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ABSTRACT
We study the joint queue length distribution of the Discrim-
inatory Processor Sharing model, assuming all classes have
phase-type service requirement distributions. We show that
the moments of the joint queue length distribution can be
obtained by solving linear equations. We use this to study
the system in two asymptotic regimes. In the first regime,
the different user classes operate on strictly separated time
scales. Then we study the system in heavy traffic.

1. INTRODUCTION
The adoption of Processor Sharing (PS) as a modeling

abstraction of TCP bandwidth sharing [8] – identifying a
customer in the PS model with an active TCP flow – trig-
gered a renewed interest in the analysis of PS models. The
PS discipline assumes a perfectly egalitarian distribution of
the bandwidth among all active flows. Because of TCP’s dis-
tributed nature, however, the actual shares of flows sharing
a common (bottleneck) link may show strong asymmetry,
see for instance [1].

Discriminatory Processor Sharing (DPS) was introduced
in [7] as a multi-class extension of (egalitarian) PS. The DPS
discipline provides a natural approach for modeling the flow-
level performance of heterogeneous TCP flows. The analysis
of the DPS discipline is extremely difficult compared to that
of ordinary PS. Most notably, the simple geometric queue
length distribution for the standard PS discipline [10] does
not have any counterpart for DPS. Mean sojourn times were
studied in [4], in particular showing that, in the case of expo-
nentially distributed service requirements, these can be ob-
tained from linear equations. This result was then extended
to higher moments of the queue length distribution [9], while
also proving a heavy-traffic limit theorem. In this paper we
further extend the results of [9] to phase-type distributions.
In addition, we use the theory of nearly-completely decom-
posable Markov Chains to study DPS, assuming a strict
separation of time scales among the different user classes.

2. MODEL DESCRIPTION
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Customers of K (≥ 1) different classes arrive at a sin-
gle server (class k arrives at rate λk). We assume that the
arrival processes are independent Poisson processes and de-
note the fraction of customers from class k by pk = λk/Λ,

where Λ =
∑K

k=1 λk is the total arrival rate. A generic ser-
vice time of class-k customers is denoted by Bk. The load
of class k is ρk = λkEBk and the stability condition reads
ρ < 1, where ρ =

∑K
k=1 ρk is the total load.

With Nk we denote the number of customers of class k =
1, 2, . . . , K (in steady state). All customers are served simul-
taneously. The weight of class k is denoted with wk(> 0).
If there are Nl = nl customers of class l = 1, 2, . . . , K, then
each customer of class k receives a fraction wk/

∑K
l=1 nlwl

of the server’s capacity. Note that if all wk are equal, the
system reduces to that of egalitarian PS.

3. EXACT ANALYSIS FOR PHASE-TYPE
SERVICE REQUIREMENTS

We assume that the service requirement distributions of
all classes are of phase-type. (Similar results were inde-
pendently obtained in [5].) Within a customer class we
distinguish between customers that are in different service
phases and refer to these as belonging to different customer
types. Denoting the number of phases of the class-k phase-
type distribution with mk, the total number of types is∑K

k=1 mk := J . A class-i customer in its jth service phase

is of type
∑i−1

k=1 mk + j. We use k(j) to denote the customer
class to which type-i customers belong.

Let p0j be the probability that an arriving customer starts
as a type-j customer, j = 1, . . . , J . Thus,

∑
j:k(j)=l p0j = pl.

The service phase corresponding to type j has mean dura-
tion 1/µj and its service weight is gj . It would be natural
to take gi = gj = wk(j) if k(i) = k(j), i.e., if types i and
j belong to the same customer class, but this is not nec-
essary for the analysis in this section. Furthermore, define
pij (i, j = 1, . . . , J) as the probability that, after complet-
ing its current service phase a type-i customer becomes a
type-j customer. In principle, no transitions are possible
between types belonging to different customer classes but,
again, we will not explicitly use this. Also, pi0 is the prob-
ability that a customer of type i will leave the system after
the current service phase completion. We shall denote the
number of type-j customers in the system by N ′

j . Obviously,∑K
i=1 p0i = 1,

∑J
j=0 pij = 1, and

∑
j:k(j)=l N ′

j = Nl.

