
Centrum voor Wiskunde en Informatica

Validating year 2000 compliance

A. van Deursen, P. Klint, A. Sellink

Software Engineering (SEN)

SEN-R9713 1997

Report SEN-R9713
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Validating Year 2000 Compliance

Arie van Deursen1, Paul Klint1;2, Alex Sellink2

arie@cwi.nl, paulk@cwi.nl, alex@wins.uva.nl

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 WINS, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

ABSTRACT

Validating year 2000 compliance involves the assessment of the correctness and quality
of a year 2000 conversion. This entails inspecting both the quality of the conversion
process followed, and of the result obtained, i.e., the converted system. This document
provides an overview of the techniques that can be used to validate year 2000 com-
pliance. It includes typical code fragments, and a discussion of existing technology,
impact analysis, solution strategies, code correction, testing, and tools.

1991 Computing Reviews Classi�cation System: D.2.2, D.2.3, D.2.7., D.3.4, F.3.1

Keywords and Phrases: Software maintenance, programming language technology,
COBOL, Y2K.

Note: Work carried out under CWI project SEN-1.1, Software Renovation.

Note: The authors were sponsored by bank ABN Amro, software house DPFinance,
and the Dutch Ministry of Economical A�airs via the Senter Project #ITU95017
\SOS Resolver".

Note: The report has appeared in A. van Deursen, P. Klint, and G. M. Wijers,
eds., Program Analysis for System Renovation: Resolver Release I, revised edition,
Amsterdam, July 1997.

Acknowledgments: The authors would like to thank the reviewers of Resolver Release
I for their intensive reading and useful comments, Jasper Kamperman and Rudolf van
Laatum for reading earlier drafts of this document, and the tool providers who were
willing to spend half a day answering the Resolver questionnaire.

2{1

2{2 Program Analysis for System Renovation Release I

Executive Summary Validating year 2000 compliance involves the assessment of
the correctness and quality of a year 2000 conversion. This entails inspecting both
the quality of the conversion process followed, and of the result obtained, i.e., the
converted system. This document provides an overview of the techniques that can
be used to validate year 2000 compliance. After giving a problem statement and
discussing related literature, this document covers:

� A characterization of a series of typical COBOL date operations (such as leap
year computations, date subtraction, century computation, ...).

� A discussion of existing technology from the areas of compiler construction and
reverse engineering that can be used in a year 2000 conversion. Of particular
interest are scanning, parsing, dataow analysis and program slicing.

� A presentation of impact analysis, which �nds date-infected variables and state-
ments based on initial seeds and propagation rules. The theoretical limitations
of static analysis methods include that it is impossible to predict value ranges
of variables, or to �nd the minimal number of statements to be modi�ed.

� A description of three correction strategies, �eld-widening, windowing, and com-
pression. If the impact analysis is su�ciently detailed, automatic modi�cation
may be possible. Validation requires that the modi�cation rules are explicitly
available and (formally) veri�able.

� Issues related to testing year 2000 conversions (test plan, selection of test paths
based on impact analysis, comparison of test or analysis results, etc.)

� A discussion of state-of-the-art commercial tools, such as Re�ne/2000, AutoEn-
hancer/2000, ARCdrive, COBOL Analyst, and Date Analyzer.

The document emphasizes on COBOL year 2000 migrations. All techniques dis-
cussed, however, can be directly used for other languages and environments, and are
applicable to other types of conversions as well.

Resolver Validating Year 2000 Compliance 2{3

Contents

1 Introduction 2{5

1.1 Overview . 2{5
1.2 Problem Statement . 2{6

1.2.1 Available De�nitions . 2{6
1.2.2 Year 2000 Compliance . 2{7

1.3 Steps in a Year 2000 Conversion . 2{8
1.4 Scope . 2{9
1.5 Further Publications and Activities 2{9

1.5.1 The IBM Guide . 2{9
1.5.2 The IEEE Millennium Task Force 2{10
1.5.3 Remaining Pointers . 2{10

2 Example Code Fragments 2{10

2.1 Date Formats . 2{11
2.2 Code Fragments with Date Manipulation 2{14

2.2.1 Interpreting Date Values . 2{14
2.2.2 Computations with Dates 2{16
2.2.3 Alteration of dates . 2{17
2.2.4 Determining Leap Years . 2{20
2.2.5 Date Transport . 2{22
2.2.6 Exception handling . 2{24

3 Existing Technology 2{26

3.1 Lexical analysis . 2{26
3.2 Syntactic analysis . 2{26
3.3 Dataow analysis . 2{27
3.4 Program slicing . 2{27
3.5 Abstract interpretation/type inference 2{27
3.6 Program understanding . 2{28
3.7 Database analysis . 2{28

4 Impact Analysis 2{28

4.1 Year 2000 Exposures . 2{29
4.2 Analysis Results . 2{29

4.2.1 Erroneous Results . 2{29
4.2.2 Result classi�cations . 2{30

4.3 Detecting Infections . 2{30
4.3.1 Initial Seeds . 2{30
4.3.2 Seed Propagation . 2{31

4.4 Theoretical Limitations . 2{31
4.5 Related Work . 2{32

2{4 Program Analysis for System Renovation Release I

5 Year 2000 Solutions 2{33

5.1 Widen the data . 2{33
5.2 Windowing . 2{34
5.3 Encoding or Compression . 2{35

6 Choice of Strategy 2{35

6.1 Which Solution to Choose? . 2{35
6.2 Clustering . 2{36
6.3 Bridge Programs . 2{36

7 Code Corrections 2{37

8 Testing 2{38

8.1 Controlling Testing Costs . 2{38
8.2 The Year 2000 Test Plan . 2{40
8.3 Preparing Test Sets . 2{41

8.3.1 Selection of Test Path . 2{41
8.3.2 Partitioning of Test Values 2{41
8.3.3 Time Travelling . 2{42

8.4 Back-to-back Testing . 2{42
8.5 Safety-critical Programs . 2{43

9 Tools 2{43

9.1 Tool Classi�cation . 2{43
9.2 Example Tools . 2{43

9.2.1 Software Re�nery . 2{43
9.2.2 Peritus . 2{46
9.2.3 SEEC . 2{47
9.2.4 ARCdrive . 2{48

9.3 Limitations and Research Directions 2{48

10 Concluding remarks 2{49

10.1 Summary of compliance-related issues 2{49
10.2 Research issues . 2{50
10.3 Closing remarks . 2{51

Resolver Validating Year 2000 Compliance 2{5

1 Introduction

1.1 Overview

The software crisis caused by the turn of the century (the \millennium meltdown")
is attracting more and more attention. Still, for many organizations, and particularly
very large ones, the year 2000 software problem is overwhelming: It is often impossible
to determine the costs involved, the e�ort required, or the e�ectiveness of the methods
chosen.

In this document, we consider the year 2000 problem from the validation point
of view. Validating year 2000 compliance involves the assessment of the correctness
and quality of a year 2000 migration.

In validation, one can generally take two points of view: The �rst is to inspect
the quality of the process involved: which steps are taken, which analysis techniques
are used, etc. The other approach is to assess the quality of the result : does the
result meet the expected criteria? For a year 2000 conversion, both forms of quality
assurance are relevant. For example, process quality inspection could involve verifying
the correctness of rules that were used for automatic code modi�cations. Likewise,
the con�dence in the resulting code can be increased by inspecting the result carefully
(i.e., by selectively applying further analysis methods to it, such as accurate methods
not used during the actual conversion because they were thought too expensive or
time consuming).

In this document, we pave the way for a systematic approach to year 2000 com-
pliance validation. A sine qua non is a thorough understanding of the technology one
can use to analyse, modify and test software systems su�ering from the year 2000
disease. It is the aim of this document to provide this understanding.

For the purpose of this document, the following sources of information have been
used:

� (Scienti�c) publications (one example is [IBM96]; see also the references at the
end of the document);

� Code fragments from programs performing date manipulations.

� Commercial tools and year 2000 solutions.

This �rst section indicates what is part of this document and what is out of scope.
To that end, we de�ne the year 2000 problem, identify phases in a typical year 2000
conversion, and indicate which steps are within the scope of this document.

Then, Section 2 discusses and classi�es a large number of COBOL code frag-
ments for manipulating dates as used in practice. Section 3 describes which standard
techniques (taken, e.g., from compiler construction) can be used to address the year
2000 problem. Section 4 covers impact analysis, the technique for identifying year
2000 related variables and their propagated exposures. Section 5 discusses what date
representations can be used in converted systems | which of these to choose and in

2{6 Program Analysis for System Renovation Release I

what order to convert the systems is the topic of Section 6. Section 7 describes how
systems can be corrected automatically. Section 8 covers the test plan, year 2000 test
sets, and testing of safety critical system. Section 9 summarizes the functionality of a
number of state of the art commercial tools for year 2000 conversion. The last section,
�nally, summarizes the issues that are relevant for validating year 2000 compliance,
and identi�es areas for further research.

1.2 Problem Statement

1.2.1 Available De�nitions

The year 2000 problem has been described as \the largest problem without a clear
problem statement." There are some de�nitions, though, which mainly come from US
guidelines for government year 2000 compliance contracts. The State of Minnesota
[Nor96] provides the following de�nition of year 2000 compliance:

\Year 2000 compliance" means that information resources meet the fol-
lowing criteria and/or perform as described:

� Data structures (databases, data �les, etc.) provide 4-digit date
century recognition. Example: '1996' provides \date century recog-
nition"; '96' does not.

� Stored data contains date century recognition, including (but not
limited to) data stored in databases and hardware / device internal
system dates.

� Calculations and program logic accommodate both same century and
multi-century formulas and date values. Calculations and logic in-
clude (but are not limited to) sort algorithms, calendar generation,
event recognition, and all processing actions that use or produce date
values.

� Interfaces (to and from other systems or organizations) prevent non-
compliant dates and data from entering any state system.

� User interfaces (i.e., screens; reports; etc.) accurately show 4 digit
years.

� Year 2000 is correctly treated as a leap year within all calculation
and calendar logic.

Unfortunately, this de�nition is problematic: it is unclear what \date century
recognition" is (if we know which \cut o� year" to choose, a two-digit year has
a unique century which can be recognized). Moreover, it prescribes one solution,
widening to four digits, which in many cases need not be the best solution.

A much shorter de�nition is from US Federal agencies, to be used in their solici-
tation and contracts for year 2000 compliant systems [GSA96]:

Resolver Validating Year 2000 Compliance 2{7

(...) each hardware, software, and �rmware product (...) shall be able to
accurately process date data (including, but not limited to, calculating,
comparing, and sequencing) from, into, and between the twentieth and
twenty-�rst centuries, including leap year calculations (..)

1.2.2 Year 2000 Compliance

A simple modi�cation of the previous characterization of year 2000 compliance leads
to the de�nitions below:

De�nition 1.1, \error": An error is a discrepancy between a computed, observed,
or measured value or condition and the true, speci�ed, or theoretically correct value
or condition [IEE83].

De�nition 1.2, \year 2000 error": A year 2000 error is an error caused by
the inaccurate processing of date data (including, but not limited to, calculating,
comparing, and sequencing) from, into, and between the twentieth and twenty-�rst
centuries, including leap year calculations.

De�nition 1.3, \year 2000 compliance": A system is year 2000 compliant if it
does not contain year 2000 errors.

These de�nitions de�ne the \ideal" case, where every year 2000 error is to be
corrected. In practice, a more pragmatic approach will be necessary, in order to
minimize the cost and changes to be made in a year 2000 conversion. For each
application, the following questions need to be addressed:

� What is the scope of year 2000 errors?

As an example: many leap year calculations just divide the year by four, thus
considering 2100 as a leap year, which is not correct. Should a year 2000 project
repair such an error which will not occur within the next 100 years?

Depending on the nature of the application (mortgages, for example, involve
dates 30 years ahead from now) and the expected life-time of the application, a
decision has to be made what the horizon of year 2000 errors is. One possibility
is to decide to correct only errors that will manifest themselves in, say, the next
10 years.1

� What severity levels can we attach to the various year 2000 errors? For exam-
ple,2 we can categorize into (1) error causes the system to crash (ABEND); (2)

1In this document, we take a horizon of 50 years.
2These categories are used by programmers from Microsoft [CS96, p.352]. The IBM year 2000

document [IBM96, p.2-3] distinguishes between fatal (ABEND), critical (produces incorrect result),
and marginal (cosmetic).

2{8 Program Analysis for System Renovation Release I

a feature is inoperable, and there is no work-around; (3) a feature is inoperable,
but there is a work-around; (4) cosmetic, minor error.

