <7, <7, "u3">>}

Now we are ready to define an important new relation KILL. KILL defines which variable definitions
are undone (killed) at each statement and is defined as follows:

rel[stat, def] KILL =
{<S1, <S2, V>> | <stat S1, var V> : DEFS, <stat S2, V> : DEFS, S1 != S2}

In this definition, all variable definitions are compared with each other, and for each variable definition all
other definitions of the same variable are placed in its kill set. In the example, KILL gets the value

{<1, <4, "i">>, <1, <7, "i">>, <2, <5, "j">>, <3, <6, "a">>,
<4, <1, "i">>, <4, <7, "i">>, <5, <2, "j">>, <6, <3, "a">>,
<7, <1, "i">>, <7, <4, "i">>}

and, for instance, the definition of variable i in statement 1 kills the definitions of i in statements 4 and 7.
Next, we introduce the collection of statements

set[stat] STATEMENTS = carrier(PRED)

which gets as value {1, 2, 3, 4, 5, 6, 7} and two convenience functions to obtain the predeces-
sor, respectively, the successor of a statement:

set[stat] predecessor(stat S) = PRED[-,S]
set[stat] successor(stat S) = PRED[S,-]
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After these preparations, we are ready to formulate the reaching definitions problem in terms of two
relations IN and OUT. IN captures all the variable definitions that are valid at the entry of each statement
and OUT captures the definitions that are still valid after execution of each statement. Intuitively, for each
statement S, IN[S] is equal to the union of the OUT of all the predecessors of S. OUT[S], on the other
hand, is equal to the definitions generated by S to which we add IN[S] minus the definitions that are
killed in S. Mathematically, the following set of equations captures this idea for each statement:

IN [S] =
⋃

P∈predecessorofS
OUT [P ]

OUT [S] = DEF [S] ∪ (IN [S]−KILL[S])

This idea can be expressed in RSCRIPT quite literally:

equations
initial

rel[stat,def] IN init {}
rel[stat,def] OUT init DEF

satisfy
IN = {<S, D> | stat S : STATEMENTS,

stat P : predecessor(S),
def D : OUT[P]}

OUT = {<S, D> | stat S : STATEMENTS,
def D : DEF[S] union (IN[S] \ KILL[S])}

end equations

First, the relations IN and OUT are declared and initialized. Next, two equations are given that very much
resemble the ones given above. For our running example (Figure 6.7) the results are as follows. Relation
IN has as value:

{<2, <1, "i">>, <3, <2, "j">>, <3, <1, "i">>, <4, <3, "a">>,
<4, <2, "j">>, <4, <1, "i">>, <4, <7, "i">>, <4, <5, "j">>,
<4, <6, "a">>, <5, <4, "i">>, <5, <3, "a">>, <5, <2, "j">>,
<5, <5, "j">>, <5, <6, "a">>, <6, <5, "j">>, <6, <4, "i">>,
<6, <3, "a">>, <6, <6, "a">>, <7, <5, "j">>, <7, <4, "i">>,
<7, <3, "a">>, <7, <6, "a">>}

If we consider statement 3, then the definitions of i and j from the preceding two statements are still valid.
A more interesting case are the definitions that can reach statement 4:

• The definitions of variables a, j and i from, respectively, statements 3, 2 and 1.

• The definition of variable i from statement 7 (via the backward control flow path from 7 to 4).

• The definition of variable j from statement5 (via the path 5, 7, 4).

• The definition of variable a from statement 6 (via the path 6, 7, 4).

Relation OUT has as value:

{<1, <1, "i">>, <2, <2, "j">>, <2, <1, "i">>, <3, <3, "a">>,
<3, <2, "j">>, <3, <1, "i">>, <4, <4, "i">>, <4, <3, "a">>,
<4, <2, "j">>, <4, <5, "j">>, <4, <6, "a">>, <5, <5, "j">>,
<5, <4, "i">>, <5, <3, "a">>, <5, <6, "a">>, <6, <6, "a">>,
<6, <5, "j">>, <6, <4, "i">>, <7, <7, "i">>, <7, <5, "j">>,
<7, <3, "a">>, <7, <6, "a">>}

Observe, again for statement 4, that all definitions of variable i are missing in OUT[4] since they are killed
by the definition of i in statement 4 itself. Definitions for a and j are, however, contained in OUT[4].
The result of reaching definitions computation is illustrated in Figure 6.7.

In Figure 6.8 the above definitions are used to formulate the function reaching-definitions.
It assumes appropriate definitions for the types stat and var. It also assumes more general versions of
predecessor and successor. We will use it later on in Section 6.7 when defining program slicing.
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type def = <stat theStat, var theVar>
type use = <stat theStat, var theVar>

set[stat] predecessor(rel[stat,stat] P, stat S) = P[-,S]

set[stat] successor(rel[stat,stat] P, stat S) = P[S,-]

rel[stat, def] reaching-definitions(rel[stat,var] DEFS, rel[stat,stat] PRED) =
IN

where
set[stat] STATEMENT = carrier(PRED)

rel[stat,def] DEF = {<S,<S,V>> | <stat S, var V> : DEFS}

rel[stat,def] KILL =
{<S1, <S2, V>> | <stat S1, var V> : DEFS, <stat S2, V> : DEFS, S1 != S2}

equations
initial

rel[stat,def] IN init {}
rel[stat,def] OUT init DEF

satisfy
IN = {<S, D> | int S : STATEMENT,

stat P : predecessor(PRED,S),
def D : OUT[P]}

OUT = {<S, D> | int S : STATEMENT,
def D : DEF[S] union (IN[S] \ KILL[S])}

end equations
end where

Figure 6.8: Reaching definitions

6.6.3 Live Variables
The live variables of a statement are those variables whose value will be used by the current statement or
some successor of it. The mathematical formulation of this problem is as follows:

