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Abstract

In this note we explore a useful equivalence relation for the delay distribution in the G/M/1 queue under two di:erent
service disciplines: (i) processor sharing (PS); and (ii) random order of service (ROS). We provide a direct probabilistic
argument to show that the sojourn time under PS is equal (in distribution) to the waiting time under ROS of a customer
arriving to a non-empty system. We thus conclude that the sojourn time distribution for PS is related to the waiting-time
distribution for ROS through a simple multiplicative factor, which corresponds to the probability of a non-empty system at
an arrival instant. We verify that previously derived expressions for the sojourn time distribution in the M/M/1 PS queue and
the waiting-time distribution in the M/M/1 ROS queue are indeed identical, up to a multiplicative constant. The probabilistic
nature of the argument enables us to extend the equivalence result to more general models, such as the M=M=1=K queue and
·=M=1 nodes in product-form networks.
c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

In this note we study a useful equivalence result
for the delay distribution in the G/M/1 queue, which
is one of the most celebrated models in queueing the-
ory. The G/M/1 model may be described as follows.
Customers arrive to a single server according to some
renewal process of rate �, and require independent
exponentially distributed amounts of service with pa-
rameter �. For stability, the o:ered load should not
exceed the service capacity, which may be expressed
as �¡ 1, with � := �=� denoting the traDc intensity.
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It is well-known that the distribution of the queue
length N at arrival epochs (i.e. the total number of
customers present, either waiting or being served) has
a simple geometric form [6,11]

P{N = n}= (1− 	)	n; n= 0; 1; 2; : : : : (1)

Here z= 	 is the unique, real zero inside the unit cir-
cle of the function z − �(�(1 − z)), with �(·) repre-
senting the Laplace–Stieltjes transform (LST) of the
inter-arrival time distribution. Note that 	 is the prob-
ability that the system is non-empty at an arrival in-
stant. In case of a Poisson arrival process, we have
�(z) = �=(�+ z), so that 	 = �.
The geometric queue length distribution in (1) holds

irrespective of the service discipline, as long as it is
restricted to operate obliviously of the actual service
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times, see for instance [20]. In contrast, the distribu-
tion of the customer delay (waiting time or sojourn
time) crucially depends on the service discipline that
is used. For the Mrst-come Mrst-served (FCFS) disci-
pline, it is well-known [6] that the sojourn time has
an exponential distribution

P{V¿t}= e−�(1−	)t ; t¿ 0:

If the arrival process is Poisson so that 	=�, then the
above formula takes the form P{V¿t}= e−(�−�)t .
Besides FCFS, a second major service mecha-

nism is the processor sharing (PS) discipline. In a
PS queue, the service rate is equally shared among
all customers present. Thus, when there are n¿ 1
customers present, each customer receives service at
rate 1=n. Originally, the PS paradigm emerged as an
idealization of round-robin scheduling mechanisms
in time-shared computer systems [12,13]. In recent
years, the PS discipline has attracted renewed interest
as a convenient modeling abstraction for bandwidth
sharing protocols in high-speed networks [14,19]. The
performance of such computer-communication sys-
tems as perceived by the users is largely determined
by the response time of tasks, or the transfer time of
documents. Therefore, the sojourn time distribution
in PS queues has been extensively investigated.
Initiated by Kleinrock’s analysis of the M/M/1 PS

queue [12,13], many studies in the literature have
focused on the analysis of the sojourn time conditioned
on the service requirement. Extensions of such an
analysis to generally distributed service requirements,
multiple servers, and more general sharing disciplines
were pursued in [5,23,24]. However, determining the
sojourn time distribution in PS queues turned out to
be a rather challenging problem.
For the M/M/1 PS queue, Co:man et al. [4] Mrst

derived a closed-form expression for the LST of the
sojourn time distribution conditioned on the service
requirement and the number of customers seen upon
arrival. Sengupta and Jagerman [25] found an alter-
native expression for the LST of the distribution of
the sojourn time conditioned only on the number of
customers seen upon arrival. Building on [4], Morri-
son [17] established an expression for the distribution
function of the sojourn time. For results on the sojourn
time distribution in M/G/1 PS queues, we refer to the
survey papers [27,28]; see also, e.g. [21].