Depending on the nature of the application and on the cost the organization
is willing to invest in that application, year 2000 compliance can be re-de�ned
by some maximum number of errors for each category, a maximum fraction per
lines of code for each category, a maximum number of errors per feature for
each category, a weighted sum of these, etc.

The answers to the two questions raised above will be application-speci�c. For
an actual year 2000 project it is important that answers to these questions are given:
managers, programmers, external contractors, all have to agree on whether a certain
error should be corrected in the year 2000 project or not.

1.3 Steps in a Year 2000 Conversion

The steps in an actual year 2000 conversion project will depend on a number of
factors. Ragland [Rag97], suggest the following �ve steps: 1. Awareness: Make sure
everyone in an organization with a potential year 2000 problem is aware of the risks,
potential solutions, and possible costs; 2. Assessment: Build an inventory of the
systems involved; 3. Renovation: Carry out the year 2000 corrections; 4. Validation:
Test the corrected systems for year 2000 compliance. 5. Implementation: Transfer
the corrected system to the run-time environment.

A similar organization is given by Chavan [Cha96], who emphasizes a geographical
distribution of work, for example between the customer site in Europe and a software
house in India.

In this document, we focus on the technical aspects of year 2000 conversion. We
pay attention to the following steps:

System Inventory Which software systems, modules, executables, databases, copy
books, utilities, data dictionaries, JCL scripts, ... are used in the system? How
can these be grouped (clustered) into separate subsystems?

One important result of this step is the source model, which lists all artifacts
and their inter-dependences needed to build the run-time system. Another is
the run-time model, which lists the executables and databases needed to run
the system.

Impact Analysis Where in the system are the date exposures? Which system com-
ponents do depend on dates? How do date dependencies propagate between
programs and databases?

Choice of Strategy Which systems need to be adapted in what order? Should �eld
expansion, windowing or another technique be used? Which window values will
be used, what will be done with screens, keyboard entry of dates, etc.

Resolver Validating Year 2000 Compliance 2{9

Code Modi�cation On basis of the date infections found and the strategies chosen,
modify the source code, and remedy the date problems. If the impact analysis
results are su�ciently detailed, automated modi�cation may be possible.

Testing Test that the system behaves correctly within the determined year 2000
horizon, and that the code modi�cations did not alter program behavior in an
unintended way.

The steps will not in all cases be entirely sequential; a more detailed impact
analysis may a�ect the modi�cation strategy, for example. In terms of the Resolver
renovation methodology model (see [DKW97]), the �rst three of these �t in the in-
ventory phase, the last two in the conversion phase.

1.4 Scope

In this document, we emphasize the technical aspects of COBOL/MVS year 2000
conversions. The observations and techniques, however, are language-independent,
and can also be used for other languages. Moreover, many of them can in fact be
used for other renovations than year 2000 conversions as well.

Of the steps mentioned in the previous section, we deal most intensively with
impact analysis, code modi�cation, choice of strategy, and testing. Out of the scope
of this document are:

� Inventory of year 2000 compliance of commercial o�-the-shelf products (e.g.,
hardware, operating system, Excel, Lotus-123, Windows 95, ...);

� Cost estimates (e.g., Gartner's expectation of $1,- per executable line of code;
rules of thumb like \modi�cation requires one day per programmer per average
program", assuming a good impact analysis has been performed, etc.).

1.5 Further Publications and Activities

1.5.1 The IBM Guide

IBM has published a document entitled The Year 2000 and 2-Digit Dates; A Guide
for Planning and Implementation [IBM96]. This document covers planning (Chap-
ter 2, 6 pages), identi�cation of 2-digit year exposures (Chapter 3, 4 pages), ways for
reformatting of year-date notations (Chapter 4, 13 pages), testing techniques (Chap-
ter 5, 3 pages), actual code migrations (Chapter 6, 4 pages), and a discussion of tool
categories (Chapter 7, 6 pages). The document concludes with a 12 page bibliography
(including several WWW sites), a 2-page glossary, and a 5-page index.

Moreover, the document provides testing techniques for IBM platforms, explain-
ing how to change date and time for testing on various IBM machines (Chapter 5,
2 pages). In addition to that, it gives an extensive description of tool support provided
by IBM (for MVS, VM, VSE, AS/400, PCs, etc.) (Chapter 7, 70 pages), consulting

2{10 Program Analysis for System Renovation Release I

services o�ered by IBM (Chapter 8, 2 pages), and a list describing which products of
IBM are at this stage \Year 2000 ready" (Appendix A, 36 pages).

1.5.2 The IEEE Millennium Task Force

The IEEE Computer Society (The Institute of Electrical and Electronics Engineers),
in particular its Technical Council on Software Engineering, has set up a task force
dealing with the year 2000 problem. It organizes \year 2000 summit meetings". Its
aims include to coordinate year 2000 activities of researchers, vendors, and industrial,
corporate and governmental organizations, stimulating every one involved to learn
from each other's experiences.

1.5.3 Remaining Pointers

Other pointers are discussed throughout this document; a list of the papers used is
given in the References section.

One pointer of particular interest is the Gartner Group, which has a series of
publications on year 2000 related issues, such as [Gar96]. Their publications typically
cover the risks, costs, and organizational consequences of year 2000 migrations. A
paper emphasizing the global costs of the millenium problem is by Jones [Jon97].

Two internet sites of interest are the year 2000 home page at URL http://www.

year2000.com/ (which also has up to date pointers to a range of commercial year
2000 solution providers) and the usenet newsgroup comp.software.year-2000.

More and more books become available on the year 2000 problem: examples are
[MM96, Rag97, Keo97, UH97]. Also, computer science journals such as the Commu-
nications of the ACM (the May 1997 issue) and IEEE Computer (the March 1997
issue) are paying more and more attention to the year 2000 problem.

2 Example Code Fragments

In this section a list of COBOL source code fragments is provided. The list contains
code fragments of all kinds of date manipulation. We do not restrict to code fragments
that might cause a date problem, but consider date manipulating code in general. This
is done because not only erroneous code but also correct (i.e., year 2000 compliant)
code fragments are interesting, for renovation tools will have to be able to distinguish
between these two. In particular code fragments with unexpected, but correct, date
manipulations might be damaged by naive renovation methods.

This section consists of two parts. In the �rst we discuss a list of date formats
that are used in practice. The second contains examples of code fragments where
dates are manipulated.

Resolver Validating Year 2000 Compliance 2{11

2.1 Date Formats

Contrary to many other programming languages COBOL does not have a date format
as part of the language. As a result of that a large variety of di�erent formats are
used in COBOL sources to represent dates. In this section we give an overview of
these di�erent date formats. Rather than giving an exhaustive enumeration of all
the possible date formats we tried to give a list of formats that can be quali�ed as a
`representative overview' of the date formats used in practice.

In all examples of this section we presented the date formats as 01 declarations.
That is to say, all date formats are presented as separate entities. One should realize,
however, that all these date formats can also occur as substructures of another struc-
ture. This is quite natural and occurs rather frequently. For instance, a structure
DELIVERY can have a date (date of delivery) as one of its substructures.

We start the list of date formats with the Conventional 6-digit format (2.1),
consisting of two bytes for the day, two for the month and two bits for the year.
Particularly in older source code this format is frequently used.

01 DATE. 01 DATE. (2:1)
02 DAY PIC 99. 02 YEAR PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99.

02 YEAR PIC 99. 02 DAY PIC 99.

The right-hand version of the two declarations in (2.1) has the advantage that
the chronology of two dates (i.e. which date comes �rst) can be determined at once,
simply by comparing the values of DATE. E.g. July 11, 1997 comes after October 16,
1962 because 621016 < 970711. In case the left declaration is used the chronology is
sometimes determined by �rst computing

DAY + 100 * MONTH + 10000 * YEAR

which interchanges the values of DAY and YEAR. Of course, the fact that these 6-digit
date formats do not contain century information does not necessarily mean that they
give problems in the year 2000. For instance, if windowing techniques are used these
formats are adequate.

In most of the more recently developed code, however, either a century variable is
present or the year variable can contain four digits. In either case, century information
is explicitly stored in the dates. Sometimes, the century variable is instantiated with
19. In (2.2) we give two examples of date formats with explicit century information.

01 DATE. 01 DATE. (2:2)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99.

02 YEAR PIC 99. 02 YEAR PIC 9999.

02 CENTURY PIC 99 VALUE 19.

2{12 Program Analysis for System Renovation Release I

Until now, in all declarations, the contents of dates have been numeric. In many
cases, however, dates are considered to be alpha-numeric values, i.e., "96" instead
of 96 etc. Furthermore, the century and the year are often interchanged (with the
same motivation as before, namely to allow for easy determination of chronology by
means of a simple comparison of the contents of DATE). The left example of (2.3) is a
declaration of an alpha-numeric date. The right example of (2.3) is numeric and orders
the sub-�elds corresponding to the Dutch DISPLAY convention (e.g. 28-07-1997).

01 DATE. 01 DATE. (2:3)
02 CENTURY PIC XX VALUE "19". 02 DAY PIC 99.

02 YEAR PIC XX. 02 MONTH PIC 99.

02 MONTH PIC XX. 02 CENTURY PIC 99 VALUE 19.

02 DAY PIC XX. 02 YEAR PIC 99.

Instead of using a century variable it is also possible keep track of the century in-
formation by means of a predicate. The level-number 88 of 20TH-CENTURY in (2.4)
indicates that 20TH-CENTURY is a predicate on YEAR. The predicate holds if the value
of YEAR is in the given range 62 THRU 99. Typically, the range contains those year
values that are supposed to refer to the 20th century.

01 DATE. (2:4)
02 YEAR PIC 99.

88 20TH-CENTURY VALUE 62 THRU 99.

02 MONTH PIC 99.

02 DAY PIC 99.

The smallest year-value which is interpreted as a year of the current century is
called the break year (or cut-o� year). In the example above the break year is 62.
Usually, the break year refers to the production year of the source code in question.
In practice we see that a wide variety of di�erent break years is used.

Another variation on the format of dates is the presence of separation-symbols
(like dashes or slashes) between day, month and year. A declaration with dashes as
separation symbol could look like this:

01 DATE. (2:5)
02 DAY PIC 99.

02 FILLER PIC X VALUE "-".

02 MONTH PIC 99.

02 FILLER PIC X VALUE "-".

02 YEAR PIC 99.

Earlier in this section we emphasized that dates can also be contained in a larger
structure. We mentioned the example of a structure DELIVERY that contains a date

Resolver Validating Year 2000 Compliance 2{13

of delivery as one of its substructures. Conversly, it is also possible that a date can
consist of more than just the minimal information necessary to uniquely determine
a day. As an example we give format (2.6) that does not only store a date but also
administrates whether or not this date is member of a leap year.

The one-digit variable FLAG in (2.6) is supposed to store the result of a compu-
tation YEAR mod 4. The predicate LEAP-YEAR on FLAG succeeds if the result of this
computation equals 0. Note that this is an erroneous way of detecting a leap year.
Nevertheless, such computations are frequently used. We come back to this later.

01 DATE. (2:6)
02 DAY PIC 99.

02 MONTH PIC 99.

02 YEAR PIC 9999.

02 FLAG PIC 9.

88 LEAP-YEAR VALUE 0.

Instead of using a month variable one can also decide to count only the days of
each year.3 In that case the days are declared with a 3-digit format:

01 DATE. 01 DATE. (2:7)
02 DAY PIC 999. 02 DAY PIC 999.

02 YEAR PIC 99. 02 YEAR PIC 9999.

Finally, we mention the use of the REDEFINES-clause which introduces so-called
aliases (di�erent variables referring to the same memory location).

01 DATE. (2:8)
02 DAY PIC XX.

02 MONTH PIC XX.

02 YEAR PIC XXXX.

01 CEN-DATE REDEFINES DATE.

02 FILLER PIC XXXX.

02 CENTURY PIC XX.

02 FILLER PIC XX.

In (2.8), a variable CENTURY is added to a date declaration. The value of CENTURY
is always equal to the �rst two digits of the value of YEAR because both variables share
the same memory location (aliasing).

Another frequently applied use of the REDEFINES-clause is the splitting of a 4-
digit year variable into a year and a century variable, of which we give an example in
(2.9).

3In case of a DDDYY pattern, i.e., the left format in (2.7), this is called the industrial date or Julian
date.

