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ABSTRACT service requirements. We refer to [21] for an extensive survey of
results for the sojourn time distribution in PS queues.

While the PS model provides valuable insights, it critically relies
on the assumption that the service capacity is shared in an egali-
dtarian manner among competing users. The actual service shares

Weighted Round-Robin. The Discriminatory Processor-Sharing (DPSfY however show substantial variation among users with hetero-

and Generalized Processor-Sharing (GPS) disciplines have emerge€neous characteristics. For example, TCP flows that share a com-
as natural generalizations for modeling the performance of such mon bottleneck link but traverse distinct routes, may experience

service differentiation mechanisms. A further extension of the or- dIVerse packet Ioss.rates and I’OUI’]d.-tI’Ip qelqys. Because of Tcp
dinary PS policy is the Multilevel Processor-Sharing (MLPS) dis- mechanlcs_, these differences _result in a significant discrepancy in
cipline, which has captured a pivotal role in the analysis, design the bandW|dth shares, see for instance [8]. - .
and implementation of size-based scheduling strategies. We review Besides TCP-related _effects, the heter(_)genelt_y In bandwidth shares
various key results for DPS, GPS and MLPS models, highlighting may also be due to deliberate service differentiation among com-
to what extent these disciplines inherit desirable properties from or- PEting flows. As the Internet evolves to support an ever increasing
dinary PS or are capable of delivering service differentiation. rgnge_of Services, there is a growing ne_ed for some form of ser-
Keywords:Discriminatory Processor Sharing; Generalized Proces- '¢€ q|ﬁerentlatlon to apcommodatg the diverse Quahty-of-Serwpe
sor Sharing; Multilevel Processor Sharing; asymptotic analysis; in- r_eqwrements_ gnd trafflc_ cha_racterlstlcs of _heterogene_ous applica-
sensitivity; queue length; size-based scheduling; slowdown; ser- tions. The ability to provide dlffer_ent bandW|d_th sh_ares |s_ar.guably
vice differentiation; sojourn time; delay minimization; workload. one O_fthe most fundamental vehlcles for_serwce d|frerent|at|o_n [16].
Discriminatory packet scheduling algorithms, such as Weighted
Fair Queueing (WFQ) and Weighted Round-Robin (WRR), have
1. INTRODUCTION been proposed as potential instruments to implement differentiated
Over the past few decades, the Processor-Sharing (PS) disciplinesandwidth sharing. Both WFQ and WRR constitute weighted ver-
has gained a prominent role in evaluating the performance of a vari- sions of standard round-robin scheduling where the various users
ety of resource allocation mechanisms. Originally, the PS paradigm may receive different service quanta as specified by user-specific
emerged as an idealization of Round-Robin scheduling algorithms geryice weights.
in time-shared computer systems [46]. In recent years, the PS dis-  The DiscriminatoryProcessor-Sharing (DPS) discipline [34, 46,
cipline has received renewed attention as a convenient abstractiorm] provides a natural approach for modeling the flow-level per-
for modeling the flow-level performance of bandwidth-sharing pro-  formance of TCP with asymmetric bandwidth shares or differen-
tocols in packet-switched networks, in particular TCP [13, 40, 60, tiated scheduling mechanisms such as WFQ and WRR. DPS is a
69, 70]. Although it is well-known that the queue length distribu- - muylti-class extension of the egalitarian PS policy, where the vari-
tion in a PS queue with Poisson arrivals has a simple geometric gys classes are assigned positive weight factors. The service capac-

distribution, regardless of the service requirement distribution, the ity is shared among all users present in proportion to the respective
sojourn time distribution is far less tractable, even for exponential

While the (Egalitarian) Processor-Sharing (PS) discipline offers cru-
cial insights in the performance of fair resource allocation mecha-
nisms, it is inherently limited in analyzing and designing differen-
tiated scheduling algorithms such as Weighted Fair Queueing an



class-dependent weights. In case all weight factors are equal, the2. MODELDESCRIPTION AND NOTATION