IN [S] = USE[S] ∪ (OUT [S]−DEF [S])

OUT [S] =
⋃

S′∈successorofS
IN [S′]

The first equation says that a variable is live coming into a statement if either it is used before redefinition in
that statement or it is live coming out of the statement and is not redefined in it. The second equation says
that a variable is live coming out of a statement if and only if it is live coming into one of its successors.
This can be expressed in RSCRIPT as follows:

equations
initial

rel[stat,def] LIN init {}
rel[stat,def] LOUT init DEF

satisfy
LIN = { < S, D> | stat S : STATEMENTS,

def D : USE[S] union (LOUT[S] \ (DEF[S]))}
LOUT = { < S, D> | stat S : STATEMENTS,

stat Succ : successor(S),
def D : LIN[Succ] }
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Figure 6.9: Live variables for flow graph in Figure 6.6

end equations

The results of live variable analysis for our running example are illustrated in Figure 6.9.

6.7 Program Slicing
Program slicing is a technique proposed by Weiser [28] for automatically decomposing programs in parts
by analyzing their data flow and control flow. Typically, a given statement in a program is selected as the
slicing criterion and the original program is reduced to an independent subprogram, called a slice, that is
guaranteed to represent faithfully the behavior of the original program at the slicing criterion. An example
is given in Figure 6.10. The initial program is given in Figure 6.10(a). The slice with statement [9] as
slicing criterion is shown in Figure 6.10(b): statements [4] and [7] are irrelevant for computing statement
[9] and do not occur in the slice. Similarly, Figure 6.10(c) shows the slice with statement [10] as slicing
criterion. This particular form of slicing is called backward slicing. Slicing can be used for debugging and
program understanding, optimization and more. An overview of slicing techniques and applications can be
found in [23].

Here we will explore a relational formulation of slicing adapted from a proposal in [13]. The basic
ingredients of the approach are as follows:

• We assume the relations PRED, DEFS and USES as before.

• We assume an additional set CONTROL-STATEMENT that defines which statements are control
statements.

• To tie together dataflow and control flow, three auxiliary variables are introduced:

– The variable TEST represents the outcome of a specific test of a conditional statement. The
conditional statement defines TEST and all statements that are control dependent on this con-
ditional statement will use TEST.

– The variable EXEC represents the potential execution dependence of a statement on some con-
ditional statement. The dependent statement defines EXEC and an explicit (control) dependence
is made between EXEC and the corresponding TEST.
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[ 1] read(n) [ 1] read(n) [ 1] read(n)
[ 2] i := 1 [ 2] i := 1 [ 2] i := 1
[ 3] sum := 0 [ 3] sum := 0
[ 4] product := 1 [ 4] product := 1
[ 5] while i<= n do [ 5] while i<= n do [ 5] while i<= n do

begin begin begin
[ 6] sum := sum + i [ 6] sum := sum + i
[ 7] product := [ 7] product :=

product * i product * i
[ 8] i := i + 1 [ 8] i := i + 1 [ 8] i := i + 1

end end end
[ 9] write(sum) [ 9] write(sum)
[10] write(product) [10] write(product)

(a) (b) (c)

Figure 6.10: (a) Sample program, (b) slice for statement [9], (c) slice for statement [10]

– The variable CONST represents an arbitrary constant.

The calculation of a (backward) slice now proceeds in six steps:

1. Compute the relation rel[use,def] use-def that relates all uses to their corresponding defi-
nitions. The function reaching-definitions as shown earlier in Figure 6.8 does most of the
work.

2. Compute the relation rel[def,use] def-use-per-stat that relates the “internal” defini-
tions and uses of a statement.

3. Compute the relation rel[def,use] control-dependence that links all EXECs to the cor-
responding TESTs.

4. Compute the relationrel[use,def] use-control-def combines use/def dependencies with
control dependencies.

5. After these preparations, compute the relation rel[use,use] USE-USE that contains dependen-
cies of uses on uses.

6. The backward slice for a given slicing criterion (a use) is now simply the projection of USE-USE for
the slicing criterion.

This informal description of backward slicing is described precisely in Figure 6.11. Let’s apply this to
the example in Figure 6.10 and assume the following:

rel[stat,stat] PRED = {<1,2>, <2,3>, <3,4>, <4,5>, <5,6>, <5,9>, <6,7>,
<7,8>,<8,5>, <8,9>, <9,10>}

rel[stat,var] DEFS = {<1, "n">, <2, "i">, <3, "sum">, <4,"product">,
<6, "sum">, <7, "product">, <8, "i">}

rel[stat,var] USES = {<5, "i">, <5, "n">, <6, "sum">, <6,"i">,
<7, "product">, <7, "i">, <8, "i">, <9, "sum">,
<10, "product">}

set[int] CONTROL-STATEMENT = { 5 }

The result of the slice
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set[use] BackwardSlice(
set[stat] CONTROL-STATEMENT,
rel[stat,stat] PRED,
rel[stat,var] USES,
rel[stat,var] DEFS,
use Criterion)