The sojourn time distribution in G/M/1 PS
queues has received less attention in the literature.
Ramaswami [22] characterized the LST of the so-
journ time distribution by a di:erential equation and
determined the Mrst two moments of the distribution.
Jagerman and Sengupta [9] gave explicit expressions
for the LST, and derived a heavy-traDc limit dis-
tribution under proper scaling, showing that, in the
limit, the sojourn time is distributed as the product
of two independent exponentially distributed ran-
dom variables. The sojourn time in the ‘repair’ node
(with PS discipline) of the machine-repairman model
was examined by Mitra [15]. Extensions to multiple
customer classes, both in the moderate and in the
heavy-traDc regime, were considered by Mitra and
Morrison [16,18].
Comparing the results of Ramaswami [22] with

those of Cohen [6, p. 444], Cohen [7] observed a
simple relationship in the G/M/1 queue between the
sojourn time distribution for PS and the waiting-time
distribution for random order of service (ROS, also
known as SIRO = service in random order). As the
name suggests, in a ROS queue, customers are served
in random order: whenever a service is completed, the
next customer to be served is selected uniformly at
random from the customers present, if any. An arriv-
ing customer which Mnds the server idle, is taken into
service immediately. The ROS discipline provides a
reasonable modeling assumption for, e.g., contention
phenomena in distributed multi-access systems, see
[3], where the results of the present paper are used.
For further references on the ROS queue see Cohen
[6, p. 663].
SpeciMcally, Cohen [7] proved that the sojourn time

distribution in a G/M/1 queue for PS is related to the
waiting-time distribution for ROS through a simple
multiplicative factor:

P{Vps¿t}= 1
	
P{Wros¿t}; t¿ 0 (2)

with, as before, 	 := P{N¿ 0}=P{Wros¿ 0} rep-
resenting the probability that the system is non-empty
at an arrival epoch. Note that the proportionality rela-
tion (2) may equivalently be expressed as follows:

P{Vps¿t}= P{Wros¿t |Wros¿ 0}; t¿ 0:

Cohen’s proof of (2) relies on the fact that the
transform of the delay distribution satisMes in both
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cases the same di:erential equation, which possesses
a unique solution. In the present paper, we give a
direct probabilistic proof of relation (2). The prob-
abilistic nature of our proof allows us to extend the
relationship to more general settings, including the
above-mentioned machine-repairman model. In fact,
the proofs of the proportionality relation (2) in the
various settings show a stronger result: not only the
sojourn time in a PS queue and the waiting time
in a ROS queue are intimately related, but also the
entire evolution of the two systems can be stochasti-
cally coupled. The latter coupling results will not be
further pursued in the present paper though.
The remainder of the paper is organized as fol-

lows. In Section 2 we give a probabilistic proof of the
equivalence relation (2). For the case of a Poisson ar-
rival process, we verify in Section 3 that, indeed, the
expressions derived by Flatto [8] for the waiting time
distribution under ROS and by Morrison [17] for the
sojourn time distribution under PS are identical, up to
a multiplicative factor �. In Section 4 we discuss some
straightforward extensions of the equivalence result,
paving the way for the generalization to product-form
networks in Section 5.