Denoting by N̄ ′ and n̄ the vectors (N ′
1, N

′
2, . . . , N

′
J) and

(n1, n2, . . . , nJ) ≥ 0̄, respectively, the steady-state distribu-



tion P (n̄) := P(N̄ ′ = n̄) satisfies

[Λ +

∑J
i=1 giniµi∑J
j=1 gjnj

]P (n̄)

=

J∑
i=1

[
Λp0iP (n̄− ēi) +

gi(ni + 1)µipi0

gi +
∑J

k=1 gknk

P (n̄ + ēi)

+

J∑
j=1

gi(ni + 1)µipij

gi − gj +
∑J

k=1 gknk

P (n̄ + ēi − ēj)

]
. (1)

(For notational convenience we define P (n̄ − ēi) = 0 if
ni = 0.) It will prove convenient to use the following trans-
formation for n̄ 6= 0̄:

R(n̄) =
P (n̄)∑J
j=1 njgj

.

We further define R(0̄) = 0. Also, let p(z̄) and r(z̄) de-
note the generating functions of P (n̄) and R(n̄), respectively,
where z̄ = (z1, . . . , zJ) and |zi| < 1 for i = 1, . . . , J :

p(z̄) =

∞∑
n1=0

· · ·
∞∑

nJ=0

zn1
1 . . . znJ

J P (n̄) = E
[
z

N′
1

1 . . . z
N′

J
J

]
,

r(z̄) =

∞∑
n1=0

· · ·
∞∑

nJ=0

zn1
1 . . . znJ

J R(n̄).

It follows that

p(z̄) =

J∑
i=1

gizi
∂r

∂zi
+ 1− ρ. (2)

From (1) we obtain a partial differential equation for r(z̄):

K∑
i=1

{
µigi(pi0 +

K∑
j=1

pijzj − zi)− Λgizi(1−
K∑

j=1

p0jzj)

}
∂r

∂zi

= Λ(1− ρ)(1−
K∑

j=1

p0jzj). (3)

This equation enables us to determine the moments of the
queue length distribution by solving linear equations. Define
the following partial derivatives of p(z̄) and r(z̄):

Lj
i1...ij

= lim
z̄↑1

∂jp(z̄)

∂zi1 . . . ∂zij

, Rj
i1...ij

= lim
z̄↑1

∂jr(z̄)

∂zi1 . . . ∂zij

.

The next three theorems determine the mean numbers of
customers of each type (L1

i for type i).

Theorem 1. The jth moment of the queue length at phase i
can be expressed in terms of Rj

i1...ij
and Rj+1

i1...ij+1
as follows:

Lj
i1...ij

=

J∑
i=1

giR
j+1
i1...iji +

j∑
l=1

gilR
j
i1...ij

.

Proof. The theorem can be directly obtained by differenti-
ating (2) and letting zi → 1 for all i.

Let aij be the accumulated amount of work (from ar-
rival until departure) received at phase j assuming a start
in phase i. Obviously, the aij are determined by aij =∑K

k=1 pikakj , if i 6= j, and aii = 1
µi

+
∑K

k=1 pikaki.

Theorem 2. The R1
i , i = 1, 2, . . . , J , are given by

R1
i =

1

gi
Λ

K∑
i=1

p0iaij .

Proof. From (3) it follows that the R1
i satisfy the following

set of J equations with J unknowns where i = 1, . . . , J ,

K∑
l=1

glµlpliR
1
l − µigiR

1
i = −Λp0i,

which admits a unique solution, given in the theorem.
An alternative informal argument is as follows. The ca-

pacity dedicated to type i is giR
1
i = E

[
giN

′
i/

∑K
k=1 gkN ′

k

]
.

