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ABSTRACT
We consider a fixed number of streaming sessions sharing a
bottleneck link with a dynamic population of elastic flows.
We assume that the sizes of the elastic flows exhibit heavy-
tailed characteristics. The elastic flows are TCP-controlled,
while the transmission rates of the streaming applications
are governed by a so-called TCP-friendly rate control pro-
tocol.

Adopting the Processor-Sharing (PS) discipline to model
the bandwidth sharing, we investigate the tail distribution of
the deficit in service received by the streaming sessions com-
pared to a nominal service target. The latter metric provides
an indication for the quality experienced by the streaming
applications. The results yield valuable qualitative insight
into the occurrence of persistent quality disruption for the
streaming users. We also examine the delay performance of
the elastic flows.

1. INTRODUCTION
Over the past decade, TCP has gained ubiquity as the

predominant congestion control mechanism in the Internet.
While TCP is adequate for best-effort elastic traffic, such as
file transfers and Web browsing sessions, it is less suitable for
supporting delay-sensitive streaming applications. In partic-
ular, the inherent fluctuations in the window size adversely
impact the user-perceived quality of real-time streaming ap-
plications. As a potential alternative, UDP could be used
to avoid the wild oscillations in the transmission rate. Since
UDP does not respond to congestion, it may cause severe
packet losses however, and give rise to unfairness in the com-
petition for bandwidth with TCP-controlled flows.

Discriminatory packet scheduling mechanisms provide a
further alternative to achieve some form of prioritization
of streaming applications. However, the implementation of
scheduling mechanisms is surrounded with substantial con-
troversy, because it entails major complexity and scalability
issues. In addition, prioritization of streaming applications
may cause performance degradation and even starvation of
TCP-controlled flows that back off in response to congestion.
Evidently, the latter issue gains importance as the amount
of streaming traffic in the Internet grows.

The above considerations have motivated an interest in
TCP-friendly or equation-based rate control protocols for
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streaming applications [5, 10, 12]. The key goal is to elim-
inate severe fluctuations in the window size and adjust the
transmission rate in a smoother manner. In order to ensure
fairness with competing TCP-controlled flows, the specific
aim is to set the transmission rate to the ‘fair’ bandwidth
share, i.e., the throughput that a long-lived TCP flow would
receive under similar conditions.

In the present paper we explore the performance of stream-
ing applications under such TCP-friendly rate control pro-
tocols. We consider a fixed number of streaming sessions
which share a bottleneck link with a dynamic population of
elastic flows. The assumption of persistent streaming users
is motivated by the separation of time scales between the
typical duration of streaming sessions (minutes to hours)
and that of the majority of elastic flows (seconds to min-
utes). We assume that the TCP-friendly rate control results
– at the flow level – in a fair sharing of the link rate in a
Processor-Sharing (PS) manner, see for instance [2, 8]. We
further suppose that the sizes of the elastic flows exhibit
heavy-tailed characteristics. The latter assumption is based
on extensive measurement studies which show that file sizes
in the Internet commonly have heavy-tailed features, see for
instance [4].

We consider the probability that a possible deficit in ser-
vice received by the streaming sessions compared to a nom-
inal service target exceeds a certain threshold. The latter
probability provides a measure for the degree of disruption
in the quality experienced by the streaming users. We fur-
thermore examine the delay performance of the elastic flows.

In recent papers [3, 7], the authors also consider mixtures
of elastic transfers and streaming users sharing the network
bandwidth. These papers however focus on different perfor-
mance metrics.

2. MODEL DESCRIPTION
We consider two traffic classes sharing a link of unit rate.

Class 1 consists of a static population of K ≥ 1 statistically
identical streaming sessions. These sessions stay in the sys-
tem indefinitely. Class 2 consists of a dynamic configuration
of elastic flows. These users arrive according to a renewal
process with mean interarrival time 1/λ, and have generic
service requirements B with distribution B(·) and mean β <
∞. Let Br be a random variable distributed as the residual
lifetime of B, i.e., Br(x) = P {Br < x} = 1

β

∫ x

0
(1−B(y))dy.

We assume that B(·) is regularly varying of index −ν, i.e.,
B(·) ∈ R−ν (and hence Br(·) ∈ R1−ν).



The elastic flows are TCP-controlled, while the transmis-
sion rates of the streaming sessions are adapted in a TCP-
friendly fashion. Abstracting from packet-level details, we
assume that this results in a fair sharing of the link rate
according to the PS discipline. Thus, when there are N(u)
elastic flows in the system at time u, the available service
rate for each of the users – either elastic or streaming – is
1/(K+N(u)). Denote by C1(s, t) :=

∫ t

u=s
K/(K+N(u))du

the total amount of service available for the streaming ses-
sions during the time interval [s, t].