2. Probabilistic coupling

In contrast with the approach of Cohen [7], our
proof of (2) relies on a direct probabilistic coupling
argument. The key insight is that whenever a service
completion occurs in the PS system, each of the cus-
tomers present is equally likely to be the one that
departs due to the memorylessness property of the
exponential distribution. In that respect, the pool of
customers competing for service under PS behaves
exactly as the pool of customers waiting for service
under ROS.
In order to formalize the above insight, let us fo-

cus on two tagged customers, X and Y. Customer X
arrives in a PS system to Mnd n customers present, and
joins the pool of customers being served, which then
consists of n+ 1 customers. Customer Y arrives in a
ROS system to Mnd n + 1 customers present, one of
which is being served, and thus joins the pool of wait-
ing customers, which then contains n+ 1 customers.
We now construct sample paths for the subsequent

evolution of the two systems on a joint probability

space such that: (i) customer X leaves the PS system
at the same time as customer Y leaves the waiting pool
to be taken into service in the ROS system; (ii) viewed
in isolation, the evolution of each of the two systems
follows the correct probabilistic laws. This is accom-
plished by coupling each customer in the PS system
with exactly one customer in the waiting pool of the
ROS system ensuring that, in particular, customers
X and Y are coupled. Additionally, we couple the
sequences of arrivals and service completions in the
two systems as follows. Let A1; A2; : : : be a sequence of
i.i.d. random variables drawn from the distribution of
the inter-arrival time. At the time instants determined
by the sequence Ak , a customer arrives to each of the
two systems. This pair of customers are immediately
coupled. Let D1; D2; : : : be a sequence of i.i.d. ran-
dom variables drawn from the exponential distribution
with parameter �. At inter-departure times governed
by the sequence Dk , a pair of customers are selected
uniformly at random from all pairs present (i.e., one
customer from the service pool in the PS system and
the customer coupled to it in the waiting pool of the
ROS system are selected). In the PS system, the cus-
tomer that belongs to the selected pair departs from the
system, whereas in the ROS system, the selected cus-
tomer replaces the customer in service, which leaves
the system. The above process is continued until the
pair of customers X and Y are selected.
Thus, by construction, customer X departs from

the PS system at the same time as customer Y starts
service in the ROS system. In addition, it is easily
veriMed that the evolution follows the correct proba-
bilistic laws of each of the two systems in isolation.
In fact, the above sample-path construction is a direct
translation of the operational rules of the ROS system.
For the PS system, the remaining service requirements
of all customers are independent and exponentially
distributed due to the memoryless property of the
exponential distribution. As a result, given a service
completion, all of the customers present are equally
likely to be the one that leaves the system.
In conclusion, if we denote the sojourn time of a

customer that arrives to a PS queue with n other cus-
tomers competing for service by Vps(n), and the wait-
ing time of a customer that arrives to a ROS queue
with n other customers waiting for service and one
additional customer in service by Wros(n), then the
above sample-path construction proves thatVps(n) and
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Wros(n) are equal in distribution:

Vps(n)
d=Wros(n); n= 0; 1; 2; : : : : (3)

Let us now turn to Vps, the (unconditional) sojourn
time in the PS queue, and Wros, the (unconditional)
waiting time in the ROS queue. For the PS queue we
have, conditioning on the number of customers present
at an arrival epoch,

P{Vps¿t}=
∞∑
n=0

P{N = n}P{Vps¿t |N = n}

=
∞∑
n=0

(1− 	)	nP{Vps(n)¿t}: (4)

For the ROS queue, observing that the waiting time
equals 0 exactly when there are no customers present
at an arrival instant,

P{Wros¿t}=
∞∑
n=0

P{N = n+ 1}

×P{Wros¿t |N = n+ 1}

= 	
∞∑
n=0

(1− 	)	nP{Wros(n)¿t}: (5)

The proportionality result (2) then follows from (3)–
(5).

Remark 2.1. In the PS literature, many studies have
focused on the sojourn time conditioned on the ser-
vice requirement of the customer. In fact, one of
the attractive features of the PS discipline is that
customers with smaller service requirements tend to
experience smaller delays (the sojourn time is in fact
stochastically increasing in the service requirement
of a customer). It is worth emphasizing therefore that
the equivalence result does not extend to the delays
when conditioned on the service requirement. Ob-
serve that for the ROS discipline, the waiting time is
independent of the service requirement.

