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ABSTRACT
While the (Egalitarian) Processor-Sharing (PS) discipline offers cru-
cial insights in the performance of fair resource allocation mecha-
nisms, it is inherently limited in analyzing and designing differen-
tiated scheduling algorithms such as Weighted Fair Queueing and
Weighted Round-Robin. The Discriminatory Processor-Sharing (DPS)
and Generalized Processor-Sharing (GPS) disciplines have emerged
as natural generalizations for modeling the performance of such
service differentiation mechanisms. A further extension of the or-
dinary PS policy is the Multilevel Processor-Sharing (MLPS) dis-
cipline, which has captured a pivotal role in the analysis, design
and implementation of size-based scheduling strategies. We review
various key results for DPS, GPS and MLPS models, highlighting
to what extent these disciplines inherit desirable properties from or-
dinary PS or are capable of delivering service differentiation.
Keywords:Discriminatory Processor Sharing; Generalized Proces-
sor Sharing; Multilevel Processor Sharing; asymptotic analysis; in-
sensitivity; queue length; size-based scheduling; slowdown; ser-
vice differentiation; sojourn time; delay minimization; workload.

1. INTRODUCTION
Over the past few decades, the Processor-Sharing (PS) discipline

has gained a prominent role in evaluating the performance of a vari-
ety of resource allocation mechanisms. Originally, the PS paradigm
emerged as an idealization of Round-Robin scheduling algorithms
in time-shared computer systems [46]. In recent years, the PS dis-
cipline has received renewed attention as a convenient abstraction
for modeling the flow-level performance of bandwidth-sharing pro-
tocols in packet-switched networks, in particular TCP [13, 40, 60,
69, 70]. Although it is well-known that the queue length distribu-
tion in a PS queue with Poisson arrivals has a simple geometric
distribution, regardless of the service requirement distribution, the
sojourn time distribution is far less tractable, even for exponential

service requirements. We refer to [21] for an extensive survey of
results for the sojourn time distribution in PS queues.

While the PS model provides valuable insights, it critically relies
on the assumption that the service capacity is shared in an egali-
tarian manner among competing users. The actual service shares
may however show substantial variation among users with hetero-
geneous characteristics. For example, TCP flows that share a com-
mon bottleneck link but traverse distinct routes, may experience
diverse packet loss rates and round-trip delays. Because of TCP
mechanics, these differences result in a significant discrepancy in
the bandwidth shares, see for instance [8].

Besides TCP-related effects, the heterogeneity in bandwidth shares
may also be due to deliberate service differentiation among com-
peting flows. As the Internet evolves to support an ever increasing
range of services, there is a growing need for some form of ser-
vice differentiation to accommodate the diverse Quality-of-Service
requirements and traffic characteristics of heterogeneous applica-
tions. The ability to provide different bandwidth shares is arguably
one of the most fundamental vehicles for service differentiation [16].
Discriminatory packet scheduling algorithms, such as Weighted
Fair Queueing (WFQ) and Weighted Round-Robin (WRR), have
been proposed as potential instruments to implement differentiated
bandwidth sharing. Both WFQ and WRR constitute weighted ver-
sions of standard round-robin scheduling where the various users
may receive different service quanta as specified by user-specific
service weights.

TheDiscriminatoryProcessor-Sharing (DPS) discipline [34, 46,
61] provides a natural approach for modeling the flow-level per-
formance of TCP with asymmetric bandwidth shares or differen-
tiated scheduling mechanisms such as WFQ and WRR. DPS is a
multi-class extension of the egalitarian PS policy, where the vari-
ous classes are assigned positive weight factors. The service capac-
ity is shared among all users present in proportion to the respective



class-dependent weights. In case all weight factors are equal, the
DPS discipline reduces to the egalitarian PS policy.

The DPS discipline shows some resemblance with theGener-
alized Processor-Sharing (GPS) policy (or Generalized Head-Of-
the-Line (HOL) PS), where the service capacity is also shared in
accordance with class-dependent weight factors. In GPS however,
the capacity is not divided among all users present, but distributed
across (nonempty) classes irrespective of the actual number of users
present. By guaranteeing a certain minimum rate to each back-
logged class, the GPS discipline provides isolation among compet-
ing classes. In addition, it achieves statistical multiplexing gains by
reallocating surplus bandwidth from non-backlogged classes.