= USE-USE[Criterion]

where
rel[stat, def] REACH = reaching-definitions(DEFS, PRED)

rel[use,def] use-def =
{<<S1,V>, <S2,V>> | <stat S1, var V> : USES, <stat S2, V> : REACH[S1]}

rel[def,use] def-use-per-stat =
{<<S,V1>, <S,V2>> | <stat S, var V1> : DEFS, <S, var V2> : USES}

union
{<<S,V>, <S,"EXEC">> | <stat S, var V> : DEFS}

union
{<<S,"TEST">,<S,V>> | stat S : CONTROL-STATEMENT,

<S, var V> : domainR(USES, {S})}

rel[stat, stat] CONTROL-DOMINATOR =
domainR(dominators(PRED), CONTROL-STATEMENT)

rel[def,use] control-dependence =
{ <<S2, "EXEC">,<S1,"TEST">> | <stat S1, stat S2> : CONTROL-DOMINATOR}

rel[use,def] use-control-def = use-def union control-dependence

rel[use,use] USE-USE = (use-control-def o def-use-per-stat)*

endwhere

Figure 6.11: Backward slicing

BackwardSlice(CONTROL-STATEMENT, PRED, USES, DEFS, <9, "sum">)

will then be

{ <1, "EXEC">, <2, "EXEC">, <3, "EXEC">, <5, "i">, <5, "n">,
<6, "sum">, <6, "i">, <6, "EXEC">, <8, "i">, <8, "EXEC">,
<9, "sum"> }.

Take the domain of this result and we get exactly the statements in Figure 6.10(b).
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Chapter 7

Extracting Facts from Source Code

In this tutorial we have, so far, concen-
trated on querying and enriching facts that
have been extracted from source code.
As we have seen from the examples,
once these facts are available, a con-
cise RSCRIPT suffices to do the required
processing. But how is fact extraction
achieved and how difficult is it? To answer
these questions we first describe the work-
flow of the fact extraction process (Sec-
tion 7.1) and then we give a more detailed
account of fact extraction using ASF+SDF
(Section 7.2).

7.1 Workflow for Fact Extraction

Figure 7.1 shows a typical workflow for fact extraction for a System Under Investigation (SUI). It assumes
that the SUI uses only one programming language and that you need only one grammar. In realistic cases,
however, several such grammars may be needed. The workflow consists of three main phases:

• Grammar: Obtain and improve the grammar for the source language of the SUI.

• Facts: Obtain and improve facts extracted from the SUI.

• Queries: Write and improve queries that give the desired answers.

Of course, it may happen that you have a lucky day and that extracted facts are readily available or that
you can reuse a good quality fact extractor that you can apply to the SUI. On ordinary days you have the
above workflow as fall-back.

It may come as a surprise that there is such a strong emphasis on validation in this workflow. The
reason is that the SUI is usually a huge system that defeats manual inspection. Therefore we must be very
careful that we validate the outcome of each phase.

Grammar In many cases there is no canned grammar available that can be used to parse the programming
language dialect used in the SUI. Usually an existing grammar can be adjusted to that dialect, but then it is
then mandatory to validate that the adjusted grammar can be used to parse the sources of the SUI.

53



Chapter 7. Extracting Facts from Source Code RSCRIPT Tutorial

Figure 7.1: Workflow for fact extraction

Facts It may happen that the facts extracted from the source code are wrong. Typical error classes are:

• Extracted facts are wrong: the extracted facts incorrectly state that procedure P calls procedure Q but
this is contradicted by a source code inspection.

• Extracted facts are incomplete: the inheritance between certain classes in Java code is missing.

The strategy to validate extracted facts differ per case but here are three strategies:

• Postprocess the extracted facts (using RSCRIPT, of course) to obtain trivial facts about the source
code such as total lines of source code and number of procedures, classes, interfaces and the like.
Next validate these trivial facts with tools like wc (word and line count), grep (regular expression
matching) and others.

• Do a manual fact extraction on a small subset of the code and compare this with the automatically
extracted facts.

• Use another tool on the same source and compare results whenever possible. A typical example is a
comparison of a call relation extracted with different tools.

Queries For the validation of the answers to the queries essentially the same approach can be used as for
validating the facts. Manual checking of answers on random samples of the SUI may be mandatory. It also
happens frequently that answers inspire new queries that lead to new answers, and so on.
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Figure 7.2: The Separation-of-Concerns strategy for fact extraction

7.2 Fact Extraction using ASF+SDF

7.2.1 Strategies for Fact Extraction

The following global scenario’s are available when writing a fact extractor in ASF+SDF:

• Dump-and-Merge: Parse each source file, extract the relevant facts, and return the resulting (partial)
Rstore. In a separate phase, merge all the partial Rstores into a complete Rstore for the whole SUI.
The tool merge-rstores is available for this.

• Extract-and-Update: Parse each source file, extract the relevant facts, and add these directly to the
partial Rstore that has been constructed for previous source files.

The experience is that the Extract-and-Update is more efficient.
A second consideration is the scenario used for the fact extraction per file. Here there are again two

possibilities:

• All-in-One: Write one function that extracts all facts in one traversal of the source file. Typically,
this function has an Rstore as argument and returns an Rstore as well. During the visit of specific
language constructs additions are made to named sets or relations in the Rstore.

• Separation-of-Concerns: Write a separate function for each fact you want to extract. Typically, each
function takes a set or relation as argument and returns an updated version of it. At the top level
all these functions are called and their results are put into an Rstore. This strategy is illustrated in
Figure 7.2