DPS discipline reduces to the egalitarian PS policy. We study a single-resource system of service capacity 1 with
The DPS discipline shows some resemblance withGbeeer- Poisson arrivals at rateand i.i.d. service requirements with distri-
allzeo_l Processor-Sharing (GPS) poll_cy (or Ge_ner_ahzed Head-O_f- bution F(z) = P{B < z} for all z > 0, where the generic ran-
the-Line (HOL) PS), where the service capacity is also shared in gom variableB denotes a single service requirement, with mEaR]
accordance with class-dependent weight factors. In GPS however,gng loadp = AE[B]. We assume that the system works at full
the capacity is not divided among all users present, but distributed rate 1 whenever it is nonempty, so that this M/G/1 system is stable
across (nonempty) classes irrespective of the actual number of usergit empties in finite time) whem < 1. For convenience, we will
present. By guaranteeing a certain minimum rate to each back-impose additional technical assumptions on the service requirement
logged class, the GPS discipline provides isolation among compet- gistribution when needed.
ing classes. In addition, it achieves statistical multiplexing gains by | this paper we study several performance measures. With the
reallocating surplus bandwidth from non-backlogged classes.  random variableV we generically denote the number of jobs in
'While both the DPS and GPS disciplines arise as continuous ide- steady state, whil@ denotes the sojourn time of an arbitrary job.
alizations of discriminatory packet scheduling algorithms, the dif- \yhenever appropriate, we supplement these variables with sub-
ference in names reflects the traffic scenario and time scale consid-cripts (for exampléV;) when we wish to distinguish among differ-
ered in performance studies. The DPS discipline serves to evaluateent types of jobs in the system, or with an additional argument (for
flow-level performance, i.e., the interaction among a dynamic pop- exampleT'(x)) if the random variable is conditioned on the size
ulation of flows, where faster fluctuations at the packet level are of the particular job under consideration (i=). As for the ser-
assumed to average out. In contrast, the GPS discipline aims toyjce requirements, we denote the mean of any random variable
describe the performance at the packet level, where the populationyy, E[Y]
of flows may be assumed (nearly) static due to the slower dynam-

ics. Adding to the ambiguity in terminology, the term GPS was 3. DISCRIMINATORY PROCESSOR SHAR-

first used by Cohen [26] in the seventies to describe an extension

of PS with state-dependent service rates, but here we adhere to the ING
convention adopted after the seminal work in the nineties of Parekh  We will restrict our literature overview of DPS to some papers
& Gallager [64, 65]. that are key to the results presented here. For an extensive overview

A further extension of the ordinary PS policy is the family of of the literature on DPS we refer to the recent survey [7] and to [21]
Multilevel Processor-Sharing (MLPS) strategies as introduced in [45}or results on tail distributions.
While DPS and GPS mainly serve to provide service differentia-
tion, the goal of MLPS is to improve the overall performance by DPS is a class-based differentiation mechanism. Jobs are catego-
exploiting the variability in service demands, and in particular giv- rized into K different classes. Here we will assume that each new
ing precedence to shorter requests over longer ones. The rationalgob is of classk with probability px., independent of the classes all
for size-based scheduling has been amplified by findings that file previous jobs belong to. Therefore, the arrival processes of all in-
sizes show extreme variability and commonly have heavy-tailed dividual classes are (independent) Poisson processes as well, with
characteristics [9, 25, 28, 53]. arrival rates\, = pp\. For classk we useBy, pr = A\x[Bx] and

An MLPS discipline is parameterized by a number of levels or N, to denote the service requirement, the class load and the num-
thresholds, which are used to dynamically categorize jobs based onber of jobs in system (in steady state). Naturaily: Zf::l Pk
their current amounts of attained service. Lower classes (jobs with
smaller amounts of attained service) receive priority over higher

L . . an’h‘af&‘ Heles Server
classes, and within each class the jobs may be served according to 9

the ordinary PS policy or the Foreground-Background Processor- 1
Sharing (FBPS, or just FB) discipline. The MLPS strategy may Class 1 2 ":‘1
thus be interpreted as a coarse-grained approximation of the FBPS AP
discipline. In fact, the family of MLPS strategies span a wide spec- = b
trum of policies, covering both the strict FBPS discipline and the ! LY w.,

ordinary PS policy as extreme (limiting) cases, and lend themselves
better for actual implementation, especially at high line speeds.
(We refer to [15] for an in-depth discussion of implementation is-
sues involved in size-based scheduling.)

