
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Modeling the interaction of IEEE 802.3x hop-by-hop flow
control and TCP end-to-end flow control

R. Malhotra, R. van Haalen, M.R.H. Mandjes,
R. Núñez-Queija

REPORT PNA-E0518 DECEMBER 2005

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Modeling the interaction of IEEE 802.3x hop-by-hop
flow control and TCP end-to-end flow control

ABSTRACT
Ethernet is rapidly expanding beyond its niche of local area networks. However, its success in
larger metropolitan area networks will be determined by its ability to combine simplicity, low
costs and quality of service. A key element in successfully transporting bursty traffic and at the
same time providing QoS, is congestion control. The Ethernet standard IEEE 802.3x defines a
hop-by-hop congestion control mechanism. The performance of this scheme generally depends
on its interaction with higher layer application traffic, and especially, with TCP controlled traffic
which has its own end-to-end congestion control mechanism. In this paper we focus on the
performance modeling and analysis of this interaction. Our model takes into account the
influence of various network and traffic parameters. The validity of the proposed model is
assessed by comparison of the results to simulations. In our experiments we observe that an
increase of the round trip time has a positive influence on the interaction of hop-by-hop and
TCP congestion control, and that the use of hop-by-hop flow control is only beneficial when the
load is not high.

2000 Mathematics Subject Classification: 68M20, 60K25, 90B15, 90B18
Keywords and Phrases: Ethernet IEEE 802.3x; metropolitan area networks; TCP; combined hop-by-hop and end-to-end
traffic control
Note: M. Mandjes and R. Núñez-Queija are part of PNA2. This work has been carried out in the context of the project
End-to-end Quality of Service in Next Generation Networks (EQUANET), which is supported by the Dutch ministry of
Economic affairs via its agency SenterNovem. This work was done while M. Mandjes was also affiliated with the
University of Twente. R. Núñez-Queija is also affiliated with Eindhoven University of Technology.

Modeling the interaction of IEEE 802.3x
hop-by-hop flow control and TCP end-to-end flow

control
Richa Malhotra
Bell-Labs Europe

Lucent Technologies
Capitool 5

7521 PL Enschede
Netherlands

rimalhotra@lucent.com

Ronald van Haalen
Bell-Labs Europe

Lucent Technologies
Capitool 5

7521 PL Enschede
Netherlands

haalen@lucent.com

Michel Mandjes
CWI

P.O. Box 94079
1090 GB Amsterdam

Netherlands
michel@cwi.nl

Rudesindo Núñez-Queija
CWI

P.O. Box 94079
1090 GB Amsterdam

Netherlands
sindo@cwi.nl

Abstract— Ethernet is rapidly expanding beyond its niche of
local area networks. However, its success in larger metropolitan
area networks will be determined by its ability to combine
simplicity, low costs and quality of service. A key element in
successfully transporting bursty traffic and at the same time pro-
viding QoS, is congestion control. The Ethernet standard IEEE
802.3x defines a hop-by-hop congestion control mechanism. The
performance of this scheme generally depends on its interaction
with higher layer application traffic, and especially, with TCP
controlled traffic which has its own end-to-end congestion control
mechanism. In this paper we focus on the performance modeling
and analysis of this interaction. Our model takes into account the
influence of various network and traffic parameters. The validity
of the proposed model is assessed by comparison of the results
to simulations. In our experiments we observe that an increase
of the round trip time has a positive influence on the interaction
of hop-by-hop and TCP congestion control, and that the use of
hop-by-hop flow control is only beneficial when the load is not
high.1

I. INTRODUCTION

In the times of a telecommunications downturn, Ethernet’s
move into the metropolitan area domain is providing a rapidly
growing market opportunity. Some of the reasons behind its
popularity are its low costs, maturity, simplicity and a wide
existing base. Over the past years, it has evolved to support
greater speeds and distances as well as various levels of
services, making it suitable for larger networks. Thus Ethernet
seems an obvious choice to provide cost-effective solutions to
transport increasing data traffic on existing circuit-switched
networks. With its ‘low price per bandwidth’ Ethernet is ex-
pected to speed up the deployment and use of next-generation
networks and services.

1This work has been carried out in the context of the project End-to-
end Quality of Service in Next Generation Networks (EQUANET), which
is supported by the Dutch ministry of Economic affairs via its agency
SenterNovem.

This work was done while M. Mandjes was also affiliated with the
University of Twente.

R. Núñez-Queija is also affiliated with Eindhoven University of Technology.

Ethernet is currently being deployed in existing
SDH/SONET networks and in the future, might directly be
deployed over optical networks. It is being sold in different
flavors, namely, private line, virtual private line, private LAN
and virtual private LAN. The most popular version to date
is the Ethernet private line as it is simpler to map onto
SDH/SONET and does not face major quality of service
(QoS) issues. The other above mentioned services involve
sharing network resources among various traffic streams.
The main goal of using a packet-switched technology is to
gain from statistical multiplexing. It is expected that the
bursts of the different traffic streams will mostly not coincide
and average out in time. However, there will be instances
when the bursts will coincide and cause congestion and
packet drops. At these instances, proper congestion control
techniques provide the key to combining the gain of statistical
multiplexing with QoS guarantees.