The experience here is that everybody starts with the All-in-One strategy but that the complexities of the
interactions between the various fact extraction concerns soon start to hurt. The advice is therefore to use
the Separation-of-Concerns strategy even if it may be seem to be less efficient since it requires a traversal
of the source program for each extracted set or relation.
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module PicoFactExtraction
imports Pico-syntax
imports basic/Integers
imports Rstore
imports utilities/PosInfo[PROGRAM] utilities/PosInfo[STATEMENT]

utilities/PosInfo[EXP] utilities/PosInfo[PICO-ID]
exports

context-free syntax
cflow({ STATEMENT ";"}*) -> <Set[[Elem]], Rel[[Elem]], Set[[Elem]]>

uses(PROGRAM, Rel[[Elem]]) -> Rel[[Elem]] {traversal(accu,top-down,continue)}
uses(EXP, Rel[[Elem]]) -> Rel[[Elem]] {traversal(accu,top-down,continue)}

defs(PROGRAM, Rel[[Elem]]) -> Rel[[Elem]] {traversal(accu,top-down,break)}
defs(STATEMENT, Rel[[Elem]]) -> Rel[[Elem]] {traversal(accu,top-down,break)}

id2str(PICO-ID) -> String

Figure 7.3: Syntax of functions for Pico fact extraction

7.2.2 Extracting Facts for Pico
After all these mental preparations, we are now ready to delve into the details of a Pico fact extractor.
Figure 7.3 shows the syntax of the functions that we will need for Pico fact extraction. There are some
things to observe:

• Module Pico-syntax is imported to make available the Pico grammar.

• Module Rstore is imported to get access to all functions on Rstores.

• The module PosInfo is imported with various sort names as parameter. For all these sorts, the
functionget-locationwill be defined that extracts the source text location from a given language
construct.

• The function cflow will extract the control flow from Pico programs.

• The functions uses and defs extracts the uses and definitions of variables from the source text.

• id2str is an auxiliary function that converts Pico identifiers to strings that can be included in an
Rstore.

• We have omitted all declarations for ASF+SDF variables to be used in the specification. The con-
vention is that such variables all start with a dollar sign ($).

Extracting control flow The function cflow extracts the control flow from Pico programs. It takes a
list of statements as input and returns a triple as output:

• A set of program elements that may enter a construct.

• A relation between the entries and exits of a construct.

• A set of program elements that form the exits from the construct.

For instance, the test in an if-then-else statement forms the entry of the statement, it is connected to the
entry of the first statement of the then and the else branch. The exits of the if-then-else statement are
the exits of the last statement in the then and the else branch. The purpose of cflow is to determine
this information for individual statements and to combine this information for compound statements. Its
definition is shown in Figure 7.4.
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%% ---- control flow of statement lists
[cf1] <$Entry1, $Rel1, $Exit1> := cflow($Stat),

<$Entry2, $Rel2, $Exit2> := cflow($Stat+)
==========================================================
cflow($Stat ; $Stat+) =
< $Entry1,
$Rel1 union $Rel2 union ($Exit1 x $Entry2),
$Exit2

>
[cf2] cflow() = <{}, {}, {}>

%% ---- control flow of individual statements
[cf3] <$Entry, $Rel, $Exit> := cflow($Stat*),

$Control := get-location($Exp)
=========================================================
cflow(while $Exp do $Stat* od) =
< {$Control},
({$Control} x $Entry) union $Rel union ($Exit x {$Control}),
{$Control}

>

[cf4] <$Entry1, $Rel1, $Exit1> := cflow($Stat*1),
<$Entry2, $Rel2, $Exit2> := cflow($Stat*2),
$Control := get-location($Exp)
=========================================================
cflow(if $Exp then $Stat*1 else $Stat*2 fi) =
< {$Control},
({$Control} x $Entry1) union ({$Control} x $Entry2)

union $Rel1 union $Rel2,
$Exit1 union $Exit2

>
[default-cf]

$Loc := get-location($Stat)
=========================================================
cflow($Stat) = < {$Loc}, {}, {$Loc} >

Figure 7.4: Equations for cflow: computing control flow

Extracting uses and defs The functions defs and uses are shown in Figure 7.5. They extract the
definition, respectively, the use of variables from the source code. Both functions are defined by means of
an ASF+SDF traversal function which silently visits all constructs in a tree, and only performs an action
for the constructs for which the specification contains an equation. In the case of defs, equation [vd1]
operations on assignment statements and extracts a pair that relates the location of the complete statement
to the name of the variable on the left-hand side. For the function uses, equation [vu1] acts on all uses
of variables. For completeness sake, the figure also show the definition of utility function id2str.

Queries Figure 7.6 shows the syntax of the functions we will use for querying. In fact, we will demon-
strate two styles of definition. In the first style, the function extractRelation extracts facts from a
Pico program and yields an Rstore. This can be used by pico-query to run an arbitrary RSCRIPT on
that Rstore. In the second style, fact extraction and running an RSCRIPT are done in a single function.

Figure 7.7 shows the first definition style. In equation [er1], we see a step-by-step construction of
an Rstore that contains all the information gathered by the extraction functions. An Rstore that contains all
this information is returned as result of extractRelations. The function pico-query can then be
used to run an RSCRIPT for a given Rstore.
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%% ---- Variable definitions: <expression-location, var-name>

[vd1] $Id := $Exp := $Stat
==========================================================
defs($Stat, $Rel) = $Rel union {<get-location($Stat), id2str($Id)>}

%% ---- Variable uses <var-location, var-name>

[vu1] $Id := $Exp
==========================================================
uses($Exp, $Rel) = $Rel union {<get-location($Id), id2str($Id)>}

%% ----- utilities

[i2s] id2str(pico-id($Char*)) = strcon(""" $Char* """)

Figure 7.5: Equations for defs, uses and id2str

module PicoQuery
imports RscriptCalculator
imports PicoFactExtraction
imports basic/Errors

exports
start-symbols Summary
context-free syntax

extractRelations(PROGRAM) -> RSTORE
pico-query(RSCRIPT, RSTORE, StrCon, StrCon) -> Summary
uninit(PROGRAM) -> Summary

Figure 7.6: Syntax of function for two styles of querying

The second definition style is shown in Figure 7.8. In this case, we see that all work is done in a
single (indeed large) equation. The construct [| ... |] yield UNINIT is particularly noteworthy
since it allows the embedding of a complete RSCRIPT in an ASF+SDF equation. Also pay attention to the
following:

• The RSCRIPT is first simplified as much as possible according to ordinary ASF+SDF simplifica-
tion rules. This implies that variables like $Start, $Rel1, and $Program are replaced by their
respective values. This is also the case for the functions defs and uses that occur in the RSCRIPT.