3. Special case: the M/M/1 queue

For the case of a Poisson arrival process, expres-
sions for the distributions of Wros and Vps have been
derived by Flatto [8] and Morrison [17], respectively.

In [8], time is normalized such that arrivals occur at
unit rate, i.e., �= 1. Thus, Formula (1.1) of [8] gives
P{Wros¿t=�}, or, equivalently:

P{Wros¿t}= 2(1− �)
�

∫ �

�=0

e(2�(�)−�)cot �

e� cot � + 1

× e−[1−(2=
√
�)cos�+1=�]�t

[1− (2=
√
�)cos�+ 1=�]2

×sin� d�; (6)

where

�(�) = arctan
(

sin�
cos�−√

�

)
; 06 �(�)6 �:

On the other hand, in [17], time is normalized such
that the mean service requirement equals unity, i.e.,
� = 1. For the generic case, Formula (2.20) of [17]
takes the form:

P{Vps¿t}= 2
1− �

∫ �

�=0

×e−�[2
√
�−(1+�)cos �]=[(1−�)sin �]−(1−�)2�t=(1+�−2

√
� cos �)

1 + e−�[2
√
�−(1+�)cos �]=[(1−�)sin �]

×sin � d�: (7)

In the appendix, we use the above integral expres-
sions to verify the equivalence relation

P{Wros¿t}= �P{Vps¿t}; t¿ 0: (8)

Via the proportionality relation (8), all results for the
M/M/1 PS queue in [17] carry over to the M/M/1 ROS
queue, and vice versa. In particular, Flatto [8] ana-
lyzes the asymptotic tail behavior of the waiting-time
distribution in the M/M/1 ROS queue,

P{Wros¿t} ∼ �(�t)−5=6 exp(−��t − �(�t)1=3); (9)

where

� = 22=33−1=2�5=6�17=12
1 +

√
�

(1−√
�)3

exp
(
1 +

√
�

1−√
�

)
;

�= (1=
√
�− 1)2;

�= 3
(�
2

)2=3
�−1=6:

Through relation (8), the above results directly yield
the asymptotic tail behavior of the sojourn time dis-
tribution in the M/M/1 PS queue.
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4. Model extensions

The probabilistic nature of the proof in Section 2
allows for various model extensions. In this section we
describe how the equivalence result may be extended
to two somewhat related models: the M=M=1=K queue
and the machine-repairman model.

4.1. M=M=1=K queue

Consider an M=M=1=K queue with arrival rate �
and service rate �. Arriving customers that Mnd the
maximum number ofK customers present, are blocked
and lost. It is well-known that the queue length NK

at arrival epochs then retains a (truncated) geometric
form,

P{NK = n}= (1− �)�n
1− �K+1 ; n= 0; 1; : : : ; K

with � := �=� denoting the traDc intensity as before.
Obviously, NK has the same distribution for both ser-
vice disciplines PS and ROS. For the queue length as
observed by arrivals that are not blocked (denoted by
N̂K) we have, for n= 0; 1; : : : ; K − 1,

P{N̂K = n}=P{NK = n |NK6K − 1}
=P{NK−1 = n}: (10)

As we will show, the proportionality relation be-
tween the sojourn time distribution for PS and the
waiting-time distribution for ROS is preserved in the
presence of a Mnite bu:er. Now, however, the sojourn
time in a PS system of capacity K is related to the
waiting time in a ROS system of capacity K+1. Both
the sojourn time in the PS system and the waiting
time in the ROS system only concern customers that
are not blocked upon arrival. SpeciMcally, let VKps(n)
be the sojourn time of a customer which arrives to
Mnd n6K − 1 customers present in a PS system of
capacity K . Let WK+1

ros (n) be the waiting time of a
customer in a ROS system of capacity K + 1 which
arrives to Mnd n6K − 1 customers waiting plus one
additional customer in service. Using similar proba-
bilistic coupling techniques as in Section 2, it may be
concluded that