While both the DPS and GPS disciplines arise as continuous ide-
alizations of discriminatory packet scheduling algorithms, the dif-
ference in names reflects the traffic scenario and time scale consid-
ered in performance studies. The DPS discipline serves to evaluate
flow-level performance, i.e., the interaction among a dynamic pop-
ulation of flows, where faster fluctuations at the packet level are
assumed to average out. In contrast, the GPS discipline aims to
describe the performance at the packet level, where the population
of flows may be assumed (nearly) static due to the slower dynam-
ics. Adding to the ambiguity in terminology, the term GPS was
first used by Cohen [26] in the seventies to describe an extension
of PS with state-dependent service rates, but here we adhere to the
convention adopted after the seminal work in the nineties of Parekh
& Gallager [64, 65].

A further extension of the ordinary PS policy is the family of
Multilevel Processor-Sharing (MLPS) strategies as introduced in [45].
While DPS and GPS mainly serve to provide service differentia-
tion, the goal of MLPS is to improve the overall performance by
exploiting the variability in service demands, and in particular giv-
ing precedence to shorter requests over longer ones. The rationale
for size-based scheduling has been amplified by findings that file
sizes show extreme variability and commonly have heavy-tailed
characteristics [9, 25, 28, 53].

An MLPS discipline is parameterized by a number of levels or
thresholds, which are used to dynamically categorize jobs based on
their current amounts of attained service. Lower classes (jobs with
smaller amounts of attained service) receive priority over higher
classes, and within each class the jobs may be served according to
the ordinary PS policy or the Foreground-Background Processor-
Sharing (FBPS, or just FB) discipline. The MLPS strategy may
thus be interpreted as a coarse-grained approximation of the FBPS
discipline. In fact, the family of MLPS strategies span a wide spec-
trum of policies, covering both the strict FBPS discipline and the
ordinary PS policy as extreme (limiting) cases, and lend themselves
better for actual implementation, especially at high line speeds.
(We refer to [15] for an in-depth discussion of implementation is-
sues involved in size-based scheduling.)

As described above, the DPS, GPS and MLPS strategies all three
constitute extensions of the ordinary PS discipline. Given that strong
commonality, we survey in the present paper various key results for
DPS, GPS and MLPS models in a unified framework, emphasizing
to what extent these disciplines inherit favorable properties from
ordinary PS or are effective in providing service differentiation.

The remainder of the paper is organized as follows. In Section 2
we present a model description and introduce some notation. In
Section 3 we review results for DPS models. Section 4 discusses
GPS models. Since the results for GPS models center around work-
load characteristics rather than sojourn time distributions, we keep
the section brief. We refer to [71] for a more elaborate overview of
the GPS literature. Section 5 provides a survey of MLPS models.
In Section 6 we make some concluding remarks.

2. MODEL DESCRIPTION AND NOTATION
We study a single-resource system of service capacity 1 with

Poisson arrivals at rateλ and i.i.d. service requirements with distri-
butionF (x) = P{B ≤ x} for all x ≥ 0, where the generic ran-
dom variableB denotes a single service requirement, with meanE[B]
and loadρ = λE[B]. We assume that the system works at full
rate 1 whenever it is nonempty, so that this M/G/1 system is stable
(it empties in finite time) whenρ < 1. For convenience, we will
impose additional technical assumptions on the service requirement
distribution when needed.

In this paper we study several performance measures. With the
random variableN we generically denote the number of jobs in
steady state, whileT denotes the sojourn time of an arbitrary job.
Whenever appropriate, we supplement these variables with sub-
scripts (for exampleNj) when we wish to distinguish among differ-
ent types of jobs in the system, or with an additional argument (for
exampleT (x)) if the random variable is conditioned on the size
of the particular job under consideration (i.e.x). As for the ser-
vice requirements, we denote the mean of any random variableY
by E[Y ].

3. DISCRIMINATORY PROCESSOR SHAR-
ING

We will restrict our literature overview of DPS to some papers
that are key to the results presented here. For an extensive overview
of the literature on DPS we refer to the recent survey [7] and to [21]
for results on tail distributions.