As described above, the DPS, GPS and MLPS strategies all three Class 2
constitute extensions of the ordinary PS discipline. Given that strong
commonality, we survey in the present paper various key results for
DPS, GPS and MLPS models in a unified framework, emphasizing
to what extent these disciplines inherit favorable properties from
ordinary PS or are effective in providing service differentiation.

The remainder of the paper is organized as follows. In Section 2 Class K
we present a model description and introduce some notation. In
Section 3 we review results for DPS models. Section 4 discusses
GPS models. Since the results for GPS models center around work-
load characteristics rather than sojourn time distributions, we keep
the section brief. We refer to [71] for a more elaborate overview of
the GPS literature. Section 5 provides a survey of MLPS models.
In Section 6 we make some concluding remarks.

"
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Figure 1: A queue operating under DPS

DPS operates as illustrated in Figure 1. Jobs of claaee as-
signed weightsuv, (> 0). If there areN; = n; jobs of clasd =



1,2,..., K, theneach jobof classk receives a fractiomwy, / Zfil nyw; classk, B that of the service requirements of an arbitrary customer

of the server’s capacity. (i.e., not conditioned on the class) and is the total number of
The analysis of DPS is extremely difficult compared to that of jobs in the system. Then (2) has been proved under the following
egalitarian PS, which arises as a special case when.ale equal. conditions:

Most notably, the simple geometric queue length distribution for
the standard PS discipline does not have any counterpart for DPS.
For PS, this distribution is fully determined by the traffic Igaaind,

thus, not affected by higher moments of the service requirement (i) By is regularly varying of index > 1 andP{N > n} <
distributions, a property which is commonly referred taresensi- ab™ for all n, with a < 0o, b < 1;

tivity. Only recently, Avrachenkoet al. [11] established that the ) ] ) ]

mean queue lengths of all classes are finite under the usual stabil- (i) Bx is regulflirly varying of index > 1, there exists an > 0

ity condition, regardless of the higher-order moments of the service sothatB[B'*"] < oo, andmax{wi,ws, ..., wx} 3,2, pi/wi <
requirements. Some of the insensitivity properties of PS only carry

over to DPS in variouasymptotic regimes/e will discuss several  The third set of conditions does not require finite variances of the
such regimes in the following subsections. service requirement distributions, but imposes a seemingly unnec-
3.1 Expected sojourn time for |arge jObS essarily _st_rong co_nditi_or_l on th_e loads. The secon_d _condition does
) ] o ) not explicitly require finite variances, but to date it is not known
In their seminal paper Fayolle, Mitrani & lasnogorodski [34]  \yhether the queue length decays geometrically, so that it may still
showed that the asymptotic (mean) slowdown ratio (the ratio of the jmpicitly rely on service requirements with finite variance. We are
conditional mean sojourn time and the service requirement) under jnclined to conjecture that neither a finite variance, nor the restric-

(i) Br and B are both regularly varying of index > 2 (this
ensures a finite variance);

DPS is insensitive and independent of the job class: tive load condition in the third set are necessary for (2) to hold.
EIT, A further extension of this result to scenarios with a time-varying
_ E[Tk(z)] 1 _ . .
BlRp(2)] = =" — 17— ;) asz— oo ) service capacity can also be found in [21].

) ) ) ) ) For light-tailed service requirements, these insensitivity proper-
Note that this relation holds with equality for allin the case of ties do not hold [21]. For this case, Egorosaal. [31] recently

egalitarian PS. The asymptotic insensitivity extends to DPS sys- gydied the logarithmic estimates of the tail of the sojourn time dis-
tems with capacity fluctuating according to a Markovian process, tripytion using large-deviations techniques.

and to other service disciplines such as LAS and SRPT as well [60].