• The effect of the [| ... |] yield UNINIT construct is that the RSCRIPT is evaluated and
that the value of UNINIT is returned as result.

• The definition of the function convert2summary is not shown: it performs a straightforward con-
version of UNINIT’s value to the message format (Summary) that is used by the Meta-Environment.

7.3 Concluding Remarks
As can already be seen from the very simple Pico example, over 100 lines of ASF+SDF specification
(including variable declarations and auxiliary functions we did not show) are needed to extract facts, while
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%% ---- extractRelations

[er-1] begin $Decls $Stat+ end := $Program,
$Start := get-location($Program),
<$Entry, $Rel, $Exit> := cflow($Stat+),

$Loc := get-location($Program),
$Rstore1 := assign(ROOT, expr, $Loc, rstore()),
$Rstore2 := assign(PRED, rel[expr,expr],

$Rel union ({$Start} x $Entry), $Rstore1),
$Rstore3 := assign(DEFS, rel[expr,varname], defs($Program, {}), $Rstore2),
$Rstore4 := assign(USES, rel[var,varname], uses($Program, {}), $Rstore3)
==========================================================================
extractRelations($Program) = $Rstore4

%% ---- pico-query

[pq1] pico-query($Script, $Rstore, $StrCon1, $StrCon2) =
convert2summary(

$StrCon2,
eval-rscript-with-rstore-and-yield($Script, $Rstore, $StrCon1)

)

Figure 7.7: Build an Rstore with extractRelations and apply it using pico-query

only 10 lines of RSCRIPT are sufficient for the further processing of these facts. What can we learn from
this observation?

First, that even in the simple case of Pico fact extraction is more complicated than the processing of
these facts. This may be due to the following:

• The facts we are interested in may be scattered over different language constructs. This implies that
the fact extractor has to cover all these cases.

• The extracted facts are completely optimized for relational processing but places a burden on the fact
extractor to perform this optimization.

Second, that several research question remain unanswered:

• Is it possible to solve (parts of) the fact extraction in a language-parametric way. In other words, is it
possible to define generic extraction methods that apply to multiple languages?

• Is a further integration of fact extraction with relational processing desirable? We have already shown
some form of integration in Figure 7.8 where an embedded RSCRIPT occurs in an ASF+SDF spec-
ification. Is it, for instance, useful to bring some of the syntactic program domains like expressions
and statements to the relational domain?
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[ui-1] begin $Decls $Stat+ end := $Program,
$Start := get-location($Program),
<$Entry, $Rel, $Exit> := cflow($Stat+),
$Rel1 := $Rel union ({$Start} x $Entry),
$Rval := [| type expr = loc

type var = loc
type varname = str

expr ROOT = $Start

rel[expr,expr] PRED = $Rel1
rel[expr,varname] DEFS = defs($Program, {})
rel[var,varname] USES = uses($Program, {})
set[varname] VARNAMES = range(DEFS) union range(USES)

rel[var, varname] UNINIT =
{ <V, VN>| var-name VN : VARNAMES,

var V : USES[-,VN],
expr E : reachX({ROOT}, DEFS[-,VN], PRED),
V <= E

}

|] yield UNINIT
===================================================================
uninit($Program) = convert2summary("Uninitialized variable", $Rval)

Figure 7.8: Combined fact extraction and query processing
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Chapter 8

Installing and Running RSCRIPT

8.1 Installing RSCRIPT

RSCRIPT is available1 as relation-calculus-0.4.tar.gz (or a newer version). It requires a
recent version (e.g. at least 1.5.3) of the ASF+SDF Meta-Environment to run. A typical installation session
on a typical Unix/Linux system consists of the following steps:

• Extract all files from the distribution: tar zxvf relation-calculus-0.4.tar.gz This
command uncompresses the distribution file, creates a subdirectory relation-calculus-0.4
and places all directories and files from the distribution in it.

• Change to the new directory: cd relation-calculus-0.4

• Configure the sources: ./configure

• Build and install application: make install

See the files INSTALL and README for more specific installation instructions.
1www.cwi.nl/projects/MetaEnv/...
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8.2 Running RSCRIPT from the command line

8.2.1 File extensions
The following file extensions are used by the command line tools:

• .rscript is the required file name extension for files that contain an RSCRIPT.

• .rstore is the required file name extension for files that contain an rstore. As intermediate result
rstores also occur in parsed form and then have the extension .rstore.pt. The tools transparently
accept rstores in both forms.

• .rviz is the required file name extension for files that contain relational data that are to be visualized
(see Chapter 9).

8.2.2 rscript: check and execute an rscript
The command rscript takes care of parsing, typechecking, and executing an RSCRIPT. Optionally, the
script can only be checked, can use a given rstore, be executed as test suite, or yield the value of a given
variable from the resulting rstore.

• -c or --check-only: Only check the rscript for syntactic errors or typechecking errors but do
not execute it.

• -h or --help; print help information.

• -i name or --input name: The RSCRIPT to be processed is on file name. By default, the script is
assumed to be on standard input.

• -o name or --output-parse-tree name: The result of the execution of the RSCRIPT is an
rstore and is written to file name. Note that this rstore is in the form of a parse tree. By default, the
resulting rstore is printed in textual form to standard output.

• -s name or --store name: The RSCRIPT is executed using an initial rstore taken from file name.
By default, the initial rstore is empty.