DPS is a class-based differentiation mechanism. Jobs are catego-
rized intoK different classes. Here we will assume that each new
job is of classk with probabilitypk, independent of the classes all
previous jobs belong to. Therefore, the arrival processes of all in-
dividual classes are (independent) Poisson processes as well, with
arrival ratesλk = pkλ. For classk we useBk, ρk = λk[Bk] and
Nk to denote the service requirement, the class load and the num-
ber of jobs in system (in steady state). Naturally,ρ =

PK
k=1 ρk.

Figure 1: A queue operating under DPS

DPS operates as illustrated in Figure 1. Jobs of classk are as-
signed weightswk(> 0). If there areNl = nl jobs of classl =



1, 2, . . . , K, theneach jobof classk receives a fractionwk/
PK

l=1 nlwl

of the server’s capacity.
The analysis of DPS is extremely difficult compared to that of

egalitarian PS, which arises as a special case when allwk are equal.
Most notably, the simple geometric queue length distribution for
the standard PS discipline does not have any counterpart for DPS.
For PS, this distribution is fully determined by the traffic loadρ and,
thus, not affected by higher moments of the service requirement
distributions, a property which is commonly referred to asinsensi-
tivity. Only recently, Avrachenkovet al. [11] established that the
mean queue lengths of all classes are finite under the usual stabil-
ity condition, regardless of the higher-order moments of the service
requirements. Some of the insensitivity properties of PS only carry
over to DPS in variousasymptotic regimes. We will discuss several
such regimes in the following subsections.

3.1 Expected sojourn time for large jobs
In their seminal paper Fayolle, Mitrani & Iasnogorodski [34]

showed that the asymptotic (mean) slowdown ratio (the ratio of the
conditional mean sojourn time and the service requirement) under
DPS is insensitive and independent of the job class:

E[Rk(x)] ≡ E[Tk(x)]

x
→ 1

1− ρ
, asx →∞. (1)

Note that this relation holds with equality for allx in the case of
egalitarian PS. The asymptotic insensitivity extends to DPS sys-
tems with capacity fluctuating according to a Markovian process,
and to other service disciplines such as LAS and SRPT as well [60].
More recently, this property was studied for a broad class of service
disciplines by Harchol-Balteret al. [39].

Assuming service requirement distributions withfinite variance,
Avrachenkovet al.[11] refined (1) for DPS and showed that the ex-
pected conditional response time of classk has an asymptote with
slope1/(1− ρ) and a finite bias given by

lim
x→∞

„
E[Tk(x)]− x

1− ρ

«
=

P
j λj(1− wk

wj
)E[(Bj)

2]

2(1− ρ)2
.

It is worth emphasizing that the asymptotic bias with respect to the
linear term depends only on the second moments of the service re-
quirement distributions ofother classes(or, in fact, of classes with
different weights). In particular, the second moment ofBk does
not impact this result, no matter how large its value. This suggests
that the assumption of a finite variance forBk is likely to be an
unnecessary restriction. We will see similar technical restrictions
in the following section.

3.2 Heavy-tailed asymptotics
A second asymptotic regime in which DPS exhibits some sort

of insensitivityhas received considerable attention over the last
decade. It was shown in [22] that the following asymptotic equiva-
lence — first established for PS by Zwart & Boxma [77] — extends
to DPS as well, basically under the condition of regularly varying
service requirement distributions with finite variance:

P{Tk > x}
P{Bk > (1− ρ)x} → 1, asx →∞. (2)

Again, the “scaling factor”1 − ρ is insensitive and common to all
classes. The additional distributional assumption that the variance
is finite, is not essential. Indeed, relation (2) was shown to hold
for a wider class of service distributions in [21], with an additional
condition on the loads. For completeness we list the precise con-
ditions under which the above equivalence has been established.
Recall thatBk has the distribution of the service requirements of

classk, B that of the service requirements of an arbitrary customer
(i.e., not conditioned on the class) andN is the total number of
jobs in the system. Then (2) has been proved under the following
conditions:

(i) Bk andB are both regularly varying of indexν > 2 (this
ensures a finite variance);

(ii) Bk is regularly varying of indexν > 1 andP{N > n} ≤
abn for all n, with a < ∞, b < 1;

(iii) Bk is regularly varying of indexν > 1, there exists anη > 0
so thatE[B1+η] < ∞, andmax{w1, w2, . . . , wK}

PK
i=1 ρi/wi <

1.