2{14 Program Analysis for System Renovation Release I

01 DATE. (2:9)
02 DD PIC 99.

02 MM PIC 99.

02 YYYY PIC 9999.

02 CCYY REDEFINES YYYY.

03 CC PIC 99.

03 YY PIC 99.

2.2 Code Fragments with Date Manipulation

In the previous section we gave a representative overview of di�erent date formats as
found in data divisions of COBOL source code. In this section we show how these
di�erent formats are actually used in the procedure division. Thus, the code fragments
are not `arti�cial' but derived from COBOL sources used in actual business critical
software systems. In order to emphasize the core of the fragments we replaced some
pieces of code by boxes in which we phrase only the relevant aspects of the omitted
code. Furthermore we made use of parameters in cases where the actual value of
a variable is not relevant for the example. For instance if a break year is used we
abstracted from the actual value of the break year by using a parameter instead.
Parameters are written in italics.

We distinguish code fragments that are year 2000 compliant4 from those that are
not by means of labeling. We labeled each fragment with + or � respectively. A
third label � is used for code fragments that are correct in the sense that they do
not yield false information as soon as dates pass the turn of the century, but that are
nevertheless in some sense unsatisfactory with respect to the date problem.

The date fragments are grouped in di�erent subsections, according to their func-
tionality. We start with code fragments that interpret a date. That is to say, code
fragments in which the contents of a date variable is evaluated in order to determine
which physical date is represented.

2.2.1 Interpreting Date Values

This subsection contains three examples of date interpretation. The �rst example
(2.10) is an example of using a windowing technique. The interpretation of the
contents of YEAR makes use of a value n that determines the century of the date.
Parameter n is an arbitrary �xed value in the range of 00; : : : ; 99.

01 DATE-1. 01 DATE-2. (2:10)

4By year 2000 compliant we mean that the code behaves correct as long as dates do not exceed
the year 2050. This choice is motivated by the fact that many correction strategies (e.g., windowing
techniques) actually postpone the problem to the second half of the next century.

Resolver Validating Year 2000 Compliance 2{15

02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. +
02 YEAR PIC 99. 02 YEAR PIC 99. +

+
IF YEAR IN DATE-1 > n AND YEAR IN DATE-2 > n +
OR YEAR IN DATE-1 <= n AND YEAR IN DATE-2 <= n +

IF DATE-1 < DATE-2 +
DATE-1 refers to an earlier date than DATE-2 +

ELSE +
DATE-2 refers to an earlier date than DATE-1 +

END-IF +
ELSE +

IF DATE-1 < DATE-2 +
DATE-2 refers to an earlier date than DATE-1 +

ELSE +
DATE-1 refers to an earlier date than DATE-2 +

END-IF +
END-IF +

Note that (2.10) needs revision as soon as dates pass n + 2000. Since the break
year is in practice never below 50 we marked this code fragment with +. In code
fragment (2.11) also a 2-digit year variable is compared with a break year value n
in the range of 00; : : : ; 99. However, contrary to situation in (2.10) dates of the 21st
century are rejected which makes implies that the code is correct but nevertheless
useless in the next century, because its functionality is reduced to displaying error
messages (which is of course still better than reasoning with wrong dates without
complaining).

01 DATE. (2:11)
02 DAY PIC 99.

02 MONTH PIC 99. �

02 YEAR PIC 99. �

�

IF YEAR > n �

YEAR refers to a year in the 20th century �

ELSE �

Display an error message and terminate the application �

END-IF �

Rejection of 21st century dates can also occur in code fragments where 4-digit
years are used. In those cases the rejection can, for instance, be necessary because
the date is transported to another code fragment where century values are ignored.
In (2.12) parameter n ranges over 0000; : : : ; 9999.

2{16 Program Analysis for System Renovation Release I

01 DATE. (2:12)
02 DAY PIC 99.

02 MONTH PIC 99. �

02 YEAR PIC 9999. �

IF YEAR < 2000 AND YEAR > n �

YEAR refers to a date in the 20th century. �

ELSE �

Display an error message and terminate the application �

END-IF �

2.2.2 Computations with Dates

This subsection contains examples of computations where dates are involved. None
of the examples in this subsection are correct. Note that (2.13) and (2.14) only
make sense if the values of H-MONTH and H-DAY respectively are signed, because the
intermediate results can be negative. Parameter d refers to an arbitrary distance
between two dates (duration).

01 DATE-1. 01 DATE-2. (2:13)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. �

02 YEAR PIC 99. 02 YEAR PIC 99. �

�

01 H-MONTH PIC S9(4). �

�

DATE-1 refers to an earlier date than DATE-2 �

COMPUTE H-MONTH = (YEAR IN DATE-2 - YEAR IN DATE-1)*12 + �

(MONTH IN DATE-2 - MONTH IN DATE-1) �

IF H-MONTH > d �

DATE-2 is more than d months later than DATE-1 �

END-IF �

Fragment (2.14) is based on the same idea as fragment (2.13). A di�erence with
(2.13), however, is that days are counted whereas the number of years is required.
This `detour' is used to enforce rounding down of the number of years.5

01 DATE-1. 01 DATE-2. (2:14)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. �

02 YEAR PIC 99. 02 YEAR PIC 99. �

5Note that the assumption that years have 12 months consisting of 30 days each (giving years of
360 days) implies that for instance the number of years between 01-01-1996 and 31-12-1996 is equal
to 1, whereas the number of years between 02-01-1996 and 01-01-1997 (i.e., both dates increased
with one day) is equal to 0.

Resolver Validating Year 2000 Compliance 2{17

�

01 H-DAY PIC S9(5). �

01 H-YEAR PIC S9(3). �

�

DATE-1 refers to an earlier date than DATE-2 �

COMPUTE H-DAY = (YEAR IN DATE-2 - YEAR IN DATE-1) * 360 + �

(MONTH IN DATE-2 - MONTH IN DATE-1) * 30 + �

(DAY IN DATE-2 - DAY IN DATE-1) �

H-YEAR = H-DAY / 360 �

IF H-YEAR >= d �

DATE-2 is more than d years later than DATE-1 �

END-IF �

We conclude this subsection with a computation that can be used to `link' the
values of a date record to one value. Note that the century information in H-DATE is
set to 19 in this example.

01 DATE. (2:15)
02 DAY PIC 99.

02 MONTH PIC 99. �

02 YEAR PIC 99. �

�

01 H-DATE PIC 9(8). �

�

COMPUTE H-DATE = DAY + 100 * MONTH + 10000 * YEAR + 19000000 �

2.2.3 Alteration of dates

In this subsection we discuss some examples of code fragments that introduce an
alteration in a date. For instance `adding 1 year' or `subtracting 2 months' are
examples of such alterations. As we can see from the examples, dates cannot savely be
recognized by inspecting whether the contents are within some �xed range (MONTH �
12; DAY � 31 etc.)

In code fragment (2.16) one year is added to a date. Parameter n refers to the
break year again. This fragment illustrates that the 8-digit format using two century
digits (i.e. CCYYMMDD) is less natural than the 8-digit format containing a 4-digit
year (i.e. YYYYMMDD). Technically spoken, this is so the latter format satis�es
the property that each split is at the left of a sub-structure that do not range over its
full domain, whereas the �rst format does have a split (between CC and YY) at the
left of a sub-structure that ranges over its full domain (YY ranges over f00; : : : ; 99g).
This split between CC and YY introduces some extra arithmatic on dates necessary
to \glue" the split.

2{18 Program Analysis for System Renovation Release I

01 DATE. (2:16)
02 CENTURY PIC 99.

02 YEAR PIC 99. +
02 MONTH PIC 99. +
02 DAY PIC 99. +

+
ADD 1 TO YEAR +
IF YEAR < n +

MOVE 20 TO CENTURY +
ELSE +

MOVE 19 TO CENTURY +
END-IF +

Syntax-based techniques to detect manipulations like the one given in example
(2.16) might search for patterns consisting of an if{then{else construction on a date
comparison. Example (2.17) | which is a minor variation on (2.16) | illustrates
that it can be di�cult to compose a list of patterns that covers all instances of a
given functionality.

01 DATE. (2:17)
02 CENTURY PIC 99.

02 YEAR PIC 99. +
02 MONTH PIC 99. +
02 DAY PIC 99. +

+
ADD 1 TO YEAR +
MOVE 19 TO CENTURY +
IF YEAR < n +

MOVE 20 TO CENTURY +
END-IF +

If the negative result of a computation is stored in an unsigned variable then the
sign is simply ignored. Thus, the result of subtracting 1 from the year 00 is the year
01. Therefore, code fragment (2.18), that is supposed to subtract one year, is wrong.

01 DATE. (2:18)
02 CENTURY PIC 99.

02 YEAR PIC 99. �

02 MONTH PIC 99. �

02 DAY PIC 99. �

�

SUBTRACT 1 FROM YEAR �

IF YEAR < 0 �

Resolver Validating Year 2000 Compliance 2{19

SUBTRACT 1 FROM CENTURY �

MOVE 99 TO YEAR �

END-IF �

Erroneous additions often lead to a mismatch of exactly 100 years. Erroneous
subtractions, however, often lead to dates that hardly show any correspondence to
the date that should have been the result of the subtraction.

For instance code fragment (2.19), which is supposed to subtract one month from
a date, returns 0112xy if the contents of DATE was 0001xy, i.e., a mismatch of 24
months (assuming that the year values 00 and 01 will be interpreted as dates in the
same century).

01 DATE. (2:19)
02 YEAR PIC 99.

02 MONTH PIC 99. �

02 DAY PIC 99. �

�

IF MONTH < 2 �

MOVE 12 TO MONTH �

SUBTRACT 1 FROM YEAR �

ELSE �

SUBTRACT 1 FROM MONTH �

END-IF �

In code fragment (2.20) H-MONTH months are added to a date.

01 DATE. (2:20)
02 CENTURY PIC 99.

02 YEAR PIC 99. +
02 MONTH PIC 99. +
02 DAY PIC 99. +

+
01 H-MONTH PIC 99. +

+
H-MONTH contains a value that is less than 13 +
ADD H-MONTH TO MONTH +
IF MONTH > 12 +

SUBTRACT 12 FROM MONTH +
IF YEAR = 99 +

MOVE 00 TO YEAR +
MOVE 20 TO CENTURY +

ELSE +
ADD 1 TO YEAR +

END-IF +
END-IF +

2{20 Program Analysis for System Renovation Release I

In code fragment (2.21)m days are subtracted from a date. The code makes use of
a paragraph LEAP-YEAR-TEST which is supposed to move the result of a computation
YEAR mod 4 to FLAG.

01 DATE. (2:21)
02 DAY PIC 999.

02 YEAR PIC 9999. +
02 FLAG PIC 9. +

88 LEAP-YEAR VALUE 0. +
+

IF DAY > m +
SUBTRACT m FROM DAY +

ELSE +
SUBTRACT 1 FROM YEAR +
PERFORM LEAP-YEAR-TEST +
IF LEAP-YEAR +

ADD 366 - m TO DAY +
ELSE +

ADD 365 - m TO DAY +
END-IF +

END-IF +

Sometimes the COMPUTE statement is used instead of arithmetic statements, e.g.,
COMPUTE x = x - y instead of SUBTRACT y FROM x and COMPUTE x = x + y in-
stead of ADD y TO x. In the following example, where the year 2000 problem is
completely ignored, we used COMPUTE instead of SUBTRACT for a change.

01 DATE-1. 01 DATE-2. (2:22)
02 YEAR PIC 99. 02 YEAR PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. �

02 DAY PIC 99. 02 DAY PIC 99. �

�

01 d PIC S9(6). �

�

COMPUTE d = DATE-1 - DATE-2 �

IF d < 0 �

DATE-1 refers to an earlier date than DATE-2 �

END-IF �

2.2.4 Determining Leap Years

Many code fragments where dates are involved have to do with the leap year phe-
nomenon. Leap years are those years that are divisible by 400 and those years that
are divisible by 4 but not by 100. However, in some code fragments leap years are

Resolver Validating Year 2000 Compliance 2{21

simply de�ned as years that can be divided by 4. Since 2000 is indeed a leap year,
this will not give problems before the year 2100. Note that our convention on the
meaning of year 2000 compliant means that this simpli�ed leap year de�nition is
regarded correct.

01 DATE. (2:23)
02 YEAR PIC 99.

02 MONTH PIC 99. +
02 DAY PIC 99. +

+
01 Q PIC 9(4). +
01 R PIC 9(1). +

+
DIVIDE YEAR BY 4 GIVING Q REMAINDER R. +
IF R = 0 +

YEAR refers to a leap year +
END-IF +

In some cases the quotient Q and the remainder R are constructed by hand, e.g.
compute COMPUTE Q = YEAR / 4 and COMPUTE R = YEAR - (Q * 4) instead of
DIVIDE YEAR BY 4 GIVING Q REMAINDER R.