• -t or --testsuite: Execute the RSCRIPT as a testsuite, i.e., execute all assert statements and
report which ones failed.

• -v or --verbose: give verbose output.

• -y name or --yield name: Instead of producing a complete rstore as the result of executing the
rscript, only return the value of the variable name.r

The following examples illustrate the use of the rscript command:

• rscript query.rscript executes the script query.rscript and prints the resulting rstore
on standard output.

• rscript -i query.rscript -s previous.rstore -o result.rstore.pt: ex-
ecutes the same script, but uses previous.rstore as initial rstore and writes the resulting store
to result.rstore.pt¿

• rscript -y nCalls calls.rscript: executes the script calls.rscript and prints the
value of the variable nCalls in the resulting rstore.

• rscript -t tests1.rscript: executes tests2.rscript as test suite and reports which
assert statements failed (if any).
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8.2.3 extract-relations: extract relations from source files
The command extract-relations provides a common framework for ASF+SDF-based fact extrac-
tion and has the following form:

extract-relations [options] <input-files>

The following optional arguments are supported:

• -h or --help; print help information.

• -o file or --output file: the name of the resulting rstore (default: result.rstore.pt).

• -e program or --executable program: the executable program for performing extraction (de-
fault: none). This is most likely to be a compiled ASF+SDF specification.

• -s sort or --sort sort: sort is the sort used for parsing each input file (default: none). In other
words, each input file should conform to the syntax of sort. Example: CompilationUnit.

• -f name or --function name: the extraction function to be applied to each source file (default:
extractRelations). The definition of this function should conform to:

extractRelations(sort) -> RSTORE

where sort is the sort of each input file as defined above.

• -p file or --parse-table file: the parse table file used for parsing input files (default: none).

The following examples illustrate the use of the extract-relations command:

• extract-relations -e JavaAnalysis -s CompilationUnit -o jhotdraw.rstore.pt
-p Java.trm.tbl dir/*.java: extract relations from Java source code in the files dir/*.java.
Use executable JavaAnalysis, each input file is of sort CompilationUnit, use parse table
Java.trm.tbl, and produce as output an rstore jhotdraw.rstore.pt.

• extract-relations -e TBExtr -s Tscript -p Tscript.trm.tbl *.tb: extract
relations from TOOLBUS source files. Use executable TBExtr, each input file is of sort Tscript,
use parse table Tscript.trm.tbl and extract from the source files *.tb.

8.2.4 merge-rstores: combine several rstores
The command merge-rstores merges several rstores into a new rstore. This command is used in a
scenario where an extraction tool extracts facts from each source file in a software portfolio to be analyzed
and deposits these facts in a separate rstore per source file. When the complete portfolio is to be analyzed,
the separate rstores have to be merged into a single one. This merged rstore is then used as initial rstore for
the execution of some rscript.

The command has as arguments, a list of names of rstores to be merged.
The following optional arguments are supported:

• -h or --help: print help information.

• -o name or --output name: the name of the merged rstore is name. By default, the output is
result.rstore.pt.

Note: tool should check for right output form

• -v or --verbose: give verbose output.
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8.3 Running RSCRIPT Interactively
You can also edit and run Rscripts interactively:

• Change directory to your checked out copy of the directory relation-calculus/spec.

• Start the ASF+SDF Meta-Environment with the command meta.

• Open the module Rscript.sdf.

• Open your own term, using the Rscript module.

• Observe that a new menu with the name Rscript appears in the menu bar.

• Click the parse button in the Actions menu of the editor: now we know whether there are syntax
errors. If so, correct them.

• Click the Check button in the Rscript menu: this will perform a type check of your script. If
there are type errors, correct them.

• Click the Run button in the Rscript menu to execute your script: a new editor pops up which
shows all the variables at the end of the execution. Run also performs a type of your script so you
may skip the previous step.

• Click the Run with Rstore button if you want to execute your RSCRIPT with an existing “Rstore”:
a collection of relations that are the result of previous extraction phase. Currently, a fixed name is
used for this Rstore: RSTORE.rstore.

Running a Test suite Same as above but use Testsuite button instead of the Execute button in
the Rscript menu. The effect is that the script is executed and that a summary is printed of assert
statement that succeeded or failed.

8.4 Other Tools and Demos

8.4.1 Examples
The subdirectory rscripts contains several sample scripts. See, for instance, tests1.rscript and
tests2.rscript for examples of the use of built-in operators and functions.

8.4.2 The Pico Demo
The subdirectorydemo/pico contains in a single directory the Pico syntax, Pico fact extraction (discussed
in Section 7.2) and the test on uninitialized variables presented in Section 6.3.

• Change directory to demo/pico: cd demo/pico.

• Start the ASF+SDF Meta-Environment: meta -m Pico-syntax.sdf.

• Open the term exam.pico over module Pico-syntax.sdf.

• Under the Pico menu two styles of checking are available:

– Extract Relations: this extracts relations from the current Pico program.

– Uninitialized Vars (Style 1): uses the extracted facts and executes the RSCRIPT uninit.rscript,
see Figure 7.7.

– Uninitialized Vars (Style 2): performs combined facts extraction and query processing, see
Figure 7.8.

See Figure 6.3 for a screen dump.
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8.4.3 The Java Demo
The Java demo consists of the following parts:

• java/grammar: Contains a SDF grammar for Java.

• java/extraction: defines JavaAnalysis, that performs basic fact extraction from
Java source code. It also defines the command extract-java, a specialized version of
extract-relations (see Section 8.2.3):

• java/rscripts: defines a script Enrich.rscript enrich the facts extracted by JavaAnalysis.
It also defines some sample scripts that operate on the enriched rstores.