The IEEE standardization body has recently set up a con-
gestion management study group to deal with the congestion
and flow control problems in Ethernet networks. The main
idea is that throughput, latency and frame discards can be
improved if traffic differentiation can be combined with flow
control. The goal of the congestion management study group
is to examine if a standard should be defined to differentiate
between the way congestion control is applied to different
traffic classes. The IEEE already defines a pause mechanism or
a back-pressure signal (see [1]) to enable congestion messages
on a hop-by-hop basis. A congested node can send a back-
pressure/pause message to its upstream neighbors to signal
the stop of all transmissions towards it for a period of time.
Within an Ethernet network the use of this signal results
in a hop-by-hop congestion control method. An interesting
and essential aspect in studying the performance of the Eth-
ernet hop-by-hop mechanism is to understand its influence
and interaction on higher layer application traffic, especially
since the most widely used application transmission control
protocol (TCP) has its own congestion control mechanism.

Considerable work has been done and is ongoing that aims at
understanding and predicting the performance of TCP under
various situations and different network parameters. Use of an
additional underlying hop-by-hop congestion control scheme
adds another complication to this study. On one hand, the extra
buffering of packets introduced by hop-by-hop control can
avoid unnecessary TCP rate fluctuations. On the other hand,
if the congestion cannot be solved by hop-by-hop control it
might unnecessarily delay the reaction of TCP. Another aspect
which needs to be studied before the hop-by-hop mechanism
can be implemented is the influence of the various network
and traffic parameters on the performance. The throughput of a
TCP source is known to be inversely proportional to the round
trip time and the square root of the packet loss probability. This
relation which is widely known as the ‘root p’ law (see [2])
might not be valid for the combination of TCP and hop-by-hop
flow control.

The Ethernet hop-by-hop congestion control mechanism
has been evaluated by simulations in the literature. However,
in all the previous work, the common aspect is that the
attempts concentrate on the protocol and its implementation,
but not on understanding the effect of the various network
and traffic parameters on the results. Reference [3] presents
results from simulation of the Ethernet back-pressure-based
congestion control mechanism under various scenarios. It
proposes distinguishing hop-by-hop flow control based on
traffic classes. Reference [4] shows simulations of TCP traffic
with the IEEE 802.3x hop-by-hop flow control mechanism.
There is also a significant amount of work done on ATM
(Asynchronous Transfer Mode) based hop-by-hop flow control
as in [5] and [6]. However, most of this work is based on
negotiating transmission rates between the congested node
and its upstream neighbors. The proposed mechanisms use
resource management cells which do not exist in Ethernet.
In this paper we develop a Markovian model that captures
the interaction of Ethernet hop-by-hop congestion control
with TCP end-to-end congestion control. We then assess the
validity of the model by comparing it to extensive simulations.
The results demonstrate the influence of various network and
traffic parameters on the performance of the schemes and
provide guidelines for the choice of parameters such as buffer
thresholds for congestion detection.

The rest of the paper is organized as follows. In Section
II, we introduce the two congestion control mechanisms.
The Markov model describing the integration of the hop-
by-hop and the end-to-end congestion control mechanisms is
presented in Section III. The simulation model and parameter
values used to obtain the results are described in Section
IV. Section V, shows the performance results both with the
Markov model as well as the simulations, which demonstrate
the influence of various network and traffic parameters. The
parameters include buffer thresholds for congestion detection,
the network round trip time (RTT) and the traffic burstiness.
The conclusions are presented in Section VI.

λ µ1 or µ2

µ1 >µ2

ν

T1 T2

Node 1 with queue 1
Size: B1 packets

Node 2 with queue 2
Size: B2 packets

Down

Up

T1 > T2

Fig. 1. Hop-by-hop flow control

II. IEEE 802.3X HOP-BY-HOP AND TCP END-TO-END

FLOW CONTROL MECHANISMS

The main goal of a hop-by-hop congestion control mecha-
nism is to contain temporary bursts and congestion by utilizing
network resources (such as buffer space). The hop-by-hop
nature of the congestion control scheme should prevent that
congestion escalates to higher layers, for example TCP. In
order to model and assess whether the interaction of hop-by-
hop with end-to-end congestion control will result in improved
network performance, we first need to understand the details
of each of these mechanisms separately. These two different
schemes as well as some initial modeling concepts are de-
scribed in the subsections below.

A. IEEE 802.3x back-pressure based hop-by-hop flow control

The back-pressure scheme defined in IEEE 802.3x (see [1]),
is intended to provide flow control on a hop-by-hop basis by
allowing ports to ‘turn off’ their upstream link neighbors for a
period of time. In the case of a half-duplex link this is realized
by sending a jamming signal. The end-station perceives the
medium as busy, stops transmitting and backs-off. For the
case of a full-duplex connection, the IEEE 802.3x standard
defines a MAC layer flow control mechanism. This mechanism
is based on a special frame called ‘pause frame’ in which the
pause period is specified. The end station or router receiving
the pause frame looks at the pause period and does not transmit
or attempt transmission for that amount of time. Alternatively a
ON/OFF pause messages can be sent signalling the beginning
and end of the ‘transmission pause’ phase.