Other examples of leap year determination are \less general":

01 DATE. (2:24)
02 YEAR PIC XX.

02 MONTH PIC XX. �

02 DAY PIC XX. �

�

IF YEAR = "92" OR "96" �

YEAR refers to a leap year �

END-IF �

Code fragment (2.25) is an example of `unexpected code'. A possible explanation
for the strange condition AND YEAR NOT = 2000 is that it written by a programmer
with a defective knowledge about leap years (divisible by 4 and not by 100), and who
added the extra condition because he would not be put up with source code giving
false information in the near future. The result was the following code fragment:

01 DATE. (2:25)
02 YEAR PIC 9999.

02 MONTH PIC 99. �

02 DAY PIC 99. �

�

01 Q PIC 9(4). �

2{22 Program Analysis for System Renovation Release I

01 R PIC 9. �

�

DIVIDE YEAR BY 4 GIVING Q REMAINDER R. �

IF R = 0 AND YEAR NOT = 2000 �

YEAR refers to a leap year �

END-IF �

2.2.5 Date Transport

This subsection consists of some examples where dates are transported from one
variable to another. Parameter n refers to the break year.

01 DATE-1. 01 DATE-2. (2:26)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. +
02 YEAR PIC 99. 02 YEAR PIC 9999. +

+
MOVE YEAR IN DATE-1 TO YEAR IN DATE-2 +
IF YEAR IN DATE-2 > n +

ADD 1900 TO YEAR IN DATE-2 +
ELSE +

ADD 2000 TO YEAR IN DATE-2 +
END-IF +

If the 4 year digits are split into 2 digits for the year and 2 digits for the century,
we get:

01 DATE-1. 01 DATE-2. (2:27)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. +
02 YEAR PIC 99. 02 YEAR PIC 99. +

02 CENTURY PIC 99. +
+

IF YEAR IN DATE-1 > n +
MOVE 19 TO CENTURY IN DATE-2 +

ELSE +
MOVE 20 TO CENTURY IN DATE-2 +

END-IF +

However, if the break year test is missing the resulting code is of course not year
2000 compliant anymore:

01 DATE-1. 01 DATE-2. (2:28)
02 DAY PIC 99. 02 DAY PIC 99.

Resolver Validating Year 2000 Compliance 2{23

02 MONTH PIC 99. 02 MONTH PIC 99. �

02 YEAR PIC 99. 02 YEAR PIC 99. �

02 CENTURY PIC 99. �

�

MOVE DAY IN DATE-1 TO DAY IN DATE-2 �

MOVE MONTH IN DATE-1 TO MONTH IN DATE-2 �

MOVE YEAR IN DATE-1 TO YEAR IN DATE-2 �

MOVE 19 TO CENTURY IN DATE-2 �

Also not year 2000 compliant are the following STRING-versions of date transport:

01 DATE. (2:29)
02 DAY PIC XX.

02 MONTH PIC XX. �

02 YEAR PIC XX. �

�

01 H-DATE-1 PIC X(08). �

01 H-DATE-2 PIC X(10). �

�

STRING DAY MONTH "19" YEAR INTO H-DATE-1 �

STRING DAY "-" MONTH "-19" YEAR INTO H-DATE-2. �

Sometimes the contents of a date is coming from a VALUE-clause in the declaration
of the data record. Manipulations also can be performed on the level of records.

01 DATE-1 PIC X(6) VALUE x1 : : : x6: (2:30)
01 DATE-2 PIC X(8).

+
MOVE DATE-1 TO DATE-2 +
IF DATE > n * 10000 +

ADD 19000000 TO DATE +
ELSE +

ADD 20000000 TO DATE +
END-IF +

We end this subsection with an example of a code fragment that makes use of a
predicate.

01 DATE-1. 01 DATE-2. (2:31)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. +
02 YEAR PIC 99. 02 YEAR PIC 99. +

88 20TH-CENTURY VALUE n THRU 99. 02 CENTURY PIC 99. +
+

2{24 Program Analysis for System Renovation Release I

MOVE DAY IN DATE-1 TO DAY IN DATE-2 +
MOVE MONTH IN DATE-1 TO MONTH IN DATE-2 +
MOVE YEAR IN DATE-1 TO YEAR IN DATE-2 +
IF 20TH-CENTURY +

MOVE 19 TO CENTURY IN DATE-2 +
ELSE +

MOVE 20 TO CENTURY IN DATE-2 +
END-IF +

2.2.6 Exception handling

A technique that is frequently used in COBOL source code and even occurs in tutorials
on COBOL programming, is the use of `extreme values' (like xxxxxx or ??????) as
an exception code. In the case of date variables this typically means that the contents
999999 does not refer to a date. At �rst sight this may seem harmless because the
99th day of the 99th month does not exist. However, the consequences of such a
strategy can be di�cult to predict. For instance a leap year computation might
identify an exception code 000000 as a leap year without complaining.

Incorrect source code with errors that are not related to the turn of the century
are beyond the scope of this document. Therefore, we will not reject (mark with `�')
those cases of using exception code that are in our opinion dangerous but unrelated
to the year 2000 problem.

The following example shows that the contents 0 in a century variable can occur.
This value does, of course, not refer to a date in the roman period. Obviously, this
can be dangerous (e.g., in a correct leap year computation applied to a date in the
year 1900 or 2100, this would introduce an error).

01 DATE-1. 01 DATE-2. (2:32)
02 DAY PIC 99. 02 DAY PIC 99.

02 MONTH PIC 99. 02 MONTH PIC 99. +
02 YEAR PIC 99. 02 YEAR PIC 99. +
02 CENTURY PIC 99. 02 CENTURY PIC 99. +

+
IF CENTURY IN DATE-1 = 0 +

MOVE 19 TO CENTURY IN DATE-1 +
END-IF +
MOVE DATE-1 TO DATE-2 +

Even more dangerous is the use of 1-1-2000 as an exception code. In the example
below the contents 01012000 is used as an exception code which indicates that the
format of YEAR, MONTH or DAY does not satisfy the prede�ned predicate NUMERIC6.

6The format of a variable satis�es the predicate NUMERIC if and only if it is of the form
S9...9V9...9.

Resolver Validating Year 2000 Compliance 2{25

We label this fragment with question marks because it is not clear from the
context whether this code fragment is year 2000 compliant or not.

IF YEAR IS NUMERIC AND (2:33)
MONTH IS NUMERIC AND

DAY IS NUMERIC ?
STRING DAY MONTH YEAR INTO DATE ?

ELSE ?
MOVE 01012000 TO DATE ?

END-IF ?

The following examples of exception handling | using a sequence of 9's as ex-
ception code | are probably the most standard one in COBOL sources. The �rst
example assigns an exception code 99 to a century variable. One could imagine that
also year variables are �lled with exception code 99. However, we have not found this
latter form of exception handling in any COBOL source �le yet.

01 DATE. (2:34)
02 DAY PIC 99.

02 MONTH PIC 99. +
02 YEAR PIC 99. +
02 CENTURY PIC 99. +

+
IF CENTURY = 99 +

Exception handling code +
END-IF +

The following variation is perhaps a bit less dangerous because the exception code
is more speci�c. That is, only 999999 rather than all strings of the form x1x2x3x499

is exception code.

01 DATE. (2:35)
02 DAY PIC 99.

02 MONTH PIC 99. +
02 YEAR PIC 99. +
02 CENTURY PIC 99. +

+
IF DATE = 99999999 +

Exception handling code +
END-IF +

Finally, a rather obscure example of using dates in the (far) future for exception
handling.

2{26 Program Analysis for System Renovation Release I

01 DATE. (2:36)
02 DAY PIC 99.

02 MONTH PIC 99. +
02 YEAR PIC 99. +
02 CENTURY PIC 99. +

+
IF CENTURY = 79 OR 89 OR 99 +

MOVE 19 TO CENTURY +
END-IF +

3 Existing Technology

For a large part, compiler construction technology, such as described for example in
[ASU86], is directly applicable to year 2000 problems. Moreover, there are a number
of useful techniques from reverse engineering (such as program understanding), for
which a series of references are discussed in [BKV97a, BKV97b].

3.1 Lexical analysis

Lexical analysis (also known as lexical scanning) amounts to purely textual analysis
of a program's source text. In its simplest form, one can search for literal strings
such as variables date or year, date-related constants such as 19 or 1996, or data
declarations such as PIC 9(02). Usually, regular expressions are used to describe
these textual patterns. A major shortcoming of lexical analysis is that it is purely
textual and does not take into account the deeper syntactic structure of a program.
Knowledge of this syntactic structure is mandatory for performing more sophisticated
forms of analysis (see below).

3.2 Syntactic analysis

Syntax analysis (also known as parsing) amounts to analyzing the deeper syntactic
structure of a program's source text. The result of this analysis is usually a syntax
tree (parse tree, abstract syntax tree) that can be used as starting point for further
analysis. A syntax tree describes the structural decomposition of a program text
and de�nes, among others, contains relations between enclosing program parts and
their components, for instance, between a complete if-statement and a statement in
its then-branch. Note that such structural relationships can only be established by
means of syntactic analysis and not by lexical analysis.

Syntactic analysis is an essential intermediate step for all forms of analysis that
are described below.

Resolver Validating Year 2000 Compliance 2{27

3.3 Dataow analysis

Dataow analysis is a technique for the static analysis of programs and is primarily
used to �nd de�nitions and uses of variables. A variable de�nition is a program
statement that assigns (directly or indirectly) a value to a variable. A variable use
is a program statement that uses the previously de�ned value of a variable. One
can distinguish between forward dataow analysis (starting from a variable de�nition
�nd all corresponding uses) and backward dataow analysis (starting from a speci�c
variable use �nd the corresponding de�nition). Major complications for dataow
analysis are unstructured ow-of-control (e.g., goto statements) and the aliasing of
variables (due to rede�nitions, pointers, and the like).

Given some \seeds" (e.g., a set of date-related variables or date-returning system
calls) dataow analysis can be used to �nd all statements that can be a�ected by
these seeds. Dataow analysis is a form of static program analysis i.e., the program
is analyzed without executing it. As a consequence, the results of dataow analysis
have to be a conservative estimation and may hence be imprecise.

3.4 Program slicing

Program slicing is a more re�ned form of analysis than dataow analysis and amounts
to determining those parts of a program (the program slice) that a�ect the values of
program variables computed at some point of interest in the program. Program slicing
can be static (not considering a program's input) or dynamic (considering a speci�c
set of input values).

Consider, for instance, a program point where a date �eld is written to a database.
Typically, program slicing can then be used to determine all parts of the program that
are responsible for computing that date value. In general, program slicing will give
more precise results thus yielding a smaller set of \infections" in the program.

The computation of program slices is expensive. As a result, various restricted
forms of slicing are being developed that are easier to compute at the expense of some
loss in precision.

3.5 Abstract interpretation/type inference

Abstract interpretation can be used to infer the type of variables by looking at their
use rather than their declaration. Typically, a date-related variable will be declared
as a �eld of 6 or 8 characters, e.g., PIC 9(08). However, this declaration does not
determine the actual format in which dates will be stored, for instance, in the order
year-month-day versus day-month-year. From this perspective, the type of a date-
related variable is left unspeci�ed by its declaration and should be inferred from the
use of that variable in the program. It may also be the case that a sub�eld of a
variable is used in a date-related manner, while this cannot be seen from its name or
declaration.

2{28 Program Analysis for System Renovation Release I

The standard approach in abstract interpretation is to interpret (execute) a pro-
gram in a non-standard way: instead of using actual values one uses more abstract
descriptions of these values. For instance, in the addition 3 + 4 the constants 3 and
4 will both be represented by the new constant INT that stands for any integer value.
The abstract interpretation of INT + INT will then again yield INT. Abstract inter-
pretation of 3 + 4 will thus yield INT while the standard interpretation would yield 7.
In a similar, but more involved, manner abstract interpretation can be used to infer
date-related types of variables. In this case, the type descriptions will be sequences
of year (in 2 or 4 digits), month, and day.

At the unavoidable expense of loosing some precision (i.e., computing the approx-
imation INT instead of the precise value 7), abstract interpretation can be used for
static analysis such as the inference of the types of program variables.

3.6 Program understanding

Program understanding is a general name for all activities (including the ones already
discussed above) aiming at gaining insight in a program's behavior. One of the more
successful approaches is to use program clich�es that describe certain code patterns
of interest. A typical clich�e could be \computing an age by subtracting a birth date
from the current date". The clich�e will be formulated as a pattern that is used to
�nd all instances of the clich�e during a traversal of a program. Information used
to recognize such clich�es include the program's syntax tree, control ow, and data
ow graph. Clich�es can also be used as starting point for code correction. More
information on constructing clich�e libraries and recognizing clich�es automatically can
be found in [RW90, KNE92, Har92].