The third set of conditions does not require finite variances of the
service requirement distributions, but imposes a seemingly unnec-
essarily strong condition on the loads. The second condition does
not explicitly require finite variances, but to date it is not known
whether the queue length decays geometrically, so that it may still
implicitly rely on service requirements with finite variance. We are
inclined to conjecture that neither a finite variance, nor the restric-
tive load condition in the third set are necessary for (2) to hold.
A further extension of this result to scenarios with a time-varying
service capacity can also be found in [21].

For light-tailed service requirements, these insensitivity proper-
ties do not hold [21]. For this case, Egorovaet al. [31] recently
studied the logarithmic estimates of the tail of the sojourn time dis-
tribution using large-deviations techniques.

3.3 Separation of time scales
Thirdly, the entire joint queue lengthdistribution under DPS

turns out to be insensitive under a time-scale separation regime.
Suppose that the classes are ordered in decreasing order of time
scale, i.e., classk operates on a muchfaster time scale than class
k + 1, for all k = 1, 2, . . . , K − 1. Formally, this can be achieved
by replacing the arrival rate of classk by λkfk(r) and letting the
service requirements of classk be distributed asBk/fk(r), where
we take the parameterr → ∞ and the functionsfk are such that
fk+1(r)/fk(r) → 0 as r → ∞. Note that in this procedure,
the loadsρk remain unchanged whenr is varied. In the limit, a
strict separation of time scalesoccurs, allowing for exact analysis
of the queue length distribution. Under the technical assumption
of phase-type distributions [43], this yields the following result for
K = 2. (All limits in this subsection hold asr → ∞, which we
omit for compactness of the presentation.)

Pr{N1 = n1|N2 = n2}

→
Γ(n1 + n2w2

w1
+ 1)

Γ(n1 + 1)Γ(n2w2
w1

+ 1)
ρn1
1 (1− ρ1)

n2w2
w1

+1
.

HereΓ(x) =
R∞
0

e−uux−1du and the subscriptr reflects the de-
pendence of the involved random variables onr. In particular,

Er[N1|N2 = n2]

The limiting distribution of the slow class is

Pr{N2 = n2} →
`
1− ρ2

1− ρ1

´` ρ2

1− ρ1

´n2 ,

so thatEr[N2] →
ρ2

1− ρ
, and

Er[N1] →
“w2

w1

ρ2

1− ρ
+ 1

” ρ1

1− ρ1
.

Note that these limiting expressions are entirely insensitive to char-
acteristics of the service requirement distributions other than the



means. Another interesting insight is that the limiting distribution
of N2 (the slow class) is independent of the weights, whereas that
of N1 does depend on the ratio of the weights.

For more than two classes the above scaling leads to an insightful
recursion for the limiting queue lengths:

Er[Ni|Ni+1 = ni+1, . . . , NK = nK ]

→
„ PK

j=i+1 njwj

wi
+ 1

«
ρi

1−
Pi

j=1 ρj

,

andEr[NK ] → ρK

1− ρ
.

3.4 Heavy-traffic regime
The final asymptotic regime that we discuss, giving rise to“near”

insensitivityis that of a DPS system operating under heavy load
conditions, i.e.,ρ =

PK
k=1 ρk → 1. We fix the service require-

ment distributions and the class probabilitiespk, while increasing
the arrival rate, so thatλ ↑ λ̂ :=

`P
k pkE[Bk]

´−1
. We denote

the limiting loads of all classes bŷρk = λ̂pkE[Bk]. As may be
expected, in this regime the numbers of jobs in the system of all
classes will increase unboundedly. However, when scaled with
the common factor 1− ρ, the joint queue length distribution has
a proper limiting distribution.