VKps(n)
d=WK+1

ros (n); n= 0; 1; 2; : : : ; K − 1: (11)

We have, for the PS queue,

P{VKps¿t}=
K−1∑
n=0

P{N̂K = n}P{VKps(n)¿t} (12)

and, for the ROS queue

P{WK+1
ros ¿t}=

K−1∑
n=0

P{N̂K+1 = n+ 1}

×P{WK+1
ros (n)¿t}: (13)

Combining (10)–(13), we obtain

P{VKps¿t}= 1
	(K)

P{WK+1
ros ¿t}; t¿ 0;

where

	(K) := P{N̂K+1¿ 0}= � 1− �K
1− �K+1

is the probability that a non-blocked customer in the
M=M=1=K + 1 ROS queue must wait before entering
service.

4.2. Machine-repairman model

The machine-repairman model consists of a single
repairman responsible for maintaining a pool of K ma-
chines which experience random failures according to
identical but independent renewal processes of rate �.
Repair times are exponentially distributed with param-
eter �. For notational convenience, deMne � := �=�. It
is well-known that the queue length at the repair node
at arrival epochs has the form

P{N̂K = n}=
�K−n−1

(K−n−1)!∑K−1
k=0

� k

k!

; n= 0; 1; : : : ; K − 1:

The proportionality relation between the sojourn time
distribution for PS and the waiting-time distribution
for ROS extends to the repair node in the above model
as well. Again, however, the sojourn time in a PS
system with population size K is related to the wait-
ing time in a ROS system with population size K +1.
SpeciMcally, let VKps(n) be the sojourn time of a cus-
tomer which arrives to Mnd n6K − 1 customers
present at the repair node in a PS system with popu-
lation size K . Let WK+1

ros (n) be the waiting time of a
customer in a ROS system with population size K +1
which arrives to Mnd n6K − 1 customers waiting at
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the repair node plus one additional customer in ser-
vice. Mimicking the probabilistic coupling arguments
of Section 2, it may be deduced that

VKps(n)
d=WK+1

ros (n); n= 0; 1; 2; : : : ; K − 1

which after similar manipulations as before yields

P{VKps¿t}= 1
	(K)

P{WK+1
ros ¿t}; t¿ 0 (14)

with

	(K) := P{N̂K+1¿ 0}=
∑K−1

k=0
� k

k!∑K
k=0

� k

k!

:

If the renewal processes governing the failures are
non-Poisson, then the above proof does not directly
apply. However, the model may still be viewed as a
closed queueing network consisting of two queues:
a single-server queue representing the repairman,
and an inMnite-server queue modeling the opera-
tional machines. In the next section, we extend the
proportionality result to a class of product-form net-
works which includes the above model as a special
case, thus generalizing (14) to non-Poisson renewal
processes.

5. Product-form networks

In this section we indicate how the equivalence re-
sult may be extended to ·=M=1 nodes in product-form
networks. We adopt the setting described by Bas-
kett et al. [2], which allows for nodes with FCFS,
PS, ample service, and last-come Mrst-served (LCFS).
For FCFS nodes, the results are restricted to a single
class of customers at that node and exponentially dis-
tributed service requirements (but service rates may
be state-dependent). All three other service disciplines
allow for service requirements with phase-type dis-
tributions (in fact, general distributions [1,10]). This
only highlights the most important elements; readers
are referred to [2] for more details.
Note that this setting can be extended, allowing the