3.7 Database analysis

The database can also be used as starting point for analysis as opposed to the other
methods mentioned above that perform analysis on the source text of a program. The
criteria for potential date information are easily veri�ed given the actual contents of
a database. The results of this analysis are the positions in each record where date
information is stored in which particular format. Database analysis can complement
(or refute) other forms of analysis discussed above.

4 Impact Analysis

Software change impact analysis is a general technique for identifying the conse-
quences or ripple e�ects of proposed software changes [Arn95, BBE+95, BA96, Boh96].
It is one of the most important ingredients of a year 2000 conversion project; given
a list of initial date infected variables or language constructs, impact analysis �nds
out which other �elds are dependent on these date infections. A high-quality impact

Resolver Validating Year 2000 Compliance 2{29

analysis signi�cantly simpli�es the year 2000 correction phase, to the extent that it
may even be possible to do the corrections automatically. Last but not least, impact
analysis can help to decrease testing costs: the analysis results can be used to de-
termine which execution paths are a�ected by a certain modi�cation and hence need
testing.

Impact analysis is very closely related to the (compiler construction) areas of data
ow analysis; we refer to Section 3 and to [Hec77, Moo96] for a detailed description
of various generic data ow analysis techniques.

4.1 Year 2000 Exposures

Year 2000 impact analysis aims at determining the impact of the incorrect use of year
representations and year computations. The following are typical exposures (see also
[IBM96, p.1-2]):

� Use of �xed century constants, such as 19.

� Use of 00 or 99 as exception code

� Incorrect �eld format determination (e.g., to determine whether the format is
MMDDYY or YYDDMM check against ranges such as 1{31 or 1{12).

� Arithmetic underow (00� 02) or overow (99 + 2).

� Incorrect relational operators for comparison or sorting.

� Illegal merge of 2-digit and 4-digit years.

� Leap year failures: 2000 is a leap year. This also a�ects computations involving
day counts, such as the day of the year (March 1st 2000 is a Tuesday).

4.2 Analysis Results

4.2.1 Erroneous Results

Like medical diagnosis, impact analysis may yield wrong results. Two cases can be
distinguished:

� false negative: The analysis yields a negative result for a particular variable or
statement (\no date problem"), whereas in reality there is a date infection.

� false positive: The analysis yields a positive result for a particular variable or
statement (\yes, a date problem"), whereas in reality this variable or statement
is harmless.

2{30 Program Analysis for System Renovation Release I

Both false cases are to be avoided; in practice the di�cult part is to avoid the false
positives (false negatives can be avoided by not being very selective, i.e., by marking
everything slightly suspicious as year 2000 infected).

For validation purposes it is important to have an impression of the percentage of
false positives and false negatives a particular tool or method yields. These percent-
ages are di�cult to obtain; they are relative to reality, but for the year 2000 problem
we only know the analysis results, not reality. An estimate can be obtained by:

� Comparing the results of di�erent tools, marking di�erent results as either false
positive or false negative, and equal results as correct;

� Comparing the results with the results of a human inspection;

� Comparing the results with test data (e.g., by lifting the year to 2000)

4.2.2 Result classi�cations

An analysis will not only yield a list of infected statements or variables, it will also
group them into categories. Example categories are:

� Format of picture clause, e.g., DD-MM-YY, YY-DDD, YY-MM-DD, etc.

� Whether date values are exported (via databases, forms printed, screens, etc.)

� The likelihood that a certain variable is date related (e.g., a date system call
certainly returns a date, a variable called DT may or may not be a date).

� The sort of expression the variable is used in, if any (comparison, addition,
subtraction).

� O�set in the data division, in order to deal with renamings (renamed bytes have
the same o�set).

4.3 Detecting Infections

4.3.1 Initial Seeds

Dates can be imported into or exported from a program in the following ways:

� From library routines or system calls returning dates;

� As input of functions that can be called by external programs (such inputs can
be given, e.g., by JCL scripts);

� In screens or printed reports;

� As the result of database transactions.

Resolver Validating Year 2000 Compliance 2{31

Using a lexical search, suspicious variable names, constant values, or procedure
names can be recognized. Example names (MONTH, MDY, JULIAN, ...) are listed
in [IBM96, p.3-1]. The actual list of names will di�er per program and language
(German, Dutch, ...) used to write comments or choose variable names. With each
keyword a con�dence level (likelihood) can be attached (YEAR is more suspicious
than BEGIN).

To reduce the number of mismatches, certain variables which are known not to be
dates in a particular program (e.g., a program dealing with currency, where CURR
does not refer to the current-date), can be listed as negative patterns.

4.3.2 Seed Propagation

A contaminated variable can infect variables in a program via assignments (MOVE or
COMPUTE statements) and procedure calls in which variables are passed. Dataow
analysis is the technique to �nd such propagations of infected variables.

Some year-2000 tools have problems with properly propagating infections for vari-
ables that are used for multiple purposes. For example, a variable TEMP which is
used to contain both dates and telephone numbers, or a variable OUTPUT-LINE to
which a series of output lines is moved which is then written on an output �le by a
special routine. Such variables are problematic if the propagation rules used are \if a
date is moved into a variableX then X is a date as well", combined with \if a variable
X is used to compute the value of a date-related variable Y then X is date-related
as well". In such a setting, a series of moves of X1; :::; Xn into date related variable
Y makes each of X1; :::; Xn date infected. The proper solution is to acknowledge that
infection propagations are not symmetrical.

Language constructs that are problematic for doing minimal data ow analysis,
i.e., �nding only the data dependencies that are essential (avoiding false positives) in-
clude arbitrary control ow (gotos), aliases, computed o�sets in arrays, self-modifying
programs (assembly, ALTER statement).

To extend intra-program dataow dependencies to inter-program dependencies,
the intra-program analysis collects exported data items for every program involved,
and then uses this information to �nd dependencies between data items from di�erent
programs, repeating this process if necessary.

4.4 Theoretical Limitations

To minimize the amount of testing that has to be done after a conversion, it is
attractive to �nd the minimal number of statements that needs to be corrected. It is
easy to see that this is an undecidable problem. Consider the (COBOL-like) program
below:

01 YY PIC 99.

01 YEAR PIC 9999.

2{32 Program Analysis for System Renovation Release I

P1.

PERFORM P2

COMPUTE YEAR = 1900 + YY.

The last statement needs to be corrected if and only if performing P2 terminates;
i.e., we need to solve the undecidable halting problem before we can solve �nding
the minimal number of statements that requires year 2000 correction.7 It is widely
known that this problem cannot be solved, therefore it is impossible to �nd the
minimal number of statements that need to be corrected in a year 2000 conversion.

There are, in fact, many other relevant year 2000 properties that can only be
determined at run time, and which therefore are undecidable as well. For example,
constants 1900, 2000, 400, etc. are suspicious. But variables holding such constants
as values are equally suspicious, e.g., X +Y is a potential date problem if X gets the
value 1900. Unfortunately, it is undecidable in general to check whether a particular
variable ever gets a particular value. Likewise, it is undecidable whether an addition
will result in a number greater than 100.

The conclusion of this is that it is theoretically impossible to �nd an analysis,
correction or validation method that can be guaranteed to �nd all cases. It may well
be possible to �nd methods that for code as used in practice covers 99% of the cases,
but not 100%. In other words, for every such method, a set of programs can be
constructed which causes the method to fail.

4.5 Related Work

Bohner and Arnold [BA96] provide a tutorial on impact analysis. Arnold [Arn95] and
Bohner [Boh96] discuss the potential of impact analysis for the year 2000 problem.
The latter mainly discusses a software maintenance process model, and the role impact
analysis plays in each phase. Bohner particularly emphasizes how impact analysis
supports release planning by identifying software life-cycle objects (SLOs) that are
likely to change for each software change proposed in a set of change requests. Some
element of impact determination is present in each of the following software change
activities:

� understanding software with respect to the change;

� implementing the change within the existing system;

� re-testing the newly modi�ed system.

Barros et al. [BBE+95] describe an object-oriented approach to impact analysis.
The result of a system inventory is stored in an object oriented repository. Links

7The halting problem is the impossibility to write a program H which inspects a program p and
returns true if it can be concluded that p always terminates, and false if p can loop for ever (see,
e.g., [GL88, Chapter 3]).

Resolver Validating Year 2000 Compliance 2{33

between objects are relations such as \called-by". To predict the impact of a change,
various types of modi�cations are distinguished, such as \interface-change", \body-
change", etc. Propagation is driven by a collection of propagation-rules. Propagations
are given a \virtuality number", which e�ectively counts the number of propagation
steps required to derive a given dependency. Their technique is implemented in an
\Impact Analysis System" (IAS), which helps a software engineer to

� de�ne a high level speci�cation of the intended changes;

� interactively analyse (browse through a visual representation of) the impacts of
the intended modi�cations;

� to dynamically adjust the initial modi�cations and validate the results of the
impact propagation performed (to �lter out false positives).

5 Year 2000 Solutions

There are three well-known ways to handle year 2000 problems: widen-the-data, win-
dowing, and encoding. The decision whether to choose for a widening, windowing, or
encoding strategy is a crucial one, and should be taken with care. Below we summa-
rize each method, and discuss advantages and disadvantages. A more comprehensive
description can be found in [IBM96, Chapter 4].

5.1 Widen the data

In the widen-the-data approach, all date data are extended such that they use four
digits to store the century and the year. This has the advantages that it is

� intuitively correct, and easy to maintain;

� a permanent solution;

� Can ease your migration if you selectively ignore \cosmetic-only" situations.

The disadvantages, however, are that

� it requires more space (mainly a problem for large-volume data);

� if the program uses databases, these databases must be converted as well. This
can be a tremendous e�ort, a�ecting many other programs also using these
databases;

� if the program communicates date data with other programs, the interfaces with
these programs have to be adapted;

2{34 Program Analysis for System Renovation Release I

� might impose a performance penalty due to increased time in processing and
data access.

Because in many cases it is not desirable to touch or change the large volume
database unless it is strictly necessary, the widen-the-data approach is generally not
used when two-digit dates are stored in databases. Or, as formulated by [Rag97,
p. 70]: \Widening is the preferred method for solving the Year 2000 Problem. However
there are very few, if any, organizations that are actually using this method. Many
organizations feel that they cannot possibly be completed with their Year 2000 tasks
on time if they use the widening solution."

5.2 Windowing

Windowing is a technique where every two-digit year less than a certain break year ,
say 80, is assumed to be in the 21st century, and every year greater or equal than the
break year is assumed to be in the 20th century. This has the advantages that:

� 2-digit year data stored in databases need not be modi�ed;

� century information can be derived from the two-digit years.

Its disadvantages are:

� �nding out which century a year is in will be more time consuming;

� it only works if the time range of the program is less than 100 years;

� di�erent programs exchanging dates should be aware of the break year to be
used;

� program modi�cations are necessary to correct comparisons, indexing and sort-
ing procedures;

� the program modi�cations increase the complexity of the code, and complicate
future maintenance;

� choosing a �xed break year will require annual maintenance, or maintenance as
the break year approaches.

Within one organization, various applications may have to use di�erent break
years | but programs exchanging date data should be aware of the break year to be
used (in practice it will be a constant in some library or copybook).

Alternatively, a \sliding window" can be used, which increases every year.

Resolver Validating Year 2000 Compliance 2{35

5.3 Encoding or Compression

A last technique proposed is to encode or compress dates with 4-digit years into
representations originally devised to contain only 2-digit years. Examples are the
use of a COBOL COMP-3 format to pack a CC-YY-MM-DD date into 6 bytes, the
use of a agged Julian format C-YY-DDD, or to convert the numbering scheme from
decimal to hexadecimal. There also encodings possible where existing 20th century
dates are represented as they were, and new 21st century dates are encoded in

The bene�ts of such encodings are (see also [IBM96, p.4-8]):

� There is no need to expand databases.

� It is possible to distinguish years from di�erent centuries.

� If the representation of old dates does not change, there is no need to adapt the
databases.

Their disadvantages are:

� The scheme can be applied only to a limited date range (which depends on the
encoding implemented).

� Programs will have to be modi�ed to perform the encoding / decoding.

� If the representation of old dates does change then

{ stored data in databases will have to be modi�ed.

{ all programs using these dates will have to be modi�ed simultaneously.

� Due to data conversion you may experience a performance impact.

� Encoded dates require conversion whenever you work with that data. Therefore,
the presence of encoded dates will add another layer of complexity.