The DPS queue in heavy traffic was analyzed by Grishechkin [36]
assuming finite second moments of the service requirement distri-
butions. Subsequently, assuming exponential service requirement
distributions, a direct approach to establish a heavy-traffic limit for
the joint queue length distribution was described by Rege & Sen-
gupta [66] and extended tophase-typedistributions in [44]: When
scaling with1−ρ, the queue length vector has a proper distribution
asρ → 1,

(1− ρ)(N1, N2, . . . , NK)
d→ X · ( ρ̂1

w1
,

ρ̂2

w2
, . . . ,

ρ̂K

wK
),

where
d→ denotes convergence in distribution andX is an exponen-

tially distributed random variable with mean

E[X] =

P
k pkE[(Bk)2]P

k pkE[(Bk)2]/wk
,

which is equal to 1 whenwk = 1 for all k, i.e., in the case of
standard PS.

Note that, although the limiting distribution depends on the sec-
ond moment of the service requirement distributions throughE[X],
the impact of the second moment onE[X] is uniformly bounded
and in particularmini{wi} ≤ E[X] ≤ maxi{wi}. This implies
that

mini{wi}
wk

≤ lim
ρ→1

(1− ρ)

ρk
Eρ[Nk] ≤ maxi{wi}

wk
.

Here, the subscriptρ indicates the dependence of the distribution
of Nk onρ.

4. GENERALIZED PROCESSOR SHARING
The GPS discipline operates as illustrated in Figure 2. Traf-

fic belongs to one ofK classes, with classk assigned a positive
weight wk > 0. When all the classes are backlogged, i.e., have
nonempty queues, the total service rate is divided in accordance
with the weight factorswk. When some of the classes are nonback-
logged, the surplus service rate is reallocated among the others in
proportion to the weightswk. It is important to note that, different

Figure 2: A queue operating under GPS

from DPS, the weightwk is associated with theentire queuebe-
longing to classk and not with each individual job in that queue.
As the term Head-of-the-Line (HOL) in one of the original names
suggests, it is commonly assumed that only the job or packet at the
head of the queue of each class is served. However, this assump-
tion is by no means critical, and the workload behavior is the same
for all work-conserving strategies. In fact, the analysis of the GPS
discipline extends to situations where the notion of traffic consist-
ing of distinct jobs or packets may not even apply, like in the case
of fluid input. In that case, some subtleties may arise since a class
may generate traffic at a rate below its service share, and thus may
be nonbacklogged and receive service at the same time [30].

The seminal work of Parekh & Gallager [64, 65] on GPS schedul-
ing concerned the derivation of deterministic (worst-case) delay
guarantees for leaky-bucket controlled traffic sources. Subsequent
papers pursued the evaluation of statistical (average-case) perfor-
mance measures such as loss probabilities, delay characteristics,
and workload distributions. The exact analysis of GPS queues is
intractable in all but a few special cases. In fact, in the case of
two classes, a GPS system is equivalent to a so-called coupled-
processors model, whose solution gives rise to rather formidable
boundary value problems [27, 33, 37, 38, 47, 48]. (The GPS dis-
cipline also shows resemblance with so-called cycle stealing poli-
cies, see for instance [62].) Hence, most of the work has focused
on various kinds of bounds and asymptotic approximations. Such
asymptotic approximations tend to have a remarkably simple and
insightful form, and are particularly valuable because the relevant
Quality-of-Service measures typically pertain to the occurrence of
extremely rare events with small probabilities.

Yaron & Sidi [73] derived bounds for GPS queues fed by so-
called exponentially-bounded burstiness traffic. Bertsimaset al.[14],
Massoulíe [59], and Zhang [75] established large-deviations results
for light-tailed traffic sources. Large-buffer asymptotics for heavy-
tailed traffic processes were obtained in Borstet al.[17], Jelenkovíc
& Momčilović [42, 41], Kotopouloset al. [49] and LeLarge [54].
Van Uitert & Borst [72] extended these results to networks of GPS
queues. Borstet al. [19] analyzed the buffer asymptotics in a two-
class GPS system with a mixture of heavy-tailed and light-tailed
traffic.