More recently, this property was studied for a broad class of service 3.3 Separation of time scales

disciplines by Harchol-Baltegt al.[39]. _ _ Thirdly, the entire joint queue lengttistribution under DPS
Assuming service requirement distributions wiittite variance turns out to be insensitive under a time-scale separation regime.

Avrachenkowet al.[11] refined (1) for DPS and showed thatthe ex-  gyppose that the classes are ordered in decreasing order of time

pected conditional response time of clasisas an asymptote with  scale, i.e., clask operates on a mudastertime scale than class

slopel/(1 — p) and a finite bias given by k+1,forallk =1,2,..., K — 1. Formally, this can be achieved
A1 — %)E[(B,-)Q] by rgplacing.the arrival rate of clqﬁspy Ak fx(r) and letting the
lim (E[Tk(x)] __* ) S — ' i service requirements of classbe distributed a3 / f (r), where
e L—=p 2(1=p)? we take the parameter — oo and the functiong, are such that

It is worth emphasizing that the asymptotic bias with respect to the fx+1(7)/fx(r) — 0 asr — oo. Note that in this procedure,
linear term depends only on the second moments of the service re-the loadsp,, remain unchanged whenis varied. In the limit, a
quirement distributions afther classegor, in fact, of classes with ~ Strict separation of time scalesccurs, allowing for exact analysis

different weights). In particular, the second momentBf does of the queue length distribution. Under the technical assumption
not impact this result, no matter how large its value. This suggests f Phase-type distributions [43], this yields the following result for
that the assumption of a finite variance B, is likely to be an & = 2. (All limits in this subsection hold as — oo, which we
unnecessary restriction. We will see similar technical restrictions oMit for compactness of the presentation.)
in the following section. P{Ni = 1| Ny = nz}
3.2 Heavy-tailed asymptotics D(ni+ 222 +1) npwy

. . . . S - now pll(l_pl) “1 ‘

A second asymptotic regime in which DPS exhibits some sort [(ni +1)0(#222 + 1)

of insensitivityhas received considerable attention over the last
decade. It was shown in [22] that the following asymptotic equiva-
lence — first established for PS by Zwart & Boxma [77] — extends

HereD'(z) = [~ e “u*~'du and the subscript reflects the de-
pendence of the involved random variables-oin particular,

to DES as vv_eII, basically_ unc_ier the_ co_nqlition qf regularly varying E,.[N1|N2 = na]
service requirement distributions with finite variance: o o .
The limiting distribution of the slow class is
P{Tk > .’L'} =1 asr — oo (2) P2 P2 no

P{B> 0} " | PNe=ma} = (1= g 20 (72,07,
Again, the “scaling factor’l — p is insensitive and common to all P2
classes. The additional distributional assumption that the variance SO thatE [N2] — -~ and
is finite, is not essential. Indeed, relation (2) was shown to hold w
for a wider class of service distributions in [21], with an additional E,.[Ni] — (—2 1p2 + 1) T o

w1 l—p - P

condition on the loads. For completeness we list the precise con-
ditions under which the above equivalence has been establishedNote that these limiting expressions are entirely insensitive to char-
Recall thatB;, has the distribution of the service requirements of acteristics of the service requirement distributions other than the



means. Another interesting insight is that the limiting distribution arrivals queunes server
of N> (the slow class) is independent of the weights, whereas that
of N, does depend on the ratio of the weights. Class 1 s

For more than two classes the above scaling leads to an insightful — |:|: s ]]:l T W
recursion for the limiting queue lengths:

Er[Ni|Nig1 = nita, ..., Nk = nx] Class 2 :["'D:l. ..... I .