As observed by [IBM96, p. 4-6], encoding / compression is \considered the least
desirable approach and should only be used if absolutely necessary."

6 Choice of Strategy

6.1 Which Solution to Choose?

As said before, deciding which strategy to follow requires careful thought. However,
the general approach taken seems to be8 to

8At this moment, there is no published evidence. The remarks above are partly based on presen-
tations by Royal Dutch / Shell and KLM Royal Dutch Airlines at a year 2000 seminar in Amsterdam,
May 28th 1997.

2{36 Program Analysis for System Renovation Release I

� Leave systems currently using four digits as they are, carefully checking for
correct date exports, imports, leap years, hard century assumptions, etc.;

� Leave systems currently using two digits as they are, adapting the date logic to
use windowing;

� Leave interfaces containing dates as they are (two or four digits).

The rationale behind this strategy is that if a system used two digits, its data probably
�t into a 100 year range anyway, and that adapting the interface can require a cascade
of modi�cations preventing incremental modi�cation.

Obviously, in individual cases there will be good reasons to deviate from this
strategy, in which case the pros and cons of windowing, widening or compression as
discussed in the previous sections will have to be evaluated for the application at
hand.

6.2 Clustering

A large software portfolio cannot be made year 2000 compliant in a single step.
Instead, the programs will have to be corrected in series of more or less independent
clusters. Relevant issues are:

� Programs that are (almost) independent, i.e., have no or a very small com-
mon interface, are to be placed in di�erent clusters; programs that are highly
dependent on each other are to be put in the same cluster.

� Once the clusters are determined, the dependencies determine an order in which
the individual clusters can be migrated. Independent clusters can be migrated in
parallel. Clusters with dependencies may have to be processed in a particular
order (for example, if one cluster provides functionality used by the other).
Bridge technology (see below) can be used to solve interface inconsistencies if
new date formats are introduced.

� The order imposed by interface dependencies may conict with business prior-
ities.

� In the literature several publications have appeared that describe techniques
that can be used to determine proposals for clustering automatically, such as
[MNB+94]. A general discussion, covering more references on applications in
the software re-modularization domain, is given by Wiggerts [Wig97, Section 4].

6.3 Bridge Programs

To make heterogeneous situations possible, where one system is corrected using win-
dowing, and another using widening, bridge programs can be used. A bridge program

Resolver Validating Year 2000 Compliance 2{37

can convert data from one record format into another. A typical bridge program cov-
ers [IBM96, p.4-10]

� Input date format and encoding method;

� Output date format and encoding format;

� Logic that converts the data from input format to output format based on their
encoding methods.

Bridge programs allow the gradual conversion of program and/or data, while still
maintaining the compatibility between di�erent data formats.

There exist automatic code modi�cation tools, such as Peritus [HP96], which gen-
erates bridges and bridge calls in order to support incremental database conversions.

7 Code Corrections

Automating the year 2000 modi�cations is attractive, since it avoids boring work, is
less costly, and yields more predictable results. Automation is only possible if the
impact analysis results are su�ciently detailed and accurate.

Most techniques for automatic modi�cations heavily rely on code generation and
transformation techniques taken from the area of compiler construction. The most
suitable technique is to parse the sources, build an abstract syntax tree, annotate the
tree with attributes representing date information, use these annotations to decide
which modi�cations on the tree need to be made, and �nally pretty print the modi�ed
tree. There also exist modi�cation methods which rely on lexical scanning only, i.e.,
which are not aware of the tree structure and do a textual replacement only. This is
equivalent to doing a manual \�nd and replace", which is dangerous since this gives
no guarantee that the modi�ed sources are syntactically correct.

If the code is modi�ed automatically, the rules that govern these modi�cations
should be explicitly available, thus supporting validation by human experts. Each
rule should describe:

� The conditions under which it is applicable;

� What sort of modi�cation is being made;

� An explanation why this rule is correct;

� Suggestions for ways to test the given modi�cation.

An issue of concern is the future maintainability of the converted code. The
least thing that should be done is proper commenting of the modi�cations made
automatically. Since the comment is to be maintained in the future as well, the
generated comment should be as concise as possible, while still being understandable
to the future maintainer.

2{38 Program Analysis for System Renovation Release I

The highest maintainability is achieved if all date manipulation functions are
available in a library, the actual date representation used is encapsulated, and whether
two-digit years with a break year or four-digit years are used is not visible outside
of this library. The library also provides functions for reading dates from �les in a
given format, writing dates to a particular format. An example date library is the
IBM COMUDAS collection of date routines [IBM96, p.7-26].

When using such a library, a year 2000 conversion will replace existing (two-)digit
operations by library calls. In practice this may require more code modi�cations than
just doing in-line checks related to the break year (which for some organizations | if
they have a policy of absolutely minimizing the number of changes in order to reduce
the testing e�ort | may be a reason not to adopt this approach).

Validation will consist of:

� Checking the applicability of the solution (widening, windowing) chosen for the
given system;

� Inspecting the library of date functions to be used (if available);

� Inspecting the rules used for automatic modi�cation.

8 Testing

The testing phase of a year 2000 conversion is generally considered as the most ex-
pensive phase, which is expected to consume up to 50% of the migration e�ort. Much
of the year 2000 test phase will be similar to regular testing activities, so organiza-
tions having well-established testing procedures will have a competitive advantage. A
recent book covering all aspects of testing, throughout the entire software life cycle,
is by Perry [Per95]. For year 2000 testing, the chapters on maintenance, installing
software changes and testing tools [Per95, Chapters 11, 12 and 18] will be most rel-
evant. A recent publication dealing speci�cally with a millennium testing factory is
by Feord [Feo97].

In this section, we try to cover those aspects of testing that are speci�c to year
2000 migrations.

8.1 Controlling Testing Costs

Jones [Jon97] estimates that the millennium testing costs may consist of \testing
the year 2000 repair" which covers 10%{30% of the total costs involved in making a
system year 2000 compliant, and \regression testing the portfolio", which may involve
20%{50%. Thus, testing costs can be substantial, and everything that can be done
to reduce these will be welcome.

First of all, millennium testing confronts an organization with testing obligations
it will probably have never experienced before. All, or at least a great deal of its

Resolver Validating Year 2000 Compliance 2{39

software portfolio will have to be tested in a very limited amount of time. Moreover,
possibilities to o�-shore support during the test phase will be more restricted than
during the analysis or correction phases: major parts of the testing will have to be
done in-house. This calls for a well-organized testing factory, which can repeatedly
perform massive numbers of program tests. Feord [Feo97] discusses issues related to
setting up a millennium test factory.

It is of utmost importance to start testing in a very early phase of the millen-
nium migration (i.e., start now). Testing for millennium compliance will involve two
aspects: correct treatment of the year 2000, and unmodi�ed behavior of non-date
related issues. For the �rst, test cases covering dates will have to be carefully con-
structed; for the second a properly designed baseline test will have to be devised and
run, so that future regression tests are possible. Both sets of test cases can be con-
structed at the beginning of a millennium conversion project. In fact, early testing
may have an additional advantage: For organizations still having problems with year
2000 awareness, running sample tests may convince the sceptic that the software will
crash indeed in the next millennium.

The amount of testing required, and hence the costs involved, is directly related
to the quality of the tools used during the analysis and modi�cation phases. Highly
automated tools will be able to deal with standard situations correctly, without in-
troducing errors. Thus, testing costs may be signi�cantly lower if

� the software to be converted uses a relatively normal date representation and
processes dates in a more or less standard way;

� the software is written in a widely used language (say COBOL/MVS) for which
extensive tools exist;

� the tools used for conversion have been run on a substantial number of lines
(hundreds of millions) in earlier projects.

In such a situation, the correction phase can be considered safe, and only minimal
tests need to be run.

The amount of testing can further be reduced by carefully selecting the test cases
(see also below). If proper impact analysis tools are used, the analysis results can be
used to determine test data. The better the analysis results, the more speci�c the
test cases can be. Depending on the analysis, it may even be possible to generate test
cases automatically. To build in an extra layer of independence, one may consider
using a di�erent analysis tool for deriving test cases than the one used during the
impact analysis used for code conversion.

Last but not least, testing costs can be controlled by using proper testing tools.
Testing generates large amounts of information, necessitates numerous computer exe-
cutions, and requires coordination and communication between workers. Typical tool
support involves (see also [Per95, Chapter 18]):

� Time travelling and facilities for simulating new dates.

2{40 Program Analysis for System Renovation Release I

� Capture and playback.

� Result comparators.

� Test path coverage, which provides an indication of the completeness of the test
run; it should preferably be able to express coverage information in terms of
potential infections found during impact analysis.

� Testware libraries.

� Version control.

8.2 The Year 2000 Test Plan

The year 2000 test plan should at least contain the following:

� Overall description of the major phases of the testing process. This includes
a description of each phase such as its purpose, desired input and output, de-
pendencies on other phases, available tools, required expertise of personnel per-
forming this phase, and the like.

� Overview of the software items to be tested. This includes all programs, copy
books, JCL scripts, data sets, and the like. Also the physical formats in which
the software items will be delivered for testing have to be established.

� Overview of all date-related topics that have to be tested. In some cases, certain
\cosmetic" occurrences of dates are not converted. Typically, two-digit dates
on interactive screens or printouts may be left unchanged. An inventory of such
date occurrences should be made.

� A testing schedule for determining when software items are needed and for
resource allocation within the testing team.

� Recording procedures for saving the results of test runs in order to make test
runs reproducible and to enable auditing. The former is important when testing
reveals that certain date-related variables have been missed during the conver-
sion. Parts of the conversion should then be repeated and the outcome should
be tested anew. The latter is important for quality assurance of the testing
process as a whole.

� Overall description of the required test sets, and a schedule for test set prepara-
tion. This should include an inventory of the available test sets for the original
program that could be reused or adapted.

� Hardware and software requirements. Typically, actual conversion will be done
in another hardware/software environment than the production environment in

Resolver Validating Year 2000 Compliance 2{41

which the original program is normally used. This implies that the requirements
for the testing environment should be made explicit, including possibilities for
time travelling (see Section 8.3.3, below).

� Constraints that may a�ect the testing process, which include:

{ Availability of the software items to be converted.

{ Availability and expertise of test personnel.

{ Availability of the test environment. This includes access to the system
on which the testing will be done as well as release dates of year 2000
compliant versions of necessary system software.

{ Allocated resources.

{ End date of test phase.

8.3 Preparing Test Sets

8.3.1 Selection of Test Path

In general, it may be too expensive to completely (re)test the converted code. How-
ever, the test cases used should at least execute the following statements in the
converted code:

� All statements that have been changed or have been introduced by the conver-
sion (to be determined by a �le di�erence between the original and the converted
code).

� All statements that refer to date-related variables (as determined by the impact
analysis).

� All statements that execute date-related system calls.

8.3.2 Partitioning of Test Values

As usual, for each speci�c testing activity, there exist certain classes of values that
crucially exercise the converted code. In the case of year 2000 conversion a number
of test ranges can be de�ned. Some important ones include (see also [IBM96, p.5-7]):

� year < 1980

� year = 1997; 1998; 1999

� year = 2000

� year = 2001; 2002; 2003

2{42 Program Analysis for System Renovation Release I

� 2010 < year < B � 2, where B is the break year used if a windowing solution
is chosen.

� year = B � 1; B; B + 1

� Roll-over from 1999/12/31 to 2000/01/01

� Treatment of 2000/02/29 (should be recognized as valid)

� Periodical (daily, weekly, monthly ...) actions.

8.3.3 Time Travelling

In order to exercise date-related system calls, it is necessary to test the converted
code in a simulated environment in which the system date can be set to the year 2000
and beyond.

One of the complications here is that not all system software that is needed during
such a simulation is already year 2000 compliant.

8.4 Back-to-back Testing

The original code and the converted code have the same functionality, except for
the treatment of dates. This creates the opportunity to apply so-called back-to-back
testing to both systems. The necessary steps are as follows:

� Use the same set of test data for testing both the original program and the
converted one. The cases where the original program generates erroneous output
should be explicitly marked as such in the test set. In addition, expected date
values for these cases should be given in the test set as well.

� Execute the original program and the converted one, while saving all generated
output.

� Apply a result comparator to both outputs. The outputs should be identical,
except for date values, for which the following cases can be distinguished:

{ Original program worked correctly: original date values and converted
(e.g., expanded, windowed) new date values should be equal.

{ Original program worked incorrectly: new date values should match the
expected values as given in the test set.