FCFS nodes to be replaced with any non-preemptive
service discipline operating obliviously of the service
requirements, for instance ROS. The queue length
process obeys the same probabilistic law for any
such discipline. The only di:erence is that customers

might overtake (in various ways) within the node,
but, all of them being of the same type, this does not
alter the evolution of the entire network in terms of
the number of customers of each type at the various
nodes.
Consider a network as in [2] with one of the FCFS

nodes with exponential services, let us say node 0,
replaced by a ROS node. We call this the “ROS net-
work”. The service rate at node 0 is denoted by �.
(In [2] the service rate at FCFS nodes may depend
on the number of customers at that node, but this is
not incorporated in the main result. Although some
forms of state-dependent service rates could be in-
cluded in the analysis, we shall not do so.) We im-
pose that all customers that can visit the ROS node
are of the same class, i.e., they all follow the same
route through the network and share the same ser-
vice distributions at all nodes. If there are external
arrivals to this route, we assume that they occur ac-
cording to a Poisson process, independent of the state
of the network (this can be generalized too). The rate
at which external arrivals occur at other routes may
however depend on the number of customers travel-
ing through the particular route. If the route through
node 0 is closed (i.e., customers on this route never
leave the system), we denote the number of customers
on this route by K + 1. For notational convenience
we shall write K =∞ if the route is open. Note how-
ever that, in the latter case, the number of customers
actually present on the route may vary between zero
and inMnity, whereas if K ¡∞, this number always
equals K+1. We now construct a “PS network” from
the ROS network, changing the service discipline at
node 0 from ROS to PS and, if K ¡∞, reducing the
number of customers on this route in the PS network
by one.
Focus on a particular conMguration of customers of

all types in the PS network (i.e., focus on a particu-
lar state of the PS network) with n¿ 0 customers at
node 0 and call this conMguration z. Associate with
it the conMguration z + e0 in the corresponding ROS
network obtained by adding one customer to node 0.
Let ZK and ZK+1 be distributed as the conMgurations
(in equilibrium) of customers in the PS and ROS net-
works, respectively. When the route through node 0 is
open, the two random variables have the same distri-
bution and, using our convention that K =∞ in this
case, we denote both of them by Z∞. By [2, Theorem,
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p. 253] we have

P{ZK+1 = z + e0}
P{ZK = z} =

CK+1 d(z + e0)(1=�)n+1

CK d(z)(1=�)n

= : 	(K + 1): (15)

In both networks we have chosen to normalize time
such that the rate of external arrivals at node 0 equals 1.
Then, the function d(·) depends only on the num-
bers of customers on the routes that do not traverse
node 0 and, therefore, d(z) = d(z + e0). Since CK
and CK+1 are normalization constants, we have that
	(K +1)=CK+1=(�CK) is a constant, independent of
the conMguration z.
Let us observe both networks at moments when a

customer makes a transition into node 0. Let ẐK be
distributed as the conMguration of other customers in
the PS network at such transition moments, i.e., not
counting the customer making the transition. Simi-
larly, ẐK+1 is distributed as the conMguration in the
ROS network at moments of transitions into node 0.
Now recall the so-called arrival–departure property:
when a customer arrives at a certain queue, it sees the
network in equilibrium if the customer is traveling on
an open route; and the customer sees the network as if
it is in equilibrium with one less customer on the route
if the route is closed, see Sevcik and Mitrani [26]. By
this property we have that P{ẐK=z}=P{ZK−1=z}.
Hence, using (15)

P{ẐK+1 = z + e0}= 	(K)P{ẐK = z}: (16)