. <ZJK=1+1 njw; + 1) L n, 21 W‘K_,-"'
w; 1-— Ej:l Pi Class K D A |:|:| ”
andE, [Nx] — 25 w21
I—p
3.4 Heavy-traffic regime Figure 2: A queue operating under GPS

The final asymptotic regime that we discuss, giving rise&ar”
insensitivityis that of a DPS system operating under heavy load

?:r?tlté?:t?ilbh(taibﬁ]s ar%ktﬁflepcklas_s) ;.ro\tg\z/aebiflli)t(jégewﬁlgli% ecrreegsuilr:g from DPS, the weightv,, is associated with thentire queuebe-

. R 1 longing to classc and not with each individual job in that queue.
the arrival rate, so thax 1 A := (3, ka[Bk]) - We denote  ag the term Head-of-the-Line (HOL) in one of the original names
the limiting loads of all classes by = ApxE[B]. As may be suggests, it is commonly assumed that only the job or packet at the
expected, in this regime the numbers of jobs in the system of all head of the queue of each class is served. However, this assump-
classes will increase unboundedly. However, when scaled with tion is by no means critical, and the workload behavior is the same
the common factor 1 — p, the joint queue length distribution has  for all work-conserving strategies. In fact, the analysis of the GPS
a proper limiting distribution. discipline extends to situations where the notion of traffic consist-

ing of distinct jobs or packets may not even apply, like in the case
The DPS queue in heavy traffic was analyzed by Grishechkin [36] of fluid input. In that case, some subtleties may arise since a class
assuming finite second moments of the service requirement distri- may generate traffic at a rate below its service share, and thus may
butions. Subsequently, assuming exponential service requirementpe nonbacklogged and receive service at the same time [30].
distributions, a direct approach to establish a heavy-traffic limitfor  The seminal work of Parekh & Gallager [64, 65] on GPS schedul-
the joint queue length distribution was described by Rege & Sen- ing concerned the derivation of deterministic (worst-case) delay
gupta [66] and extended fmhase-typealistributions in [44]: When guarantees for leaky-bucket controlled traffic sources. Subsequent
scaling withl — p, the queue length vector has a proper distribution papers pursued the evaluation of statistical (average-case) perfor-
asp — 1, mance measures such as loss probabilities, delay characteristics,
and workload distributions. The exact analysis of GPS queues is
) intractable in all but a few special cases. In fact, in the case of
two classes, a GPS system is equivalent to a so-called coupled-
processors model, whose solution gives rise to rather formidable
boundary value problems [27, 33, 37, 38, 47, 48]. (The GPS dis-
) cipline also shows resemblance with so-called cycle stealing poli-
E[X] = >k PeE[(Br)’] cies, see for instance [62].) Hence, most of the work has focused
> w PeE[(Br)?]/we’ on various kinds of bounds and asymptotic approximations. Such
L . . asymptotic approximations tend to have a remarkably simple and
which is equal to 1 whems, = 1 for all &, i.e., in the case of insightful form, and are particularly valuable because the relevant

standard PS. . . . ;
- L Quality-of-Service measures typically pertain to the occurrence of
Note that, although the limiting distribution depends on the sec- extremely rare events with small probabilities.

ond.moment of the service requirementdi;tribqtionsthroﬂg]d], Yaron & Sidi [73] derived bounds for GPS queues fed by so-
the impact of the second moment &{.X] is uniformly bounded called exponentially-bounded burstiness traffic. Bertsiatas[14],

d

(1—p)(N1,Na,...,Ng) % x . (2L B2 LK,

’u)17’w27. '7wK

where-% denotes convergence in distribution akids an exponen-
tially distributed random variable with mean

;nzg in particulamnin; {w;} < E[X] < max;{w;}. This implies Massoulé [59], and Zhang [75] established large-deviations results
for light-tailed traffic sources. Large-buffer asymptotics for heavy-

ming{wi} _ lim (1- p)E (NW] < max; {w; } tailed traffic processes were obtained in Betsdl.[17], Jelenkow

Wy, =1 pk PLVKD = wy & Momcilovit [42, 41], Kotopoulost al. [49] and LeLarge [54].