Resolver Validating Year 2000 Compliance 2{43

8.5 Safety-critical Programs

When the original program is safety-critical, one may consider the following additional
measures to improve the quality of the program after year 2000 conversion:

� Multiple impact analysis before conversion. In order to maximize the amount
of date-related problems that are found during impact analysis, one can apply
di�erent impact analysis tools on the same program and merge the results.

� Impact analysis after conversion. The converted program should no longer
contain date-related infections. One way of determining this is by performing
a complete impact analysis after the conversion, i.e., on the converted code.
Preferably, di�erent tools for impact analysis should be used for the �rst and
the second analysis. It is obvious that no date-related problems should be
discovered during the analysis of the converted code.

� Multiple conversions. One can also perform multiple conversions (using di�er-
ent tools) and compare the quality of the converted programs. Discrepancies
between the output of the various converted programs may reveal bugs. In this
way the reliability of each version can be assessed enabling the selection of the
\best" version. Theoretically, one may even consider to use all converted ver-
sions of the original program in the production environment and use a majority
voting mechanism to determine which program results should be used. In prac-
tice, this approach is mostly limited to programs that do not make modi�cations
of global data sets.

9 Tools

9.1 Tool Classi�cation

For all steps in a year 2000 conversion (see Section 1) tool support exists or is con-
ceivable and tools can be classi�ed accordingly. In the document The Resolver Ques-
tionnaire for Renovation Tools [DK97] a �rst attempt has been made to understand
and assess commercially available tools.

In Section 9.2 we describe examples of tools we have studied so far. We conclude
the section with a discussion of the limitations of these tools (Section 9.3).

9.2 Example Tools

9.2.1 Software Re�nery

The Software Re�nery environment, provided by Reasoning Systems, Palo Alto, is a
framework for building re-engineering tools. In the last decade, it has been used in
numerous successful projects involving the migration or renovation of legacy software

2{44 Program Analysis for System Renovation Release I

systems. As an example, Markosian et. al describe the use of Re�nery for the
automatic modularization of a 40,000 lines of code COBOL application from Boeing
[MNB+94].

The discussion below describes the Re�ne/2000 solution which extends Re�ne/-
COBOL, the suite of COBOL reengineering tools built using Software Re�nery. The
discussion is based on a 20-minute demonstration and the Software Re�nery \Year
2000 white paper". The Re�ne/2000 solution consists of the following steps:

Building the system model: The system model describes all modules, data�les,
data bases, and jobs that comprise the organization's software portfolio, as well
as the interfaces and data ow between these. The system model is used to
identify subsystems that can be processed in isolation.

Most of the system model is automatically generated by Re�ne/Cobol after it
has parsed and analyzed the JCL and COBOL programs. The system model is
presented as an interactive graph where di�erent icons represent the elements
of the model, and links represent the relationship between the elements.

Analysis: The analysis phase determines type information about the data elements,
and identi�es those that actually might need year 2000 correction. Using a
\data-ow-directed inference process" this information is propagated through
the program logic.

The type information of a data type is a collection of properties that character-
izes the values that can be stored in the data element. The sort of information
inferred includes:

� The units of the data element (years, quarters, months, days, etc.);

� Whether the data element is an absolute date or a time interval;

� The range of values that the data element will store;

� Related data elements that serve as higher-order or lower digits.

The initial type clues are referred to as seeds, and are given a con�dence level .
The most reliable seeds come from known date manipulating or calendar rou-
tines. A less reliable source is pattern matching the names of data elements
against a library of names such as YYMMDD, YEAR, ANNIVERSARY, etc.

Analysis is performed both at the intra- and inter-module level. When an intra-
module analysis is complete, type information about externalized date-related
data elements is communicated to the inter-module analysis. These are then
propagated, using the system model, to other modules that read or write the
same data elements. Intra- and inter-module analyses are alternated until all
type information has been propagated.

Program correction: Infected programs can be corrected using the widen-the-data
approach, which changes centuries to four digits. First the data division is

Resolver Validating Year 2000 Compliance 2{45

corrected, carefully taking care of aliases (RENAMES, REDEFINES). The pro-
cedure division must be corrected to cater for number constants such as \97".
Moreover, the user is warned about screen maps (which may not have su�cient
space for four digits), and JCL scripts which might have to be adapted (e.g., if
they contain constants).

As an example of how to specify such a program correction in the Re�ne lan-
guage, consider the following [BSM96]:

rule CORRECT-DATE-DIFFERENCES

a = `COMPUTE @RESULT = @D1 - @D2'

& date(D1)

& date(D2)

-->

a = `CALL COMPUTE-INTERVAL USING @D1 @D2'

This is a Re�ne transform rule. The rule recognizes that the node a matches the
surface syntax for a COMPUTE statement involving subtraction. Moreover, the
two conditions inspect the results of the analysis stored in the date attribute,
indicating that both arguments are indeed dates. It then changes the node
a to call a library routine COMPUTE-INTERVAL for computing date di�erences
correctly.

Data correction: In the widen-the-data approach, the years stored in two digits
in databases need to be expanded. Re�ne/2000 o�ers the options of a batch
conversion or an on-the-y conversion.

Recent Re�ne/2000 releases also support other correction schemes, such as (slid-
ing) windows.

On the Use of Slicing Re�ne/2000 uses program slicing [Wei84, HR92, Tip95]
during the analysis phase, as discussed in Reasoning's presentation [BSM96]. Slicing
is a technique for determining those parts of a program that are responsible for giving
a certain variable a particular value.

During the analysis phase, Re�ne/2000 �rst detects which variables are potential
dates. Then it uses forward slicing, which �nds all the lines of code impacted by the
value of such a variable. This information is used to �nd other, related date �elds.
In [BSM96], the following example is given:

01 ...

05 YEAR PIC 99.

05 ANV PIC 99.

01 ...

05 PARTS-PER-ORDER PIC 99.

2{46 Program Analysis for System Renovation Release I

05 PARTS-COUNT PIC 99.

01 ...

01 TEMP PIC 99.

P1.

MOVE YEAR TO TEMP.

...

MOVE TEMP TO ANV.

P2.

MOVE PARTS-PER-ORDER TO TEMP.

...

MOVE TEMP TO PART-COUNT.

Assuming that the slicer knows that YEAR is a date �eld (derived, e.g., from the
name), it �nds out that within its forward slice (paragraph P1), the variables ANV

and TEMP are used as dates. Outside this slice (in paragraph P2), it does not assume
that TEMP or ANV are dates. In particular, Re�ne/2000 does not conclude from the
last statement MOVE TEMP TO PART-COUNT that PART-COUNT must be a date; This
statement is out of the scope of the forward slice of YEAR, and hence in that statement
it is not assumed that TEMP is a date �eld, and therefore it is not concluded either
that PART-COUNT is a date �eld.

9.2.2 Peritus

Peritus [Har95, HP96] is a generic environment. Its core ingredients are a LALR
parser generator (based on Bison), and the Peritus Intermediate Language, a formal-
ism based on Dijkstra's guarded commands [Dij76].

[HP96] covers the year 2000 tool from Peritus, AutoEnhancer/2000 in full detail.
It describes a translation of dates to the following format:

01 ISSUE-DATE PIC 9(8).

01 ISSUE-DATE-YMD REDEFINED DATE.

02 ISSUE-YYYY PIC 9999.

02 ISSUE-MM PIC 99.

02 ISSUE-DD PIC 99.

Now 19440212 refers to February 12, 1944.
Peritus uses a syntax-directed attribute evaluation to compute a date format for

variables involved. A format consists of ordered sequences of elements from fC, Y,
M, D, Zg (where Z represents unknown). For variables, formats can be extended with
their o�set with respect to the �rst PIC byte de�ned, thus catering for rede�nes.
For example, ISSUE-DATE above has format hYYYYMMDD; 0i, ISSUE-YYYY has format
hYYYY; 0i (i.e., the same o�set, but shorter), ISSUE-MM has format hMM; 3i. Constants
have no o�set, but do have a base value.

Propagation of the format information gradually builds a relation L between
formats that depend on each other. These dependencies are derived from assignments,

Resolver Validating Year 2000 Compliance 2{47

I/O statements, procedure calls, and renamings. They are initialized by seeds, which
have to be indicated manually. Moreover, whenever a variable is truncated such that
its YY part is lost, a relation between the variables is removed from L.

In addition to the local relation L, a global, inter-program relation G is con-
structed (the dependencies are derived from the JCL code). The transitive closure of
L and G gives all variables that need to be changed.

The code correction process is governed by a set of correction rules. Each rule
consists of a name, an informal explanation, one or more examples of the use of
the rule, a proof that the rule is correct, and the actual replacement formalized in
the AutoEnhancer/2000 rule language. Currently AutoEnhancer provides isolation
rules, which look at the formats and mark certain variables as date-sensitive; data
division correction rules, primarily merging year and century �elds and widening
�elds to accommodate 4-digit years; and procedure division rules, mainly for adjusting
constants and removing century indicator logic.

Data correction can be done in batch mode, or by generating wrappers, which are
subroutines used for dynamic, runtime access, performing data correction between
two and four-digit representations. Special care can be taken for data �elds that are
used for date and non-date information.

For the testing process, AutoEnhancer automatically generates test data for the
modi�ed code. A test data generator processes a correction report as well as the
corrected code. This results in a test data report, listing test data points along with
the reasoning that led to the generation of that data. The data formatter then uses
the test data reports to actually insert test data points into valid transactions and
database records.

9.2.3 SEEC

The COBOL Analyst and the Date Analyzer are products of SEEC Inc.

COBOL Analyst is a PC-based conversion and maintenance tool for most COBOL
dialects, JCL, and other COBOL extensions usually found in a mainframe environ-
ment such as, IMS/DB, CICS, ADABASE, and others. The tool is primarily intended
for surveying and analyzing complete applications. In addition to lexical scanning
and parsing, the tool uses a limited, heuristics-based, form of dataow analysis for
discovering dependencies between statements.

The results of analysis are stored in a repository and can be visualized in a exible
manner. Conversion is based on prede�ned templates and can best be characterized
as machine-assisted editing in the form of (generated) editor-macro's. Testing is
supported by a test case generator that uses (a limited form of) program slicing to
�nd the path that have to be tested.

Date Analyzer is a year 2000 conversion tool. It uses lexical scanning to discover
date-related variables. Starting with an initial set of regular expressions that represent

2{48 Program Analysis for System Renovation Release I

string patterns that may occur in date-related variables, a �rst list of date-related
variables is produced. After manual pruning and extension of this list, it is further
extended through dataow analysis as provided by the COBOL Analyst. After several
iterations, a stable list of date-related variables is reached which forms the basis for
actual conversion. All usual year 2000 conversion scheme's are supported.

9.2.4 ARCdrive

ARCdrive is a tool developed and used by CAP Gemini.
ARCdrive is a year 2000 conversion tool for MVS COBOL. First, the application

is parsed and placed in a repository. Analysis starts by de�ning (in the form of an
Excel spreadsheet) the various string patterns that may occur in names of date-related
variables. The de�nitions make a distinction between many di�erent date formats
(i.e., length and ordering of the elements in a date), intended use of variables (i.e,
pure date variables, print lines, temporaries, and the like), and the best conversion
rules to be applied. Using this initial information, a Prolog-based algorithm for the
propagation of uncertain information is applied with as result a type assignment for all
global variables including a certainty factor describing the plausibility of the inferred
type.

This inferred information has to be con�rmed (and sometimes adjusted) by an
application expert. After this con�rmation, a fully automatic conversion is done that
applies built-in conversion rules. Due to the high level of automation, it is possible
to repeat the complete conversion in case the source programs have been changed in
the mean time (due to maintenance in the production environment).

9.3 Limitations and Research Directions

Based on our (admittedly limited) experience with commercially available tools, we
come to the conclusion that various aspects of tool support for year 2000 conversion
are still weak and merit further improvement.

Support for multiple languages and dialects is important. Many tools use a
language-speci�c approach and cannot easily be adapted to other source languages.
However, even for more generic tools many language de�nitions for commonly occur-
ring languages or dialects are not available.

From a research perspective, it seems important to try to achieve generally avail-
able (and readable) formal language de�nitions for languages such as COBOL and
PL/I.

Program analysis techniques used are nearly always limited in scope for e�ciency
reasons. This is the case for the various forms of dataow analysis and also for the
more advanced forms of program slicing. Currently, we do not know what the e�ect

Resolver Validating Year 2000 Compliance 2{49

(both on the speed and the quality of the analysis) would be of using more general
and sophisticated techniques.

Automatic conversion is the key to improving the quality of conversions. In most
cases, the translation rules are unknown and are thus not accessible for independent
validation. This is unfortunate, since automatic, validated conversion rules will reduce
the costs for testing.