We will mainly be interested in the quantity V1(t) :=
sup
s≤t
{A1(s, t)− C1(s, t)}, where A1(s, t) denotes the amount

of service which ideally should be available for the stream-
ing traffic during the interval [s, t]. For example, A1(s, t)
may be taken as the amount of streaming traffic that would
nominally be generated during the interval [s, t] if there were
ample bandwidth. We assume A1(s, t) ≡ Kr(t− s) (see the
end of Section 3 for an extension). Thus, V1(t) may be inter-
preted as the shortfall in service for the streaming traffic at
time t compared to what should have been available in ideal
circumstances. For conciseness, we will henceforth refer to
V1(t) as the workload of the streaming traffic at time t.

Let C2(s, t) be the amount of service available for the elas-
tic flows during [s, t]. Evidently, C2(s, t) ≥ t − s − C1(s, t),
with equality in case the streaming sessions always claim
the full service rate available. For the elastic traffic, the
latter case is equivalent to a G/G/1 PS queue with K per-
manent customers, accounting for the presence of the com-
peting streaming sessions.

However, we allow for possible strict inequality in case
the streaming sessions do not always consume the full ser-
vice rate available, and the unused surplus is granted to the
elastic class, i.e., C2(s, t) = t− s− B1(s, t), with B1(s, t) ≤
C1(s, t) denoting the actual amount of service received by
class 1 during the interval [s, t]. For example, when the
‘workload’ of the streaming sessions is zero, the actual ser-
vice rate may be set to the minimum of the aggregate input
rate and the total service rate available. It may be checked
that the two scenarios described above provide lower and
upper bounds for the general case with t − s − C1(s, t) ≤
C2(s, t) ≤ t− s−B1(s, t).

Define ρ := λβ as the traffic intensity of class 2. For
class 2 to be stable, we require that ρ < 1. For class 1
to be stable as well, we need to assume that ρ + Kr < 1.
Here class i (i = 1, 2) is said to be stable if the ‘workload’
Vi(t) converges to a finite random variable Vi as t→∞. We
additionally assume that (K+1)r > 1−ρ, which implies that
the system is critically loaded in the sense that one extra
streaming session – or a ‘persistent’ elastic flow – would
cause instability. Combined, the above two assumptions give
Kr < 1 − ρ < (K + 1)r. We refer to [1] for cases in which
ρ+ (K + 1) < r.

3. MAIN RESULTS
In this section we present the main results of the paper.

The performance of the elastic class is mainly determined
by the sojourn time distribution of an elastic flow. The tail
of this distribution is determined in the first part of this
section. In the second part, we derive the asymptotic tail
distribution of the streaming workload. Finally, we extend
the workload results to the case in which the streaming users
have a stochastic nominal service target.

Delay performance of the elastic flows
As mentioned above, our model shows strong resemblance

with a G/G/1 PS queue with K permanent customers. For
tractability, we assume in the first part that elastic flows ar-
rive according to a Poisson process. Denote by S2 the delay
of an elastic flow. The asymptotic tail distribution of S2

is given by the next proposition (similar delay asymptotics
were obtained in [6, 9]).

Proposition 1. If B(·) ∈ R−ν and Kr < 1− ρ < (K +
1)r, then

P {S2 > x} ∼ P
{
B >

(1− ρ)x

K + 1

}
.

Informally speaking, the result shows that a large delay
of an elastic flow is due to a large service requirement of the
flow itself. The ratio between the two quantities is simply
the average service rate received by the large flow. Over
the duration of the large flow, the other elastic flows receive
service roughly equal to their average input rate ρ. The re-
maining service capacity is shared among the large elastic
flow and the streaming users, each entitled to a fair share
(1− ρ)/(K + 1). A detailed proof is given in [1].

Workload asymptotics of the streaming traffic
We now turn the attention to the workload distribution

of class 1. The main result is presented in the following
theorem.

Theorem 2. If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r,
then

P {V1 > x} ∼ ρ

1− ρ−Kr
P

{
Br >

x 1−ρ
K+1

K(r − 1−ρ
K+1

)

}
. (1)

Next, we provide a heuristic derivation of the asymptotic
behavior of P {V1 > x}. We will specifically argue that in
the present context the most likely way for a large class-
1 workload V1 to occur arises from the arrival of a class-2
user with a large service requirement Btag, while the system
shows average behavior otherwise. We will refer to the class-
2 user as the “tagged” user.