Van Uitert & Borst [72] extended these results to networks of GPS
gueues. Borstt al. [19] analyzed the buffer asymptotics in a two-
class GPS system with a mixture of heavy-tailed and light-tailed
traffic.
4. GENERALIZED PROCESSOR SHARING The results in [17, 18, 19] reveal a sharp trichotomy in the quali-
The GPS discipline operates as illustrated in Figure 2. Traf- tative behavior, depending on the traffic intensities and the relative
fic belongs to one of classes, with clask assigned a positive  weight values of the various classes. For a wide range of param-
weightw, > 0. When all the classes are backlogged, i.e., have eters, an individual class with heavy-tailed characteristics is effec-
nonempty queues, the total service rate is divided in accordancetively served at aonstantrate, which is only influenced by the
with the weight factorsu,.. When some of the classes are nonback- average rates of the other classes. In particular, such a class is es-
logged, the surplus service rate is reallocated among the others insentially immune from the adverse impact of flows with ‘heavier'-
proportion to the weights,. It is important to note that, different  tailed characteristics. This phenomenon is commonly referred to

Here, the subscript indicates the dependence of the distribution
of Nj onp.



as areduced-load equivalenca term first coined in the context of
fluid queues with subexponential activity periods [6], and is also
recognized in the sojourn time asymptotics for heavy-tailed DPS

When comparing the mean sojourn time of different disciplines
for IMRL or DMRL service requirements in an M/G/1 queue, a
key variable is the so-callddvel« (or truncated) workloadb, 1],

gueues described in Subsection 3.2. For other parameter regimesvhich refers to the sum of the remaining service requirements of

however, an individual class (either with heavy-tailed or light-tailed
characteristics) may be strongly affected by excessive activity of
‘heavier'-tailed flows, and may inherit their traffic characteristics.
This phenomenon is sometimes calleduced burstinesg=inally,
for a class with light-tailed characteristics and a sufficiently high
weight, the buffer asymptotics involve subtle combination of heavy-
tailed and light-tailed large-deviations behavior. This is often re-
ferred to as aeduced-peak equivaleng20], in analogy with the
term reduced-load equivalence. Similar types of qualitatively dif-
ferent regimes in different settings were observed in [23, 24].
While the above results concern so-callatje-buffer asymp-
totics many-sources asymptotiecsay be found in [29, 50, 51].
Mannersalo & Norros [58] developed accurate approximations for

gueues with Gaussian traffic processes in the many-sources regime.

Mandjes & Van Uitert [56] further justified and refined these ap-

proximations, and established an interesting connection with tan-

dem queues, see also [57].

All of the above papers focus on evaluating performance met-
rics for given scheduling weights. The reverse problem of select-
ing suitable weight factors so as to satisfy given Quality-of-Service

those jobs in the system whose attained service is less than a given
thresholdx. By definition, the mean levet-workload E[V,"| can
be expressed as follows for anye II andx > 0:

EV]] = E[B -y | B > y]dE[N;]. (3)
0-
Here E[N, | refers to the mean number of those jobs in the system
whose attained service requirement is less than
If H(x)is monotonic, the mean sojourn time$7™™ | andE[T”/}
in two systems with disciplines, 7’ € II, respectively, may be

compared as follows [1, Equation (13)]:
1

A

E[T™] - E[T™] = /OOO(E[V;] — B[V dH (z).

This yields the following lemma.

Lemma 1 Letr, x' € II such thatE[V"] < E[V | for all z >
0. (i) If F € IMRL, thenE[T™] < E[T™]. (ii) If F € DMRL,

requirements and the closely related issue of characterizing the adthenE[T™] > E[T™ ].
missible region, have received considerably less attention, see for

instance [32, 52, 55, 63, 76].

5. MULTILEVEL PROCESSOR SHARING

Kleinrock [45, Section 4.7] introduced a class of nonanticipat-
ing and work-conserving disciplines called Multilevel Processor-
Sharing (MLPS) disciplines. An MLPS disciplineis defined by a
finite set of level thresholds; < --- < an definingN + 1 levels,

N > 0. A job belongs to leveh if its attained service is at least
an—1 but less thanu,,, whereap = 0 andan1 = oo. Between
these levels, a strict priority discipline is applied with the lowest
level having the highest priority. Within each lewe| an internal
discipline D,, € {FB, PS, FCFS} is applied.

