
1Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

About “trivial” software patents:
the IsNot case

Jan Bergstra                                   Paul Klint

Further info: www.cwi.nl/~paulk/patents



2Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

The IsNot patent application
abstract

● A system, method and computer-readable 
medium support the use of a single operator that 
allows a comparison of two variables to 
determine if the two variables point to the same 
location in memory.

● Application by lead developers of Microsoft's 
Visual Basic team



3Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

The Isnot Patent application
1 of 24 claims

● A system for determining if two operands point to 
different locations in memory, the system 
comprising: a compiler for receiving source code 
and generating executable code from the source 
code, the source code comprising an expression 
comprising an operator associated with a first 
operand and a second operand, the expression 
evaluating to true when the first operand and the 
second operand point to different memory 
locations.



4Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

The IsNot Patent Application
analysis

● Hey, this is about != in C, Java or C#!

● Or about .NE. in Fortran

● Or about BNE in assembler

● Isn't this prior art?
● Does MS really mean that they invented the 

inequality operator?



5Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

The IsNot Patent Application
analysis

● Is there some hidden intention in this application?
● Is this about a hidden trick in the Basic compiler?
● Is the intention to challenge the patent system?

– You must agree: this is a beauty in its simplicity

● We don't know!

We have written an Open Letter to Microsoft to clarify 
this, see www.cwi.nl/~paulk/patents



6Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

How can we reconcile the patent system 
and the 

Software Engineering Life Cycle?



7Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Patent Life Cycle

Granted

Revoked Rejected

Expired

Oppose Appeal

Extend License

Challenge

Apply

Max. duration
reached

Act on
infringement

Patent 
Life cycle

= action by applicant

= action by third party

= end of life

Withdrawn



8Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Software 
Life Cycle

V &V = Validation and Verification

Maintenance

V & V

Testing

V & V

Implementation

V & V

Design

V & V

Requirements
engineering

V & V

Software Life Cycle



9Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Patent-aware Software Life Cycle
defensive

Patent-aware
Software 
Life Cycle

V &V = Validation and Verification

Maintenance

V & V
Patent Validation

Testing

V & V
Patent Validation

Implementation

V & V
Patent Validation

Design

V & V
Patent Validation

Requirements
engineering

V & V
Patent Validation



10Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Patent-based Software Life Cycle
offensive

Patent-based
Software 
Life Cycle

V &V = Validation and Verification

Maintenance

V & V
Patent Validation
Patent Application

Testing

V & V
Patent Validation
Patent Application

Implementation

V & V
Patent Validation
Patent Application

Design

V & V
Patent Validation
Patent Application

Requirements
engineering

V & V
Patent Validation
Patent Application



11Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

IPR-based Software Life Cycle
offensive

IPR-based
Software 
Life Cycle

V &V = Validation and Verification

Maintenance

V & V
IPR Validation

IPR Application?
Keep secret?

Testing

V & V
IPR Validation

IPR Application?
Keep secret?

Implementation

V & V
IPR Validation

IPR Application?
Keep secret?

Design

V & V
IPR Validation

IPR Application?
Keep secret?

Requirements
engineering

V & V
IPR Validation

IPR Application?
Keep secret?



12Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Observations

● Status of prior art and claims is unclear
● Software patenting badly needs input from 

software engineers and is a topic for research:
– formalization of prior art and claims

– inventory of all prior art related to software

– alternative patenting systems

– automatic infringement detection

● Publicly analyse and annotate software patents: 
Gauss project (http://gauss.ffii.org/GaussFrontPage)



13Jan Bergstra & Paul Klint: About “Trivial” software patents: the IsNot case

Time for Discussion

Further info: www.cwi.nl/~paulk/patents

Open source: Sense and Simplicity for the software engineer
(suggested by a Philips researcher)

OSS =