• java/example-hotdraw: gives data for the JhotDraw example.

The command extract-java provides a common framework for ASF+SDF-based fact extraction
from Java programs and has the following form:

extract-java [options]

The following optional arguments are supported:

• -h or --help; print help information.

• -i dir or --input dir: the name a directory dir that contains the Java source code. All Java source
files appearing in (subdirectories of) dir will be used as input. (default: current directory).

• -o file or --output file: the name of the resulting rstore (default: result.rstore.pt).

• -e program or --executable program: the executable program for performing extraction (de-
fault: JavaAnalysis). This is most likely to be a compiled ASF+SDF specification.

• -f name or --function name: the extraction function to be applied to each source file (default:
extractRelations). The definition of this function should conform to:

extractRelations(CompilationUnit) -> RSTORE

The following examples illustrate the use of the extract-relations command:

extract-java -i JHotDraw5.2-sources -o jhotdraw.rstore.pt

Here is a scenario to go all the way from Java source code to the visualization of the extracted and
enriched facts:

cd example-hotdraw
extract-java -i /ufs/paulk/software/source/JHotDraw -o jhotdraw.rstore.pt
rscript -i ../rscripts/Enrich.rscript -s jhotdraw.rstore.pt -o enr.jhotdraw.rstore.pt
rscript -i validate.rscript -s enr.jhotdraw.rstore.pt
rstore2rviz -i enr.jhotdraw.rstore.pt -o jhotdraw.rviz
rviz jhotdraw.rviz

In the next chapter, we will further explain this scenario.
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Chapter 9

Visualization of Rstores

The sets and relations constructed for all
but the most trivial problems are volu-
minous and their textual representation is
hard to grasp for the human eye. This
is where information visualization tech-
niques (**) come to our rescue. In
this chapter we present some initial ex-
periments to visualize the contents of an
Rstore. This is a multi-stage process de-
scribed in Section 9.1. First facts are ex-
tracted from the source (Section 9.2) and
are further enriched (Section 9.3). Next the
Rstore is converted to the .rviz format
that is more amenable as input for a visu-
alization tool. This format is described in
Section 9.4 and the conversion from Rstore
to this format is discussed in Section 9.5.
Next, the .rviz file can be visualized and
explored. This is the topic of Section 9.6

9.1 The visualization workflow
The process of achieving a visualization of a System under Investigation (SUI) is shown in Figure 9.1 and
consists of the following steps:

• Extract facts from a source code directory SUISrcDir and produce an Rstore SUI.rstore.pt.

• Enrich this Rstore by running an rscript enr.rscript on it, with resulting enriched Rstore
enr.rstore.pt.

• Convert the enriched Rstore to the the visualization format .rviz.

• Run the visualization tool rviz on these data.
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Figure 9.1: Workflow for visualization of System Under Investigation

The details of this process are now further explained.

9.2 Extracting Facts
In Chapter 7 we have already seen how fact extraction can be organized and implemented. For the current
presentation it is sufficient to assume that there exists an extract tool that can be used:

extract -i SUISrcDir -o SUI.rstore.pt

where SUISrcDir is the source directory where the source of the SUI can be found. In the distribution a
tool extract-java is available with precisely this behavior for Java programs.

9.3 Enriching Facts
Given the Rstore SUI.rstore.pt we enrich it by writing and executing an RSCRIPT enr.rscript
that extends the extracted facts as required by the goal we want to achieve:

rscript enr.rscript -s SUI.rstore.pt -o enr.SUI.rstore.pt
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Figure 9.2: File view

9.4 The .rviz Format
Before explaining the conversion to the rviz format, it is helpful to understand this format first. Only two
forms of data definitions can currently appear in an rviz file. Elements are values that can occur in relations
and are defined by the keyword elm. Tuples are defined by the keyword tup. The definition of an element
has the following form:

elm Type Name File BeginLine BeginCol EndLine EndCol

Type is the type as declared in the RSCRIPT, Name is the textual name of the element, and the subsequent
file and location information characterize the precise coordinates of the element in the source text. An
example of an element definition is:

elm "ClassName" "PolyLineFigure" ".../PolyLineFigure.java" 21 0 339 1

The definition of a tuple has the following form:

tup RelName Type1 Value1 Type2 Value2
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Figure 9.3: Tree map view

RelName is the name of the relation to which the tuple belongs. It is followed two type/value pairs that
define the two items in the tuple. An example of a tuple definition is:

tup IMPLEMENTS "ClassName" "AbstractHandle" "InterfaceName" "Handle"

Discussion Observe that the current visualization format is very simple and does not allow the represen-
tation of all data that may be present in an Rstore. In particular, sets and n-ary relations (n > 2) are not
represented. Clearly, this format will further evolve.

9.5 rstore2rviz: Convert Rstore to Visualization Format
The command rstore2rviz takes an rstore as input and converts it to the .rviz format that is accepted
by the visualization tool rviz.

• -h or --help: print help information.

• -i name or --input name: rstore comes from file name. By default: standard input.
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• -o name or --output name: the result is written to file name. By default, this is a file named
result.rviz.

• -v or --verbose: give verbose output.

Example: rstore2rviz -i enr.SUI.rstore.pt -o SUI.rviz

9.6 rviz: Visualize an Rstore
Visualization is simply started by the command rviz with the given visualization data as input, as in:

rviz SUI.rviz

The result is a window as shown in Figure 9.2 which consists of several panes. On the left-hand side three
panes occur. On top is the Relations pane that lists the relations that are available. One of these relations
can be selected and its elements will be displayed. In the middle appears an Element Type pane that shows
the element types that are available for the selected relation. Selecting one of these types lists in the the
bottom all Elements that occur in the selected relation and are of the selected type. By selecting one element
from the Elements pane, that element (and all elements it is associated with by the selected relation) will
be highlighted in the large graphical pane on the right.