Summing over all possible conMgurations z in the PS
network, we conclude (as before) that 	(K) equals
the probability that a customer arriving at the ROS
node Mnds the server busy. We can interpret (16) as
follows: with probability 1−	(K), a customer arriving
at the ROS node is immediately taken into service;
otherwise, with probability 	(K), it sees each possible
conMguration (not counting the customer in service at
the ROS node) with the same probability as a customer
arriving at node 0 in the PS network.
Let us now focus on two customers, customer X

arrives at node 0 in the PS network and sees conMg-
uration z, and customer Y arrives at node 0 in the
ROS network and sees the ‘corresponding’ conMgu-
ration z + e0. As before, we couple each customer in

the ROS network to exactly one customer in the PS
network, except for the additional customer in service
at node 0 of the ROS network. Customers X and Y are
coupled to each other. Every two coupled customers
are located at the corresponding nodes in the two net-
works, they belong to the same customer class, are at
the same stage of service and will follow the same
route through the network, simultaneously undergoing
the same service phases at each of the subsequently
visited nodes. Let Vps(z) be the sojourn time of X at
node 0 in the PS network and letWros(z + e0) be the
waiting time of Y at node 0 in the ROS network. Since
the two networks evolve according to the same prob-
abilistic law as long as the ROS node is not empty,
we can (again) conclude that the sojourn times of X
and Y in their respective pools are equal:

Vps(z)
d=Wros(z + e0):

As before, let Vps be the sojourn time of an arbitrary
customer in the PS queue and let Wros be the wait-
ing time of an arbitrary customer in the ROS queue.
Now, using (16) and the interpretation given below
that equation, we Mnd, by de-conditioning over all pos-
sible states z seen upon arrival by customer X and the
corresponding states z + e0 seen by Y (noting that
a customer that enters an empty ROS node does not
have to wait):

P{Wros¿t}= 0 +
∑
z

P{ẐK+1 = z + e0}

×P{Wros(z + e0)¿t}

=
∑
z

	(K)P{ẐK = z}P{Vps(z)¿t}

= 	(K)P{Vps¿t}
which proves the proportionality result for product-form
networks.

Appendix A.

In this appendix, we verify the equivalence relation
(8) using the integral expressions for the distributions
of the waiting time in the M/M/1 ROS queue and
the sojourn time in the M/M/1 PS queue as given
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by Formulas (6) and (7), respectively. In order to
rewrite Formula (7) into the form of Formula (6), we
Mrst derive some useful identity relations. For given
�∈ [0; �], let �∈ [0; �] be such that

1−√
�e−i� =

1− �
1−√

�ei�
: (A.1)

Then the following identity relations hold

1 + �− 2
√
� cos �=

(1− �)2
1 + �− 2

√
� cos�

; (A.2)

sin �
1− � d�=− (1− �)sin�

(1 + �− 2
√
� cos�)2

d�; (A.3)

2
√
�− (1 + �)cos �
(1− �)sin � = cot�: (A.4)

Relation (A.3) follows from (A.2) by di:erentiation.
To arrive at Relation (A.4), we use the additional re-
lations

sin �=
(1− �)sin�

1 + �− 2
√
� cos�

;

cos �=
2
√
�− (1 + �)cos�

1 + �− 2
√
� cos�

:

The latter relations are obtained by equating real parts,
as well as imaginary parts, in (A.1).
Substituting (A.2)–(A.4) into (7) and multiplying

the numerator and denominator of the integrand by
exp(� cot�), we obtain

P{Vps¿t}= 2(1− �)
∫ �

�=0

×exp{(�− �)cot�− (1 + �− 2
√
� cos�)�t}

(1 + exp{� cot�})(1 + �− 2
√
� cos�)2

×sin� d�: (A.5)

Now, using the fact that

tan(�− �) = tan�− tan �
1 + tan� tan �

=
2 sin�(cos�−√

�)

(cos�−√
�)2 − sin2�

=
2(sin�)=(cos�−√

�)

1−
(

sin �
cos�−√

�

)2

and

tan(�− �) = tan(�+ �− �)

=
2 tan(�+ �− �)=2

1− tan2(�+ �− �)=2) ;

we have

�− �= 2 arctan
(

sin�
cos�−√

�

)
− �: (A.6)

Substituting (A.6) into (A.5), we Mnd that
P{Wros¿t} = �P{Vps¿t}, where P{Wros¿t} is
given by (6), which completes the proof.
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