Workow Although most tools are embedded in an informal renovation method,
tool support for managing the workow of renovation processes seems to be missing.

Testing is an essential step before accepting the outcome of a conversion, as dis-
cussed in Section 8. Some of the tools discussed above give limited support for testing.
So far, we have not yet studied the merits of general purpose testing tools to validate
year 2000 conversions.

10 Concluding remarks

10.1 Summary of compliance-related issues

Based on the analysis given in this document, we can conclude that the following
issues are important for determining year 2000 compliance as well as the quality of
conversions in general. Here, we do not explicitly address economic aspects of year
2000 conversions.

Quality of the conversion process

� Does it cover all aspects of a year 2000 conversion, including:

{ System inventory.

{ Impact analysis.

{ Choice of strategy.

{ Code modi�cation.

{ Testing.

{ After Care and Implementation.

� Is the whole conversion process reproducible?

� Are there explicit quality measures for each step?

2{50 Program Analysis for System Renovation Release I

Quality of the conversion and testing tools

� Quality of impact analysis (percentage of false negatives, i.e., missed date prob-
lems in the code).

� Quality of code conversion (do the rules for code conversion handle the date
problems correctly?)

� Reproducibility of analysis and conversion (can the conversion be done in an
iterative manner such that new information gathered in one iteration can be
used to improve the quality of the conversion in the next iteration?)

� Are the testing strategy and testing tools su�cient to determine the quality of
the converted system?

Quality of the converted systems

� Does the converted system deal correctly with all date-related issues?

� Does the converted system otherwise exhibit the same behavior as the un-
converted system?

10.2 Research issues

We have identi�ed the following research issues that are relevant for year 2000 con-
versions and merit further investigation.

� Techniques for �nding date-related patterns. A prerequisite for automatic con-
version is the ability to �nd not only all date-related variables but also common
patterns of their usage. The more sophisticated these patterns, the better con-
version rules can be de�ned. One possible technique is to further elaborate the
notion of \program cliche's" | a �rst step is described in [DQW97]. Another
interesting idea is to use dynamic techniques and run time information as well
| Reps et al [RBDL97] discuss program pro�ling (running a program with pre-
and post-2000 dates and comparing the paths covered) and its applications to
�nding date infections.

� Techniques for the validation of conversion rules. The amount of testing can
be reduced by a better validation of the rules that are being applied during
a conversion. Manual conversion requires full testing of the converted code,
while a completely automatic conversion based on validated rules only requires
minimal testing.

� General testing techniques. Testing of general software is of utmost importance
in practice, but does not get the academic attention it deserves. We propose
to start building up expertise in this area by formulating and exploring several
basic research questions related to testing.

Resolver Validating Year 2000 Compliance 2{51

� Year 2000-speci�c testing techniques. While there is an abundance of general
testing tools, there does not yet seem to be a lot of support for date-related test-
ing. Particularly important is the interplay between the validation of conversion
rules just mentioned and the testing techniques that can/should be applied.

� Benchmarks for conversion tools. One approach to assess the quality of conver-
sion tools is to gradually build benchmarks | based, for example, on the code
fragments listed in Section 2 | for classes of conversion tools (e.g., COBOL-
speci�c, PL/I-speci�c, etc.). These benchmark should contain a variety of com-
mon programming practices for date manipulation as well as more exotic con-
structs that are encountered in practice. Since the metrics of these benchmarks
are know beforehand, a detailed, quantitative, comparison of existing tools be-
comes possible.

10.3 Closing remarks

In this document, we have compiled an extensive overview of the technology that
can be used to analyze, modify and test software systems with potential year 2000
problems. The resulting document complements other publications which emphasize
the | also important | awareness and project management aspects.

There are several important conclusions that can be drawn based on this tech-
nology overview.

First of all, fully automatic migration with a 100% guarantee for all cases, as well
as fully automatic validation of migrated code, is impossible to achieve. As discussed
in Section 4.4, many of the relevant properties, such as will the run time value of a
variable be 1900, are undecidable, and therefore impossible to determine, whatever
technology is used. As a consequence, automatic conversion or validation of strategic
systems will always have to be complemented with manual inspection and testing.

The fact that tools cannot be guaranteed to cover 100% in all cases, certainly
does not mean they are useless: they are tuned towards software as used in practice,
for which they may achieve a correction coverage of up to 99%. As discussed in
Section 8.1, systems using dates in a standard way, written in a common language,
using automatic conversion tools heavily used in earlier conversions, will require less
testing and are therefore less expensive to make year 2000 compliant.

Tool developers have, for understandable reasons, exactly focused on this cat-
egory of systems: written in widely used languages such as COBOL, and covering
all standard date representations. Far less developed are tools that can be easily
adapted to both new languages and deviating date representations. The tools that
are available, are generally based on more super�cial (lexical) analysis techniques, and
consequently signi�cantly less reliable during automatic conversion. Moreover, such
tools may run into trouble when the lexical information, such as names of variables,
is either misleading or missing, which for example is the case for systems for which
the original source code is lost and conversion has to be done on sources recovered

2{52 Program Analysis for System Renovation Release I

from binaries. Further tool limitations are discussed in Section 9.3.
Several research initiatives have been taken in order to improve the state of the art

of year 2000 tool technology | see the previous section for a discussion of open ques-
tions. Within the Resolver project, the DHAL (Dataow High Abstraction Language)
research program aims at developing a generic, exible and accurate framework for
carrying out data ow analysis, which is at the heart of all impact analysis techniques
[Moo96].

References

[Arn95] R. S. Arnold. Millennium now: Solutions for century data change impact.
Application Development Trends, pages 60{66, January 1995.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques
and Tools. Addison-Wesley, 1986.

[BA96] S. A. Bohner and R.S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

[BBE+95] S. Barros, Th. Bodhuin, A. Escudi�e, J. P. Queille, and J. F. Voidrot. Sup-
porting impact analysis: A semi-automated technique and associated tool.
In Proceedings International Conference on Software Maintenance ICSM'95,
pages 42{51. IEEE Computer Society Press, 1995.

[BKV97a] M. G. J. van den Brand, P. Klint, and C. Verhoef. Re-engineering
needs generic programming language technology. ACM SIGPLAN Notices,
32(2):54{61, 1997. Also Chapter 6 in A. van Deursen et al., editors, Program
Analysis for System Renovation; Resolver Release I.

[BKV97b] M. G. J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering and
system renovation { an annotated bibliography. ACM Software Engineering
Notes, 22(1):57{68, 1997. Also Chapter 5 in A. van Deursen et al., editors,
Program Analysis for System Renovation; Resolver Release I.

[Boh96] S. A. Bohner. Impact analysis in the software change process: A year 2000
perspective. In Proceedings International Conference on Software Mainte-
nance ICSM'96, pages 42{51. IEEE Computer Society Press, November 1996.
Monterey, CA.

[BSM96] W. A. Brew, K. Schimpf, and L. Z. Markosian. Application of Program
Slicing and Program Transformation to Solving the Year 2000 Problem. Rea-
soning Systems, Palo Alto, California, 1996. Presentation at the 5th Reengi-
neering Forum. 17 Slides.

Resolver Validating Year 2000 Compliance 2{53

[Cha96] S. Chavan. The year 2000 date conversion process. Software Process{
Improvement and Practice, 2:111{122, 1996.

[CS96] M. A. Cusumano and R. W. Selby. Microsoft Secrets. HapperColllins, 1996.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DK97] A. van Deursen and P. Klint. The resolver queationnaire for renovation tools.
In A. van Deursen, P. Klint, and G. Wijers, editors, Program Analysis for
System Renovation { Resolver Release I, chapter 9. CWI, Amsterdam, 1997.

[DKW97] A. van Deursen, P. Klint, and G. Wijers. An overview of system renovation.
In A. van Deursen, P. Klint, and G. Wijers, editors, Program Analysis for
System Renovation { Resolver Release I, chapter 1. CWI, Amsterdam, 1997.

[DQW97] A. van Deursen, A. Quilici, and S. Woods. Program plan recognition for
year 2000 tools. In Proceedings 4th Working Conference on Reverse Engi-
neering. IEEE Computer Society, 1997. To appear.

[Feo97] M. Feord. Testing for millenium risk management. IEEE Software, pages
126{131, May/June 1997.

[Gar96] Gartner Group. Year 2000 Date Crisis, 1996. 18 page Conference Presenta-
tion.

[GL88] L. Goldschlager and A. Lister. Computer Science, A Modern Introdution.
Prentice Hall, 1988.

[GSA96] GSA General Service Administration. Recommended year 2000 contract lan-
guage, June 11 1996. URL: http://www.itpolicy.gsa.gov:80/library/
yr2000/y2kfnl.htm.

[Har92] J. Hartman. Technical introduction to the �rst workshop on ai and au-
tomated program understanding. In Workshop Notes, AAAI Workshop
on AI and Automated Program Understanding, 10th National Conference
on Arti�cial Intelligence, 1992. URL: http://www.cis.ohio-state.edu/
~hartman/.

[Har95] J. M. Hart. Experience with logical code analysis in software maintenance.
Software { Practice and Experience, 25(11):1243{1262, nov 1995.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, 1977.

[HP96] J. Hart and A. Pizzarello. A scaleable, automated process for year 2000
system correction. In Proceedings of the 18th International Conference on
Software Engineering ICSE-18, pages 475{484. IEEE, 1996. URL: http:
//www.peritus.com/1c1d.htm.

2{54 Program Analysis for System Renovation Release I

[HR92] S. Horwitz and T. Reps. The use of program dependence graphs in software
engineering. In Proceedings of the Fourteenth International Conference on
Software Engineering ICSE-14. IEEE, 1992.

[IBM96] IBM. The year 2000 and 2-digit dates; a guide for planning and implemen-
tation, 1996. URL: http://www.software.ibm.com/year2000/.

[IEE83] IEEE standard glossary of software engineering terminology, 1983.
ANSI/IEEE Standard 729-1983, IEEE Computer Society.

[Jon97] C. Jones. The global economic impact of the year 2000 software problem.
URL: http://www.spr.com/library/y2k00.htm, 1997. Software Produc-
tivity Research, Inc.

[Keo97] J. Keogh. Solving the Year 2000 Problem. Academic Press, 1997.

[KNE92] W. Kozaczynski, J. Ning, and A. Engberts. Program concept recog-
nition and transformation. IEEE Transactions on Software Engineering,
18(12):1065{1075, 1992.

[MM96] J. T. Murray and M. J. Murray. The Year 2000 Computing Crisis | A
Millenium Date Conversion Plan. McGraw-Hill, 1996.

[MNB+94] L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitzmiller. Using
an enabling technology to reengineer legacy systems. Communications of the
ACM, 37(5):58{70, 1994. Special issue on reverse engineering.

[Moo96] L. Moonen. Data ow analysis for reverse engineering. Master's thesis,
Programming Research Group, Universtity of Amsterdam, 1996. Technical
Report P9613; Extended abstract as Chapter 11 of A. van Deursen et al.,
editors, Program Analysis for System Renovation; Resolver Release I.

[Nor96] Minnesota Government Information Services North Star. Year 2000 compli-
ance: Information resource performance standards; irm standard 14, version
1, May 15 1996. URL: http://www.state.mn.us/ebranch/admin/ipo/hb/
document/std14-1.html.

[Per95] W. E. Perry. E�ective Methods for Software Testing. John Wiley & Sons,
1995.

[Rag97] B. Ragland. The Year 2000 Problem Solver: A Five Step Disaster Prevention
Plan. McGraw-Hill, 1997.

[RBDL97] T. Reps, T. Ball, M. Das, and J. Larus. The use of program pro�ling
for software maintenance with applications to the year 2000 problem. In
Proceedings of ESEC/FSE'97, LNCS. Springer-Verlag, 1997.

Resolver Validating Year 2000 Compliance 2{55

[RW90] C. Rich and R. Waters. The Programmer's Apprentice. Frontier Series. ACM
Press, Addison-Wesley, 1990.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121{189, 1995.

[UH97] W. Ulrich and I. Hayes. The Year 2000 Software Crisis | Challenge of the
Century. IEEE Computer Society Press, 1997.

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352{357, 1984.

[Wig97] T. Wiggerts. Using clustering algorithms in lecagy systems remodularization.
In A. van Deursen, P. Klint, and G. Wijers, editors, Program Analysis for
System Renovation { Resolver Release I, chapter 12. CWI, Amsterdam, 1997.
Extended abstract to appear in proceedings of the 4th Working Conference
on Reverse Engineering.