This mechanism is illustrated by Figure 1. When the occu-
pancy of queue 2 exceeds T1 it can signal its upstream node
1 to stop all data transmission. When the queue occupancy
of the congested node 2 drops below a low threshold T2 the
upstream neighbor can start transmission again at usual rate
µ1. The Markov model used to describe this mechanism in this
paper will assume that on receiving the congestion signal, the
upstream neighbor lowers its rate to a generic rate µ2 instead
of strictly stopping all transmissions. A positive value for µ2

may mimic the delay in reception of congestion messages by
the upstream nodes by allowing possible incoming packets into
a congested queue even after a congestion message has been
sent.

It is clear from Figure 1 and the explanation above that when
queue-2 occupancy is above T1, the service rate of queue 1

is µ2. Similarly, when the number of packets in queue 2 is
below T2, the service rate of queue 1 is µ1. In the region
between T1 and T2 it can be either µ1 or µ2, depending on
the last threshold that was crossed. For example, when the
queue-2 occupancy drops from above T1 to below T1, queue
1 continues to transmit at µ2. Similarly, a rise in queue-2
occupancy from below T2 to above T2 implies that queue 1
continues transmission at rate µ1. We will denote the state
of queue 2 corresponding to a high transmission rate (µ1) of
queue 1 as the up or ‘1’ state and that corresponding to µ2

as the down or ‘2’ state.

B. TCP end-to-end flow control

The widely used transmission control protocol (TCP), works
on the principle that end systems should react to congestion
anywhere in an end-to-end data path by adjusting their trans-
mission rates to avoid total collapse. The TCP congestion
control mechanism is a well studied subject and is often
modeled as an Additive Increase and Multiplicative Decrease
(AIMD) scheme (see [7], [8] and [9]). The TCP sending rate
is controlled using a window. The window is halved in the
event of a packet loss and increased by one packet upon
acknowledgment of reception of all packets belonging to the
current window. In this paper, we will assume that the packets
sent in one window follow a Poisson process with the rate
corresponding to the window size.

A single TCP source being an unrealistic scenario, we aim
at modeling multiple TCP streams as input sources to a system
with hop-by-hop flow control. An approach to modeling multi-
ple TCP streams using Markov chains is to model each stream
separately with its own AIMD characteristics. This approach
has clear disadvantages with respect to the scalability of the
Markov chain transition state space as observed in, e.g., [10].
An alternative to this approach is to model the traffic aggregate
of TCP streams with a more generic AIMD mechanism. It is
worth noting, though, that this option has the drawback that
it is difficult to predict the exact sending rates, among which,
the aggregate TCP streams will switch, when detecting packet
losses. This complication arises from the fact that packet losses
need not affect all TCP streams as observed in [10] and [11].

The arrival process of the aggregate input traffic stream
is considered to be a Markov-modulated Poisson process(see
[12]) with arrival rates varying between N different values λ1

to λN , where, λN< λN−1 < . . . < λ1. The state of the input
traffic stream is represented by a, so that the corresponding
traffic rate is λa where a varies from 1 to N . Every time there
is a packet drop, the input traffic state increases to twice its
original value, causing a significant drop in the traffic rate.
The input traffic state decreases by one step at a rate equal
to 1/RTT. This corresponds to an increase in traffic rate, the
increase being dependent on the values of the λas. This simple
approach incorporates the basic AIMD nature in the input
traffic.

The different λas represent the possible sending rates of an
aggregate of multiple TCP streams. It is not straightforward
to specify the value of N , i.e., the total number of possible

λ1

λ2

λ3

λ4
.

λa
.

λN

ν
T1 T2

Packet
loss
instance

Acknowledgements
at the rate 1/RTT

Buffer size B1

Buffer size B2

µ1 or µ2

µ1 >µ2
Down

Up

Fig. 2. Integrated hop-by-hop and end-to-end flow control model

traffic rates, nor the value of the λas. This is so, because
multiple TCP streams, each with its own AIMD characteristics
can overlap in many different ways. The variability in the
synchronization arises from the fact that the number of packet
drops and the proportion in which they affect the multiple
TCP streams is not fixed. One extreme case could occur when
the packet drops affect all streams equally, leading to the
phenomenon called ‘global synchronization’. In this case the
AIMD nature of a single flow is preserved. The other extreme
could be that only one TCP stream is affected. Our approach
to study the impact of such traffic will be to vary the value
of N , thus increasing the granularity of the input process and
observe the trends in the results.