Now, suppose that the tagged user arrives at time −y−z0,
with z0 = x

K(r− 1−ρ
K+1 )

, and has service requirement Btag ≥

x+ (1− ρ−Kr)(y + z0), and y ≥ 0. For class 2 to remain
stable, other class-2 users together approximately require a
service ρ(y + z0) during the interval (−y − z0, 0]. Class 1
together with the tagged class-2 user consume what is left
over and thus roughly receive (1−ρ)(y+z0). The cumulative
amount of service received by the tagged user up to time
0 roughly equals either (1 − ρ)(y + z0)/(K + 1) or Btag,
depending on whether the user is still present at time 0
or not. Class 1 is entitled to the unused capacity of class
2 and the amount of service received by class 1 can thus
be estimated by max{Kr(y + z0)− x, K

K+1
(1− ρ)(y + z0)}.

Moreover, since the nominal service target of class 1 equals



Kr, we deduce

V1(0) ≥ Kr(y + z0)−max{Kr(y + z0)− x,

K

K + 1
(1− ρ)(y + z0)}

= min{x,K(r − 1− ρ

K + 1
)(y + z0)}

≥ min{x,K(r − 1− ρ

K + 1
)z0} = x.

Integrating with respect to y (in case of Poisson class-2
arrivals), then gives the right-hand side of Equation (1), and
thus indicates that the scenario described above is sufficient
for the class-1 workload to reach level x. Of course, there are
alternative scenarios that could potentially lead to a large
class-1 workload, but these are extremely unlikely compared
to the one described above.

A rigorous proof of Theorem 2 can be found in [1] and
involves lower and upper bounds that asymptotically coin-
cide. The proof of the lower bound is based on the above
heuristics. For the upper bound, we use an alternative inter-
pretation of the most likely scenario. Note that the arrival
of a class-2 user with a large service requirement also results
in a large total workload after its arrival. In fact, we show
in [1] that the event V1(−z0)+V2(−z0) ≥ x+(1−ρ−Kr)z0
corresponds to the most likely scenario described above. To
see that this alternative characterization results in the same
asymptotics, we use the following equivalence relation for
the total workload.

Let V c
2 (t) be the workload at time t in an isolated queue

with service rate c fed by class 2 only, and let V c
2 be its

steady-state version. We then have the following asymptotic
equivalence between V := V1 + V2 and V 1−Kr

2 :

P {V > x} ∼ P
{
V 1−Kr

2 > x
}
∼ ρ

1−Kr − ρ
P {Br > x} .

The first asymptotic equivalence is evident, and in fact ap-
plies in a sample-path sense, if the full service rate is al-
ways used when there is any work present. However, it also
holds for a critically loaded system where the unused sur-
plus of the streaming class is lost. The second equivalence
is due to Pakes [11]. Now, substituting z0 = x

K(r− 1−ρ
K+1 )

in

the bound for V1(−z0) + V2(−z0) and some rewriting yields
Equation (1).

Finally, to obtain an upper bound, we also show that sce-
narios in which both V1(−z0)+V2(−z0) < x+(1−ρ−Kr)z0,
and V1(0) > x, are extremely unlikely compared to the one
described above. This involves many technical details, see
[1].

Generalization to stochastic service targets
The assumption that the ideal service target for the stream-

ing traffic is constant, is actually not crucial (see also [1]).
Theorem 2 remains valid in case A1(s, t) behaves accord-
ing to a general stationary process with mean E[A1(t, t +
1)] = Kr, provided that significant deviations from the
mean are sufficiently unlikely. More specifically, we require
that A1(s, t) satisfies

Assumption 1. For all φ > 0, ψ > 0, and for x→∞,

P
{

sup
t≥0
{A1(−t, 0)−K(r + ψ)t} > φx

}
= o(P {Br > x}).

In such a scenario, the variations in the class-1 service
target do not matter asymptotically, because they average
out. Assumption 1 is satisfied by a wide range of traffic
processes, such as instantaneous bursts and On-Off sources.

The proof of this generalization of Theorem 2 also involves
lower and upper bounds. The lower bound only requires
minor modifications. For the upper bound, we relate the
class-1 workload V var

1 (t) to that in a system with a constant
service target. Heuristically speaking, if the service target
exceeds Kr, the overshoot A1(s, t)−Kr(t− s) is postponed
to moments at which the service target is below Kr. This
“smoothing” can be converted into a strict sample-path re-
lation (φ > 0):

V var
1 (t) ≤ V

K(r+φ)
1 (t) + V cst

1 (t),

where V
K(r+φ)
1 (t) is the deficit in service in an isolated sys-

tem of capacity K(r + φ), and ‘var’, ‘cst’ refer to the sys-
tems with variable and constant nominal service targets,
respectively. Next, Assumption 1 may be applied to control

V
K(r+φ)
1 after which the appropriate lower bound remains.
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