The results in [17, 18, 19] reveal a sharp trichotomy in the quali-
tative behavior, depending on the traffic intensities and the relative
weight values of the various classes. For a wide range of param-
eters, an individual class with heavy-tailed characteristics is effec-
tively served at aconstantrate, which is only influenced by the
average rates of the other classes. In particular, such a class is es-
sentially immune from the adverse impact of flows with ‘heavier’-
tailed characteristics. This phenomenon is commonly referred to



as areduced-load equivalence, a term first coined in the context of
fluid queues with subexponential activity periods [6], and is also
recognized in the sojourn time asymptotics for heavy-tailed DPS
queues described in Subsection 3.2. For other parameter regimes
however, an individual class (either with heavy-tailed or light-tailed
characteristics) may be strongly affected by excessive activity of
‘heavier’-tailed flows, and may inherit their traffic characteristics.
This phenomenon is sometimes calledinduced burstiness. Finally,
for a class with light-tailed characteristics and a sufficiently high
weight, the buffer asymptotics involve subtle combination of heavy-
tailed and light-tailed large-deviations behavior. This is often re-
ferred to as areduced-peak equivalence[20], in analogy with the
term reduced-load equivalence. Similar types of qualitatively dif-
ferent regimes in different settings were observed in [23, 24].

While the above results concern so-calledlarge-buffer asymp-
totics, many-sources asymptoticsmay be found in [29, 50, 51].
Mannersalo & Norros [58] developed accurate approximations for
queues with Gaussian traffic processes in the many-sources regime.
Mandjes & Van Uitert [56] further justified and refined these ap-
proximations, and established an interesting connection with tan-
dem queues, see also [57].

All of the above papers focus on evaluating performance met-
rics for given scheduling weights. The reverse problem of select-
ing suitable weight factors so as to satisfy given Quality-of-Service
requirements and the closely related issue of characterizing the ad-
missible region, have received considerably less attention, see for
instance [32, 52, 55, 63, 76].

5. MULTILEVEL PROCESSOR SHARING
Kleinrock [45, Section 4.7] introduced a class of nonanticipat-

ing and work-conserving disciplines called Multilevel Processor-
Sharing (MLPS) disciplines. An MLPS disciplineπ is defined by a
finite set of level thresholdsa1 < · · · < aN definingN + 1 levels,
N ≥ 0. A job belongs to leveln if its attained service is at least
an−1 but less thanan, wherea0 = 0 andaN+1 = ∞. Between
these levels, a strict priority discipline is applied with the lowest
level having the highest priority. Within each leveln, an internal
disciplineDn ∈ {FB, PS, FCFS} is applied.

Below we review recent results related to the mean sojourn time
and slowdown ratio comparison with an ordinary PS policy, as well
as the expected conditional sojourn time asymptotics, in a stable
M/G/1 queue. Recall thatE[T (x)] denotes the expected condi-
tional sojourn time of a job with service requirementx. As be-
fore, the corresponding slowdown ratio is denoted byE[R(x)] =
E[T (x)]/x. The mean sojourn time and the mean slowdown ratio
are respectively defined by

E[T ] =

Z ∞

0

E[T (x)]dF (x), E[R] =

Z ∞

0

E[R(x)]dF (x).

Finally, letΠ denote the family of nonanticipating and work-conserving
disciplines.

5.1 Mean sojourn time comparison for IMRL
and DMRL service requirements

Define, for allx ≥ 0,

H(x) =
1− F (x)R∞

x
(1− F (y)) dy

.

This is the inverse of the mean residual lifetime function1/H(x).
A service requirement distribution belongs to class IMRL [DMRL]
if 1/H(x) is increasing [decreasing] for allx ≥ 0. In this case we
use notationF ∈ IMRL[DMRL].

When comparing the mean sojourn time of different disciplines
for IMRL or DMRL service requirements in an M/G/1 queue, a
key variable is the so-calledlevel-x (or truncated) workload[5, 1],
which refers to the sum of the remaining service requirements of
those jobs in the system whose attained service is less than a given
thresholdx. By definition, the mean level-x workloadE[V π

x ] can
be expressed as follows for anyπ ∈ Π andx ≥ 0:

E[V π
x ] =

Z x−

0−
E[B − y | B > y] dE[Nπ

y ]. (3)

HereE[Nπ
y ] refers to the mean number of those jobs in the system

whose attained service requirement is less thany.
If H(x) is monotonic, the mean sojourn timesE[T π] andE[T π′ ]

in two systems with disciplinesπ, π′ ∈ Π, respectively, may be
compared as follows [1, Equation (13)]:

E[T π]− E[T π′ ] = − 1

λ

Z ∞

0

(E[V π
x ]− E[V π′

x ] dH(x).