III. INTEGRATED MODEL OF HOP-BY-HOP AND

END-TO-END CONGESTION CONTROL

In this section, our goal is to integrate the models for hop-
by-hop flow control and end-to-end TCP flow control. The
back-pressure based hop-by-hop congestion control mecha-
nism, works by tuning the buffer occupancy per hop to avoid
packet drops as much as possible. The TCP flow control on
the other hand, reduces the rate of traffic into the network
when packet drops may occur anywhere in an end-to-end data
path. In Section 2, we have explained these two mechanisms in
detail. The integrated model used for TCP input traffic along
with back-pressure hop-by-hop flow control is shown in Figure
2. It consists of augmenting the model for hop-by-hop flow
control depicted in Figure 1 with a reactive Markov-modulated
arrival process that captures the AIMD behavior of multiple
TCP streams. If a packet is lost at either queue 1 or queue 2,
the state of the arrival process is adjusted to twice its current
value. For example, if this occurs while the TCP rate is λ3,
the new rate is λ6. On the other hand, the state of the arrival
process is decreased by one level on average every 1/RTT time
units.

A. Transition Equations

Below we define the states of the system shown in Figure
2. Clearly, the resulting process is also Markovian. The state
of the system is represented by (i, j, k, a), which implies i
packets in queue 1, j packets in queue 2, state k – up (1)

or down (2) – for the second queue and state a for the TCP
traffic rate (varying from 1 to N). The maximum number of
TCP sending rate levels is N . For clearness of presentation
we enumerate the different types of transitions.

1. (i, j, k, a) λa−→ (i + 1, j, k, a)
2. (B1, j, k, a) λa−→ (B1, j, k, 2a), if 2a ≤ N

3. (B1, j, k, a) λa−→ (B1, j, k,N), if 2a > N

4. (i, j, k, a) ν−→ (i, j − 1, k, a), if j ≥ 1, j �= T2

5. (i, T2, k, a) ν−→ (i, T2 − 1, 1, a), if 1 ≤ T2 ≤ B2

6. (i, j, 1, a) µ1−→ (i − 1, j + 1, 1, a), if j �= B2, i ≥ 1
7. (i, j, 2, a) µ2−→(i − 1, j + 1, 2, a), if j �= B2, i ≥ 1
8. (i, T1, 1, a) µ1−→ (i − 1, T1 + 1, 2, a), if T1 < B2, i ≥ 1
9. (i, B2, 1, a) µ1−→ (i − 1, B2, 1, 2a), if 2a ≤ N, i ≥ 1
10. (i, B2, 1, a) µ1−→ (i − 1, B2, 1, N), if 2a > N, i ≥ 1
11. (i, B2, 2, a) µ2−→ (i − 1, B2, 2, 2a), if 2a ≤ N, i ≥ 1
12. (i, B2, 2, a) µ2−→ (i − 1, B2, 2, N), if 2a > N, i ≥ 1
13. (i, j, 1, a) 1/RTT−−−−→ (i, j, 1, a − 1), a > 1

Transition equation 1 implies that arrivals into the first
queue occur at a rate λa. Equations 2 and 3 correspond to
losses when queue 1 is full, while simultaneously increasing
the input process state by a factor of two. Equation 3 in
addition implies that if the calculated increase in the state of
the input traffic is more than N then the state will drop to
state N . Equation 4 implies departures from the second queue
occur at rate ν as long as the second queue is non empty.
Equation 5 ensures that when a departure from the second
queue coincides with the queue occupancy dropping below
the low threshold T2, then the state of queue 2 changes into
‘1’ (up). Equations 6 to 8 are about departures from queue 1
and simultaneous arrivals into queue 2. This happens at rate
µ1 if the state of queue 2 is ‘1’ or at rate µ2 if the state of
queue 2 is ‘2’. However, when a departure from queue 1 and
simultaneous arrival into queue 2 coincides with an increase
of the queue occupancy of queue 2 from T1 to T1+1 then the
state of queue 2 simultaneously changes to ‘2’ (down). It is
important to note that if T1 is set equal to B2 then effectively
hop-by-hop flow control is not activated. Transition equations
from 9 up to 12 are similar to 6 through 8, but with the
additional condition that queue 2 is full when departures from
queue 1 arrive into queue 2. This implies that packets will be
lost and this will simultaneously affect the state of the input
process and trigger a lowering of the traffic rate (increase by
a factor of 2 of the state descriptor a). Equation 13 deals with
an increase of the TCP traffic rate. The RTT determines the
rate at which acknowledgements arrive and corresponds to the
increase in TCP window size, therefore increasing the rate of
the input process.

B. Performance Measures

By π(i, j, k, a) we denote the stationary probabilities ob-
tained after solving the system π·Q = 0 and π·e = 1, where Q
is the transition matrix of the above described Markov model

and e′ is a row vector with all entries equal to 1. Then, the
expected number of packets in queue 1 is

E[Queue 1] =
∑

i

i
∑

j,k,a

π(i, j, k, a)

and the expected number of packets in queue 2 is

E[Queue 2] =
∑

j

j
∑

i,k,a

π(i, j, k, a).