There are two visualization methods available that can be selected by the button at the bottom left that
is alternatively labeled as View as Files or View as TreeMap. In the former case, files are shown
as rectangles with a a pattern of horizontal lines inside that reflect their textual structure. In the latter case,
a tree map is shown of the directory structure of all files.

Figure Figure 9.2 shows the visualization of facts extracted from the JHotDraw application. The re-
lation IMPLEMENTS has been selected, and of the two possible element types ClassName has been
chosen. From the list of possible class names, AbstractHandle has been selected. The result is that
the element itself is shown in the file view (with all lines of its definition displayed in blue), and all its
“related” elements (e.g., the interfaces it implements) shown in red.

Figure Figure 9.3 shows the same selection, but this time in the tree map view.
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Tables of Built-in Operators

Operator Description Section
and Boolean and 4.1
implies Boolean implication 4.1
in Membership test on sets/relations 4.5
inter Intersection of sets/relations 4.5
not Boolean negation 4.1
notin Non-membership test on sets/relations 4.5
or Boolean or 4.1
union Union of sets/relations 4.5
== Equality of integers 4.2
== Equality of strings 4.3
== Equality of locations 4.4
== Equality of sets/relations 4.5
!= Inequality of integers 4.2
!= Inequality of strings 4.3
!= Inequality of locations 4.4
!= Inequality of sets/relations 4.5
<= Less than or equal of integers 4.2
<= Less than or equal of strings 4.3
<= Textual inclusion of locations 4.4
<= Subset of sets/relations 4.5
< Less than of integers 4.2
< Less than of strings 4.3
< Strict textual inclusion of locations 4.4
< Strict subset of sets/relations 4.5
>= Greater than or equal of integers 4.2
>= Greater than or equal of strings 4.3
>= Textual containment of locations 4.4
>= Superset of sets/relations 4.5
> Greater than of integers 4.2
> Greater than of strings 4.3
> Strict textual containment of locations 4.4
> Strict superset of sets/relations 4.5
+ Addition of integers 4.2
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- Subtraction of integers 4.2
* Multiplication of integers 4.2
/ Division of integers 4.2
\ Difference of sets/relations 4.5
o Composition of relations 4.6
x Carthesian product of sets 4.6
# Number of elements of set 4.5.4
# Number of tuples of relation 4.5.4
[-, ] Left image of relation 4.6
[ ,-] Right image of relation 4.6
[ ] Right image of relation 4.6
+ Transitive closure of a relation 4.6
* Reflexive transitive closure of a relation 4.6
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Tables of Built-in Functions
Function Description Section
average Average of a set of integers 5.7.4
average-domain Average of first elements of tuples in relation 5.7.5
average-range Average of second elements of tuples in relation 5.7.6
begincol First column of a location 5.6.3
beginline Beginning line of a location 5.6.2
bottom Bottom of a relation 5.5.2
carrier Carrier of a relation 5.2.3
carrierR Carrier restriction of a relation 5.3.3
carrierX Carrier exclusion of a relation 5.3.6
compl Complement of a relation 5.1.4
endcol Last column of a location 5.6.5
endline Ending line of a location 5.6.4
filename File name of a location 5.6.1
first First element of a tuple 5.4.1
id Identity relation 5.1.1
inv Inverse of a relation 5.1.3
domain Domain of a relation 5.2.1
domainR Domain restriction of a relation 5.3.1
domainX Domain exclusion of a relation 5.3.4
min Minimum of a set of integers 5.7.7
max Maximum of a set of integers 5.7.7
power0 Powerset of a set 5.1.5
power1 Powerset of a set 5.1.6
range Range of a relation 5.2.2
rangeR Range restriction of a relation 5.3.2
rangeX Range exclusion of a relation 5.3.5
reachR Reachability with restriction 5.5.3
reachX Reachability with exclusion 5.5.4
second Second element of a tuple 5.4.2
sum Sum of a set of integers 5.7.1
sum-domain Sum of first elements of tuples in relation 5.7.2
sum-range Sum of a first elements of tuples in relation 5.7.3
top Top of a relation 5.5.1
unique Deprecated: Set with unique elements 5.1.2
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Illustrations
Most illustrations used in this tutorial concern physical instruments for measurement or observation and
are taken from H. van de Stadt, Beknopt Leerboek der Natuurkunde (Concise Text-book of Physics) Tjeenk
Willink, Zwolle, 1902. On the front page appears a windlass that amplifies manual power and is used in
water wells, drilling devices, and wind mills. Page 7 shows a hot air balloon combined with a parachute
(circa 1900). On page 23 appears a composite microscope as proposed by Drebbel (1621). On page 29
appears a declinatorium used to measure the difference between the magnetic and geographic north pole.
On page 37 the cross section is shown of a lighthouse as used along the Dutch cost. The spectroscope on
page 53 is a design using four prisms by Steinheil and is used for the improved dispersion and analysis of
the light emitted by sodium vapor. On page 61 appears Ruhmkorff’s induction-coil (1851) used to create
high-Voltage electric currents. Page 67 shows a variation of the camera obscura as used for producing
realistic drawings of a landscape. Lassell’s telescope (1863) appears on page 71.

The photograph on page 11 is the “Caruso” loudspeaker and appeared in an advertisement in J. Corver,
Het Draadloos Amateurstation (The Wireless Amateur (Radio) Station), Veenstra, ’s Gravenhage, 1928.
The sign alphabet on page 15 has been taken from www.inquiry.net/outdoor/skills/b-p/
signaling.htm
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