Below we review recent results related to the mean sojourn time
and slowdown ratio comparison with an ordinary PS policy, as well

as the expected conditional sojourn time asymptotics, in a stable

M/G/1 queue. Recall thak[T'(x)] denotes the expected condi-
tional sojourn time of a job with service requirement As be-
fore, the corresponding slowdown ratio is denoted®jyR (z)] =
E[T(z)]/x. The mean sojourn time and the mean slowdown ratio
are respectively defined by

E[T) = /OOC E[T(z)|dF(z), E[R]= /Ooo E[R(x)]dF (z).

By this approach, the following result has been obtained, which
compares certain MLPS disciplines with the baseline discipline PS.

Theorem 1 [1, Theorem 1] Letr € MLPS such that the internal
disciplines belong td FB, PS}. (i) If ' € IMRL, thenE[T™] <
E[T*3]. (i) If F € DMRL, thenE[T™] > E[T"9)].

This approach has also been used to demonstrate that FB does
not minimize the mean sojourn time within the class IMRL [5],
contrary to what was believed earlier [68].

5.2 Mean sojourn time comparison for DHR
and IHR service requirements

Assume now that the service requirement distribution has den-
sity f(x). The hazard raté(z), = > 0, is defined by

_ @ f@
1-F@)  [* )y

A service requirement distribution belongs to class DHR [IHR] if
h(zx) is decreasing [increasing] for all > 0. It is known that
DHR C IMRL andIHR C DMRL. Thus, we may expect more
detailed results for DHR and IHR distributions.

When comparing the mean sojourn times of different disciplines

h(x)

Finally, letII denote the family of nonanticipating and work-conservirf§" DHR or IHR service requirements, one should no longer con-

disciplines.

5.1 Mean sojourn time comparison for IMRL
and DMRL service requirements

Define, for allz > 0,
1— F(z)
T[T =F@)ay
This is the inverse of the mean residual lifetime functig ().
A service requirement distribution belongs to class IMRL [DMRL]

if 1/H (x) is increasing [decreasing] for all > 0. In this case we
use notatior¥” € IMRL[DMRL)].

H(zx)

centrate on the level-workload but a slightly modified variable
called theunfinished truncated woff2, 3], which refers to the sum

of the remaining truncated service requirements of those jobs in
the system whose attained service is less than a given truncation
thresholdz. By definition, the mean unfinished truncated work
E[UZ] can be expressed as follows for amye IT andz > 0,

cf. (3):

BlUT] = /0__ Emin{B,z} —y | B > y]dE[NT].

If h(x) is monotonic, the mean sojourn time$7™] and E[T™ |
in two systems with disciplines, =’ € II, respectively, may be



compared as follows [1, Equation (5)]: Theorem 3 If function g(x) is decreasing [increasing] for alk,
1 the mean slowdown ratio is decreased [increased] whenever any of

E[T™] - E[T”/} =3 /OOO(E[U;’] — E[U;r']) dh(z). (4) the actions (i)—(iii) mentioned in Theorem 2 is performed.

This approach was originally used in [35] to prove the optimality
of FB with respect to the mean slowdown ratio for DHR service
requirements.

As a consequence, we have the following lemma.

Lemma 2 Letr, n" € I suchthatE[U7] < E[US |forall z > 0.
(i) If F € DHR, thenE[T™] < E[T™]. (i) If F € IHR, then
E[T™] > E[T™].

5.4 Expected conditional sojourn time asymp-
totics
Let MLPS(PS) denote the set of disciplines that deploy PS as
internal discipline in the highest level. In [10] the authors compared
the asymptotic expected conditional sojourn time of a discipline
m € MLPS(PS) and PS.

By this approach, the following more detailed comparison results
have been obtained, giving a partial order with respect to the mean
sojourn time among the MLPS disciplines.