From Little’s law, the expected waiting time (that is, the
time spent in the queue, including transmission) of packets
in queue 1 is

EW1 =
E[Queue 1]

λeffec,1

where, λeffec,1 is the effective arrival rate at queue 1 and is
given by

λeffec,1 =
N∑

a=1

λa

∑

i,j,k
i<B1

π(i, j, k, a).

In addition, let us denote the effective loss rate at queue 1 by
λloss,1. This can be computed by

λloss,1 =
N∑

a=1

λa

∑
j,k

π(B1, j, k, a).

The loss probability of queue 1 is

P1 =
λloss,1

λeffec,1 + λloss,1
.

The expected waiting time of customers in queue 2 is

E[W2] =
E[Queue 2]

λeffec,2

where λeffec,2 is the effective arrival rate at queue 2 and is
given by

λeffec,2 = µ1

∑

i,j,a:i>0
j<B2

π(i, j, 1, a) + µ2

∑

i,j,a:i>0
j<B2

π(i, j, 2, a).

Let us denote the loss rate at queue 2 by λloss,2:

λloss,2 = µ1

∑

i,a
i>0

π(i, B2, 1, a) + µ2

∑

i,a
i>0

π(i, B2, 2, a).

The loss probability of queue 2 is

P2 =
λloss,2

λeffec,2 + λloss,2
.

Finally, the net throughput of the entire system can be ex-
pressed in different ways:

Throughput = λeffec,2

= λeffec,1 × (1 − P2)

= ν ×
∑

j>0
i,j,k,a

π(i, j, k, a).

NS TCP
Sender

NS TCP
Receiver

NS2 process NS2 processOMNeT++ process

Libsynk

IN OUT

Link A Link CLink B

Ethernet
Bridge

B1

Ethernet
Bridge

T1 T2 B2

Fig. 3. Simulation Model

IV. SIMULATION MODEL AND MAPPING PARAMETERS

In the previous sections, we have presented the Markov
model of the interaction of the Ethernet hop-by-hop flow
control and the TCP end-to-end flow control mechanisms.
In many ways this model is a simplification of reality. For
TCP, only the main characteristics were included in order
to reduce the model complexity. To assess how close the
model comes to reality, a simulator containing a network
model with 2 nodes was used. Figure 3 shows the simulation
model. The OMNeT++ simulator (see [13]) was used to model
the Ethernet Bridge, which includes the standard Ethernet
mechanisms such as MAC address learning and forwarding,
and the hop-by-hop back-pressure signal. in the simulations,
TCP traffic was generated using the NS-2 TCP stack ([14]).
The two different simulation environments were combined
with LibSynk ([15]) as shown in Figure 3.

It is worthwhile to mention the differences between the
simulation model and the Markov model.

• The Markov model assumes exponential service times
whereas in the simulation these are fixed and determin-
istic. The time it takes to transmit a packet is computed
using the packet size and the link capacity. We have,
however, used link speeds, which would lead to the same
number of packets being processed, as the average service
times in the Markov model.

• Another aspect which is not explicitly taken into account
by the Markov model is the dependency of the RTT on
the maximum (possible) burst size. The RTT governs
the maximum window size and thus the maximum rate.
However, this is expected to become noticeable only
when there are few TCP flows active, which is not the
scenario we aim for. When multiple TCP flows are active,
this phenomenon is less relevant.

• The Markov model does not model the slow start behavior
of TCP flows.

• The input process in the Markov model is a Markov-
modulated Poisson process (see [12]). TCP packets sent
within a window do not resemble a Poisson process. Still
the Markov model captures high and low sending rates
and their adaptation to network congestion.

In order to execute and compare the tests with the Markov
model and the simulation model we first need to map the
parameters from one onto the other. For both models we have
used B1 = 10 and B2 = 20 packets. For the relation between
the input traffic sending rates i.e., the λas and the simulated

TCP traffic scenario we fixed the link speed of Link A to λ1.
Note that for the Markov model arrivals occur according to a
stochastic point process, so that the actual inflow of packets
may exceed the specified rates for some periods of time.
We have executed simulations with different scenarios for
file downloads and compared the results against the Markov
model.

V. RESULTS

In this section we present the results from the Markov
model and the simulation model. The goal is to obtain a
better understanding of the effect of various network and traffic
related parameters on the interaction of the hop-by-hop and
end-to-end congestion control schemes. This comparison also
helps in assessing the validity of the Markov models. We
have investigated the influence of three main aspects. The first
aspect being the different steps in the input process, which
determine the granularity of bursts of the input traffic stream.
The second aspect is the RTT, which influences the rate at
which the input process recovers from loss; the third aspect
is the choice of thresholds. The performance measure used,
is TCP-level throughput, relating to successfully transmitted
packets, often also referred to as goodput. The graphs plot
the expected increase in TCP throughput with the use of
hop-by-hop flow control as compared to TCP without any
additional form of flow control. For all these different aspects
we compare the trends observed in the Markov model with
simulations for different traffic download scenarios. Having
incorporated most of the relevant aspects into the Markov
model, the results aim at showing consistent trends, both with
the Markov model and the simulations.