This yields the following lemma.

Lemma 1 Let π, π′ ∈ Π such thatE[V π
x ] ≤ E[V π′

x ] for all x ≥
0. (i) If F ∈ IMRL, thenE[T π] ≤ E[T π′ ]. (ii) If F ∈ DMRL,
thenE[T π] ≥ E[T π′ ].

By this approach, the following result has been obtained, which
compares certain MLPS disciplines with the baseline discipline PS.

Theorem 1 [1, Theorem 1] Letπ ∈ MLPS such that the internal
disciplines belong to{FB, PS}. (i) If F ∈ IMRL, thenE[T π] ≤
E[TPS]. (ii) If F ∈ DMRL, thenE[T π] ≥ E[TPS].

This approach has also been used to demonstrate that FB does
not minimize the mean sojourn time within the class IMRL [5],
contrary to what was believed earlier [68].

5.2 Mean sojourn time comparison for DHR
and IHR service requirements

Assume now that the service requirement distribution has den-
sity f(x). The hazard rateh(x), x ≥ 0, is defined by

h(x) =
f(x)

1− F (x)
=

f(x)R∞
x

f(y) dy
.

A service requirement distribution belongs to class DHR [IHR] if
h(x) is decreasing [increasing] for allx ≥ 0. It is known that
DHR ⊆ IMRL andIHR ⊆ DMRL. Thus, we may expect more
detailed results for DHR and IHR distributions.

When comparing the mean sojourn times of different disciplines
for DHR or IHR service requirements, one should no longer con-
centrate on the level-x workload but a slightly modified variable
called theunfinished truncated work[2, 3], which refers to the sum
of the remaining truncated service requirements of those jobs in
the system whose attained service is less than a given truncation
thresholdx. By definition, the mean unfinished truncated work
E[Uπ

x ] can be expressed as follows for anyπ ∈ Π andx ≥ 0,
cf. (3):

E[Uπ
x ] =

Z x−

0−
E[min{B, x} − y | B > y] dE[Nπ

y ].

If h(x) is monotonic, the mean sojourn timesE[T π] andE[T π′ ]
in two systems with disciplinesπ, π′ ∈ Π, respectively, may be



compared as follows [1, Equation (5)]:

E[T π]− E[T π′ ] = − 1

λ

Z ∞

0

(E[Uπ
x ]− E[Uπ′

x ]) dh(x). (4)

As a consequence, we have the following lemma.

Lemma 2 Letπ, π′ ∈ Π such thatE[Uπ
x ] ≤ E[Uπ′

x ] for all x ≥ 0.
(i) If F ∈ DHR, thenE[T π] ≤ E[T π′ ]. (ii) If F ∈ IHR, then
E[T π] ≥ E[T π′ ].

By this approach, the following more detailed comparison results
have been obtained, giving a partial order with respect to the mean
sojourn time among the MLPS disciplines.

Theorem 2 [4, Theorems 1, 2 and 3] For DHR [IHR] service re-
quirements, the mean sojourn time is decreased [increased] when-
ever
(i) an internal discipline is changed from PS to FB, or from FCFS
to PS;
(ii) any level with FCFS internal discipline is split into two adja-
cent FCFS levels; or
(iii) level 1 with PS internal discipline is split into two adjacent PS
levels.

Note that splitting a PS level that is not the lowest one is still
an open problem. In [4] a conjecture is presented that would be
sufficient to prove that for DHR [IHR] service requirements, the
mean sojourn time is decreased [increased] if any PS level is split
into two adjacent PS levels.

Lemma 2 can also be used to prove the optimality of FB with re-
spect to the mean sojourn time for DHR service requirements [35,
2]. This is due to the fact that FB minimizes the unfinished trun-
cated work process for anyx even stochastically [2, Proposition 5].
Earlier proofs [74, 67] have used different approaches.

5.3 Mean slowdown ratio comparison
Define, for allx ≥ 0,

g(x) =
f(x)

x(1− F (x))
.