Theorem 4 [10, Proposition 1] Letr € MLPS(PS). Then the

Theorem 2 [4, Theorems 1, 2 and 3] For DHR [IHR] service re-  response time of the queue has an asymptote with slode— p)
quirements, the mean sojourn time is decreased [increased] when-anq 4 positive finite bia.

ever
(i) an internal discipline is changed from PS to FB, or from FCFS The precise value oK” depends on the service requirement dis-
to PS; tribution and the value of the last threshalg (see [10] for a
(i) any level with FCFS internal discipline is split into two adja-  closed-form expression fdc). We note that Theorem 4 holds even
cent FCFS levels; or when the service requirement distribution has an infinite second
(iii) level 1 with PS internal discipline is split into two adjacent PS moment. As a direct consequence of Theorem 4, we conclude that
levels. the asymptotic slowdown of any disciplinre ¢ MLPS(PS) and
PS are exactly the same, that is,

Note that splitting a PS level that is not the lowest one is still . Ps
an open problem. In [4] a conjecture is presented that would be lim BT (z)] — lim BT~ (z)] __1 )
sufficient to prove that for DHR [IHR] service requirements, the z—00 x z—00 T 1-p
mean sojourn time is decreased [increased] if any PS level is split  These results for the asymptotic expected conditional sojourn
into two adjacent PS levels. time and slowdown show that the performance that very large jobs

Lemma 2 can also be used to prove the optimality of FB with re-  5pain is equivalent under both MLPS(PS) and PS disciplines.
spect to the mean sojourn time for DHR service requirements [35,

2]. This is due to the fact that FB minimizes the unfinished trun- 5.5 Optimal choice of the thresholds
cated work process for anyeven stochastically 2, Proposition 5]. From a design point of view, a key issue for the successful imple-
Earlier proofs [74, 67] have used different approaches. mentation of the MLPS discipline lies in the choice of the thresh-

. . olds. Numerical experiments reported in [4] showed that with DHR
5.3 Mean slowdown ratio comparison service requirements, an MLPS discipline with a very small num-

Define, for allz > 0, ber of thresholds (typically 2 or 3) but with an appropriate choice
F(@) of thresholds, can attain a mean sojourn time very close to that
g(z) = m achieved by FB. The problem of obtaining analytical expressions

for the optimal choice of the thresholds is largely open. As a first
Note that for any DHR service requirement distribution, the func- step in this direction we refer to [12].

tion g(x) is decreasing. However, for an IHR distribution, this

function may be nonmonotonic. 6. CONCLUSION

. By a simple modlflcathn of the. argument' that Ieads.to Equa- The Egalitarian Processor-Sharing (PS) discipline arises as a nat-
tion (4), we get the following relation. j(x) is monotonic, the ;.\ yaradigm in a variety of practical situations, including resource-

mean slowdown ratio&'[R"] and E[R™ | in two systems with dis-  sharing in data networks. This area of application has been a driv-
ciplines, 7’ € II, respectively, may be compared as follows: ing force for several modifications of the basic PS discipline. We
, 1 [ , broadly distinguish three reasons for the existence of the modifi-
E[R"] - E[R"] = _X/ (ElUZ] - E[U; ])dg(z). cations discussed in this survey paper: i) describing asymmetric
0 characteristics of existing resource-sharing mechanisms like TCP
This results in the following lemma. (embodied in DPS), (ii) modeling deliberate service discrimina-

tion among users using WFQ or WRR (both DPS and GPS), and

, . o (iii) exploiting variability in the job sizes for performance benefits

Lemma 3 Letr, 7" € [Tsuchthat[U7] < E[U [forallz > 0. (MLPS). Given these distinct origins, the various policies have also

(i) If function g(z) is decreasing for alk, thenE[R™] < E[R™ |. been analyzed under differing scenarios and using a wide range of

(ii) If function g(z) is increasing for allz, thenE[R™] > E[R“/]. analysis tools. We have aimed at bundling the key analytical results
obtained for DPS, GPS and MLPS.

By combining this lemma with the mean unfinished truncated A unifying factor amongst these three policies is the need to set
work results found in [4], we get the following new theorem, giv- appropriate weights or thresholds. However, optimality results to
ing another partial order among the MLPS disciplines, now with guide these parameter setting have remained rather scarce so far.
respect to the mean slowdown ratio. We believe this issue provides a fertile area for future research.
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