A. Scenarios

Since the main goal of hop-by-hop flow control is to contain
temporary congestion, we have looked at scenarios with bursty
traffic input. It is important to note that in our model and the
simulations we do not assume infinite buffer capacity. For the
Markov model we have used either N = 2 or N = 3. In all
cases λN = 1 and different values for λ1 and, if N = 3 for λ2,
are considered. The other parameters are as follows µ1 = 100,
µ2 = 2 and ν = 15 packets per second. The corresponding
simulation scenario considered is with (see Figure 3) link
speeds of links B and C equal to 100 and 15 packets per
second respectively, which translates into 1200 kbps and 180
kbps. The capacity of link A is varied along with λ1. The TCP
Reno version is used for the simulations with packet length as
well as MTU equal to 1526 bytes.

B. Round trip time

The round trip time has an important influence on the
performance of TCP. Since the RTT dictates the rate at which
acknowledgements are received, it influences the way in which
the window and thus the TCP sending rate is increased. Thus,
the RTT provides the key to recovery of TCP streams from
losses. In this section our goal is to study its influence in
conjunction with hop-by-hop flow control. This subsection

0

5

10

15

20

25

30

35

40

0.05 0.1 0.5 1 1.5
round trip time(sec)

%
 In

c
in

 t
h

ro
u

g
h

p
u

t
w

it
h

 h
o

p
-b

y-
h

o
p

 c
o

n
tr

o
l Sim (LinkA 50 packets/s)

Markov 50

Sim (LinkA 25 packets/s)

Markov 25

Sim (LinkA 18 packets/s)

Markov 18

Sim (LinkA 16 packets/s)

Markov 16

λ1=25

λ1=18

λ1=16

λ1=50

Fig. 4. Throughput benefits of hop-by-hop flow control and its dependence
on round trip time

shows the results for varying RTT. For the Markov model we
use N = 2, λ2 = 1 and varying values for λ1. Similarly, for
the simulation model we vary the capacity of link A in Figure
3. The traffic scenario used for the simulations is 8 flows,
each flow sending an 80 KB file with 1 second intervals. The
RTT is increased by introducing additional link delay. Figure
4 plots the percentage increase in throughput on using hop-
by-hop flow control in combination with TCP as compared to
TCP alone.

It can be observed from Figure 4 that as the RTT increases,
the throughput benefit with the use of hop-by-hop flow control
also increases. This general trend was also observed with
various other simulation scenarios with smaller numbers of
TCP flows and varying file sizes. In order to explain this,
it is important to note that with hop-by-hop flow control we
use more buffer space, so that there will in general be fewer
packets lost. When the RTT is short, TCP recovers quickly
from loss and switches back to a faster rate much sooner than
when the RTT is long. Thus with a short RTT the congestion
level is constantly rather high, ruling out any further opti-
mization. When the RTT is long, the impact of packet loss is
greater, since it takes longer to recover from losses. At loss
instances, the fact that hop-by-hop flow control causes less
packet losses, provides a visible and significant benefit. As
there is less loss with the use of hop-by-hop flow control,
the TCP sending rate is better adjusted to network resources.
With hop-by-hop flow control TCP lowers its sending rate only
when the resources (buffer space) are completely exhausted,
thus avoiding unnecessary fluctuations in its sending rate.

The Markov model captures the general trend of increase
of throughput with increase of RTT. However it seems that
the Markov model is more accurate with the trend for higher
load λ1/ν. This can be explained as follows. Since the number
of TCP flows and the traffic scenario is kept constant in the
simulations, low values of link speeds (λ1) increase the chance
that the link capacity is always utilized to its maximum due to
excessive load. For greater link speed values, the same traffic
scenario might not provide enough load to constantly send

0

2

4

6

8

10

12

14

7,7 7,6 7,5 7,4 7,3 7,2 7,1

Thresholds (High,Low)

T
h

ro
u

g
h

p
u

t
in

 p
ac

ke
ts

 p
er

 s
ec

Sim link A 25 packets/s

Markov 25λ1=25

Fig. 5. Results with varying low threshold values while the high threshold
is kept constant

0

2

4

6

8

10

12

14

10 9 8 7 6 5 4 3 2
Equal high and low thresholds

T
h

ro
u

g
h

p
u

t
in

 p
ac

ke
ts

 p
er

 s
ec

Sim link A 25 packets/s

Markov 25λ1=25

Fig. 6. Results showing varying choice of thresholds with high threshold
kept equal to the low threshold

at a rate equal to the link speed irrespective of the amount
of packet drops. Variations in the traffic sent on link A with
simulations brings it closer to the Poisson assumption in the
Markov model, while constant and complete utilization of link
A, makes it more deterministic.

C. Thresholds

In this section we study the influence of the thresholds T1

and T2. The scenario considered is the same as in the previous
section but now with λ1 = 25. In Figure 5 the high threshold
T1 is kept constant and the lower threshold T2 is varied. In
Figure 6 the placement of the threshold is varied while keeping
T1 = T2.