Note that for any DHR service requirement distribution, the func-
tion g(x) is decreasing. However, for an IHR distribution, this
function may be nonmonotonic.

By a simple modification of the argument that leads to Equa-
tion (4), we get the following relation. Ifg(x) is monotonic, the
mean slowdown ratiosE[Rπ] andE[Rπ′ ] in two systems with dis-
ciplinesπ, π′ ∈ Π, respectively, may be compared as follows:

E[Rπ]− E[Rπ′ ] = − 1

λ

Z ∞

0

(E[Uπ
x ]− E[Uπ′

x ]) dg(x).

This results in the following lemma.

Lemma 3 Letπ, π′ ∈ Π such thatE[Uπ
x ] ≤ E[Uπ′

x ] for all x ≥ 0.
(i) If function g(x) is decreasing for allx, thenE[Rπ] ≤ E[Rπ′ ].
(ii) If function g(x) is increasing for allx, thenE[Rπ] ≥ E[Rπ′ ].

By combining this lemma with the mean unfinished truncated
work results found in [4], we get the following new theorem, giv-
ing another partial order among the MLPS disciplines, now with
respect to the mean slowdown ratio.

Theorem 3 If function g(x) is decreasing [increasing] for allx,
the mean slowdown ratio is decreased [increased] whenever any of
the actions (i)–(iii) mentioned in Theorem 2 is performed.

This approach was originally used in [35] to prove the optimality
of FB with respect to the mean slowdown ratio for DHR service
requirements.

5.4 Expected conditional sojourn time asymp-
totics

Let MLPS(PS) denote the set of disciplines that deploy PS as
internal discipline in the highest level. In [10] the authors compared
the asymptotic expected conditional sojourn time of a discipline
π ∈ MLPS(PS) and PS.

Theorem 4 [10, Proposition 1] Letπ ∈ MLPS(PS). Then the
response time of the queue has an asymptote with slope1/(1− ρ)
and a positive finite biasK.

The precise value ofK depends on the service requirement dis-
tribution and the value of the last thresholdan (see [10] for a
closed-form expression forK). We note that Theorem 4 holds even
when the service requirement distribution has an infinite second
moment. As a direct consequence of Theorem 4, we conclude that
the asymptotic slowdown of any disciplineπ ∈ MLPS(PS) and
PS are exactly the same, that is,

lim
x→∞

E[T π(x)]

x
= lim

x→∞

E[T PS(x)]

x
=

1

1− ρ
.

These results for the asymptotic expected conditional sojourn
time and slowdown show that the performance that very large jobs
obtain is equivalent under both MLPS(PS) and PS disciplines.

5.5 Optimal choice of the thresholds
From a design point of view, a key issue for the successful imple-

mentation of the MLPS discipline lies in the choice of the thresh-
olds. Numerical experiments reported in [4] showed that with DHR
service requirements, an MLPS discipline with a very small num-
ber of thresholds (typically 2 or 3) but with an appropriate choice
of thresholds, can attain a mean sojourn time very close to that
achieved by FB. The problem of obtaining analytical expressions
for the optimal choice of the thresholds is largely open. As a first
step in this direction we refer to [12].

6. CONCLUSION
The Egalitarian Processor-Sharing (PS) discipline arises as a nat-

ural paradigm in a variety of practical situations, including resource-
sharing in data networks. This area of application has been a driv-
ing force for several modifications of the basic PS discipline. We
broadly distinguish three reasons for the existence of the modifi-
cations discussed in this survey paper: i) describing asymmetric
characteristics of existing resource-sharing mechanisms like TCP
(embodied in DPS), (ii) modeling deliberate service discrimina-
tion among users using WFQ or WRR (both DPS and GPS), and
(iii) exploiting variability in the job sizes for performance benefits
(MLPS). Given these distinct origins, the various policies have also
been analyzed under differing scenarios and using a wide range of
analysis tools. We have aimed at bundling the key analytical results
obtained for DPS, GPS and MLPS.

A unifying factor amongst these three policies is the need to set
appropriate weights or thresholds. However, optimality results to
guide these parameter setting have remained rather scarce so far.
We believe this issue provides a fertile area for future research.
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