From Figure 5 we observe the general trend that the
throughput tends to decrease as the low threshold T2 is placed
further away from T1. At the same time it is important to note
that this difference is very small. If one were to consider the
overhead of the hop-by-hop flow control messages sent every-
time the thresholds were crossed, it would be preferred to have
the thresholds placed far apart. Figure 6 varies the threshold
values from 2 to B2 keeping T1 = T2. The results indicate that
the thresholds should not be placed too close to B2 as around
this value, the performance degrades significantly. The trends
shown in Figures 5 and 6 were also observed with other values

0

5

10

0

5

10

15

20

25

30

35

40

0.05 0.1 0.5 1 1.5 2
round trip time (sec)

%
 In

c
in

th
ro

u
g

p
u

t
w

it
h

 h
o

p
-b

y-
h

o
p

co

n
tr

o
l

Markov N=3

Markov N=2

Sim with idle times

Sim infinite file sizes

Fig. 7. Effect of input (TCP) traffic sending rate granularity

of λ1. The optimum in our experiments was always about 70-
80% of buffer size. However, it should be kept in mind that
all the additional tests were done with same values of µ2 and
the same delay on link A.

D. Granularity of bursts

It was explained in the previous sections that for a given
TCP traffic scenario it is difficult to estimate the value of N
and the various λas for the Markov model. This complication
arises from the fact that the aggregate traffic behavior of
multiple TCP streams is highly complex, since there might
be no consistency in the fluctuation of traffic rates of the
various TCP streams. Our goal in this section is to study the
influence of the granularity of the variations in TCP sending
rate on the performance of hop-by-hop flow control. For the
Markov model this implies that we increase N and introduce
corresponding intermediate values for λa. We have compared
the results of the Markov model with different TCP simulation
traffic scenarios. We plot the results with N = 2 and N = 3.
It is important to mention that the values and trends observed
with higher values of N did not show extreme differences from
N = 3. We observed that only N = 2 provides significantly
higher throughput values as compared to other values of N .
For the results shown in Figure 7, we have always used
λ1 = 50 and λN = 1. For N = 3, we have used λ2 = 25.
We have observed in additional tests that λa being linear or
non-linear in a does not have a major impact on the results.
The comparison presented with different simulation scenarios
also helps understand the reason behind the difference in
performance of the traffic scenarios. The simulation scenarios
include the previous results with 8 TCP flows sending file sizes
of 80 KB every second and an alternative scenario where 8
flows are used to send infinite file sizes, i.e., there is always
data to send.

It can be observed from Figure 7 that the simulations with
idle times show far greater benefit with the use of hop-by-
hop flow control as compared to the simulations where there
is always infinite data to be sent. The reason behind this
difference is not only the level of congestion caused by the
two scenarios but also the different burstiness of their traffic

characteristics. The scenario with idle times, provides hop-
by-hop flow control the opportunity to buffer packets from
the high rate preceding the idle time, instead of dropping
them. During the idle time, the buffered packets can be sent
directly rather than waiting for retransmissions. So hop-by-
hop flow control manages to smoothen the TCP sending rate.
However, with files of infinite sizes there is always data
to send, also the level of congestion is far too high to be
bridged by extra buffering. There will still be drops and it
will result in fluctuations in TCP sending rate. Apparently
due to the multiple streams the drop in the aggregate sending
rate is not that great. This phenomenon can also be better
understood by looking at the results from the Markov models.
The Markov model with 2 input steps, follows the trends
of the simulation scenario with idle times whereas the more
granular input traffic steps in the Markov model follows trends
of the simulations without any idle times. From these results
it seems evident that when the TCP streams react in granular
steps to loss instead of extreme rates, the extra buffering has
limited impact. In other words, when TCP itself smoothens
out traffic due to congestion, hop-by-hop has nothing more to
add. The simulations and the Markov model do however show
some very different results with large file sizes for low RTTs.
We have observed higher packet loss in the simulations for
RTT=0.1 sec. The reason for this could be that many packets
are lost affecting all streams at the same time, providing bursts
in the TCP input traffic which the hop-by-hop flow control
manages to compensate for with extra buffering.

VI. CONCLUSIONS

In this paper we have modeled the interaction of the IEEE
802.3x hop-by-hop congestion control mechanism with TCP
end-to-end congestion control. We have introduced a Markov
model and compared it with simulations of a real TCP stack.
The Markov model aims at capturing the interaction of hop-by-
hop with TCP congestion control for multiple TCP streams and
their aggregate traffic behavior. It does not aim at modeling
details of a single TCP flow. The results indicate that the
model manages to capture the qualitative performance trends.
Only in some specific cases, certain TCP effects and packet
drop pattern cause an unexpected degradation in performance
without the use of hop-by-hop flow control. With simulation,
these cases show an unexpected increase in the benefit of using
hop-by-hop flow control.

The model also provides useful insight in the effect of
various network and congestion control mechanism parameters
on the results. Studying the influence of thresholds for the hop-
by-hop congestion control scheme, we have observed that for
the scenarios considered, setting the high and low thresholds
close to each other seems most optimal. The choice of the
threshold should be at 70-80% of the buffer size. This per-
centage should be adjusted if there is significant transmission
delay on the link to which the congestion messages are sent.
Setting the thresholds far apart from each other did not show
significant degradation in performance. Considering the fact
that we did not model the overhead in sending the congestion

message on the downstream traffic, it is probably advisable to
set the thresholds further from each other (with the additional
constraint that the low threshold does not coincide with empty
buffer).

The influence of the RTT on the performance was also
studied. It can be concluded from the results that increasing
the RTT provides greater benefit with the use of hop-by-hop
congestion control along with TCP. Since the RTT determines
the increase in TCP sending rate after a packet loss, longer
RTTs will delay TCP’s recovery from loss. In these cases hop-
by-hop flow control buffers avoid unnecessary packet loss thus
reducing unnecessary long reductions in TCP sending rate. We
also observed that the greater the load or congestion level, the
less the influence of the RTT on the results as well as that
of hop-by-hop congestion control. Short RTTs allow TCP to
recover very quickly from packet loss and almost always keep
sending at a high traffic rate thus causing extreme congestion.
It is difficult to solve extreme congestion if the input traffic
rate is not adapted. It is also important to note that since the
RTT controls the maximum window size, a very large value of
RTT will force TCP flows to send at such a low rate that there
will be no congestion at all. In these cases again hop-by-hop
flow control will not provide any real benefits.

Burstiness and the level of congestion definitely play a role
in the performance improvement of any congestion mecha-
nism. We have studied this aspect by looking at results from
the Markov model with extreme differences in input traffic
rate and with more granular functions and comparing them
with 2 distinct simulation scenarios. TCP traffic scenarios with
idle times between files show the largest benefit with the use
of hop-by-hop congestion control. The Markov model with
extreme bursty changes in traffic rate follows closely these
trends in the simulations. When the traffic has idle times, the
hop-by-hop congestion control helps in smoothing out traffic
and avoids drops and unnecessary retransmissions. However,
when there are no idle times and there is always traffic to
send, TCP end-to-end congestion mostly seems to adapt well
to the bottleneck, thus use of hop-by-hop control does not
provide significant benefit. There are some exceptions when
certain combinations of the RTT and TCP parameters cause
significant drops that can possibly be avoided by using hop-
by-hop control. These are subjects for future research.

REFERENCES

[1] Annex 31 B, “Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specification”, IEEE
standard 802.3, 1998 Edition.

[2] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP throughput:
A simple model and its empirical validation”, Proc. ACM SIGCOMM,
September 1998, pp. 303-314.

[3] W. Noureddine, F. Tobagi, “Selective back-pressure in switched Ethernet
LANs”, Proc. Globecom, Rio de Janeiro, Brazil, December 1999, 1256-
1263.

[4] J. Wechta, A. Eberlein, F. Halsall, “The interaction of the TCP flow
control procedure in the end nodes on the proposed flow control
mechanism for use in IEEE 802.3x switches”, Proc. of the Eigth IFIP
conference on high performance networking (HPN’98), Vienna, Austria,
September 1998, 515-534.

[5] C. M. Pazos, J. C. Sanchez Agrelo, M. Gerla, “Using back-pressure to
improve TCP performance with many flows”, Proc. IEEE Infocom, New
York, USA, March 1999, 431-438.

[6] P. Mishra, H. Kanakia, “A hop by hop based congestion control scheme”,
Proc. Communications architectures & protocols, Baltimore, Maryland,
USA, August 1992, 112-123.

[7] Y. R. Yang, S. S. Lam, “General AIMD congestion control”, Proc. In-
ternational Conference on Network Protocols, Osaka, Japan, November
2000, 187-198.

[8] V. Dumas, F. Guillemin, P. Robert. “A Markovian analysis of Additive-
Increase Multiplicative-Decrease (AIMD) algorithms”, Advances in Ap-
plied Probability 34(1) (2002), 85–111.

[9] F. Baccelli, D. Hong. “The AIMD Model for TCP Sessions Sharing a
Common Router”, Proc. 39th Annual Allerton Conference on Commu-
nication, Control and Computing, Allerton Park, Illinois, USA, October
2001.

[10] N. van Foreest, M. Mandjes, W. Scheinhardt, “A versatile model for
asymmetric TCP sources”, Proc. of the 18th International Teletraffic
Congress, Berlin, Germany, August 2003, 631-640.

[11] J. Crowcroft, P. Oechslin. “Differentiated end-to-end Internet services
using a weighted proportional fair sharing TCP”. Computer Communi-
cation Review 28 (1998), 53-69.

[12] W. Fischer, K. Meier-Hellstern. “The Markov-modulated Poisson pro-
cess (MMPP) cookbook”, Performance Evaluation 18 (1993), 149-171.

[13] OMNET++, http://www.omnetpp.org/
[14] The Network simulator ns-2, http://www.isi.edu/nsnam/ns/
[15] K. Perumalla, LibSynk, http://www.cc.gatech.edu/fac/kalyan/libsynk.htm