This must be equal to the arriving amount of work at phase
i, which is Λ

∑K
i=1 p0iaij .

Theorem 3. The R2
i1i2 satisfy the following set of J2 equa-

tions with J2 unknowns where i1, i2 = 1, . . . , J :

(µi1gi1 + µi2gi2)R
2
i1i2

=

K∑
l=1

gl(Λp0i1 + µlpli1)R
2
i2l + Λp0i1gi2R1

i2

+

K∑
l=1

gl(Λp0i2 + µlpli2)R
2
i1l + Λp0i2gi1R1

i1 .

Proof. Follows from (3).

From numerical experiments we found that this system
of J2 equations with J2 unknowns is linearly independent
(for a system with two customer types it is not hard to prove
that this is true if Λ < µ), implying that R2

ij (i, j = 1, . . . , J)
are uniquely determined by Theorem 3.

As a side remark, note that the set of equations in The-
orem 3 can be reduced to one of J(J + 1)/2 equations and
equally many unknowns by using the fact that R2

kl = R2
lk.

4. TIME SCALE SEPARATION
Assuming that a strict separation of time scales is allowed,

the DPS model can be analyzed exactly. Let the arrival rate
and service requirements of class 1 be scaled with a positive

parameter r: λ
(r)
1 = rλ

(1)
1 and P(r)(B1 ≤ x) = B1(rx), for

some constant λ
(1)
1 > 0 and probability distribution function

B1(·). (To reflect the dependence on r we shall use a super-

script (r).) Observe that the load of class 1 is not affected

by r: ρ
(r)
1 = λ

(r)
1 E(r)B1 ≡ λ

(1)
1 E(1)B1 =: ρ1.

Theorem 4. Let the service requirement distributions of
both classes be of phase-type. Then, for n1, n2 ∈ N, with
Γ(x) =

∫∞
0

e−uux−1du,

lim
r→∞

P(r)(N1 = n1|N2 = n2)

=
Γ(n1 + n2w2/w1 + 1)

Γ(n1 + 1)Γ(n2w2/w1 + 1)
ρn1
1 (1− ρ1)

n2w2
w1

+1
, (4)

and

lim
r→∞

P(r)(N2 = n2) =
(
1− ρ2

1− ρ1

)( ρ2

1− ρ1

)n2 . (5)

In particular,

lim
r→∞

E(r)[N1|N2 = n2] =
(w2

w1
n2 + 1

) ρ1

1− ρ1
,



and

lim
r→∞

E(r)N2 =
ρ2

1− ρ
,

so that

lim
r→∞

E(r)N1 =
(w2

w1

ρ2

1− ρ
+ 1

) ρ1

1− ρ1
.

Passing r →∞ corresponds to a perfect separation of time
scales. N2 evolves on a much slower time scale than N1. For
a fixed number N2 = n2 of class-2 users (“elephants”), class-
1 users (“mice”) equally share the service capacity n1/(n1 +
w2
w1

n2). (This heuristic argument is made rigorous in the
proof of Theorem 4 for phase-type service requirement dis-
tributions, using the theories of singular perturbation and
nearly-completely decomposable Markov Chains.) For fixed
N2 = n2, with n2w2/w1 ∈ N, the limiting dynamics of
class-1 users correspond to that of the M/G/1 PS queue
with n2w2/w1 permanent customers [2]. More generally, (4)
agrees with [3, 6] when n2w2/w1 6∈ N.

In the limit r →∞, 1− ρ1 is the capacity that is left for
class-2 customers for any fixed value of N2 = n2, since class-
1 customers will simply demand their average load ρ1. Thus,
in the limit, class 2 sees a processor sharing system with
service capacity 1− ρ1 and load ρ2, which agrees with (5).

It is worth emphasizing that the limits in Theorem 4 are
insensitive to characteristics of the service requirement dis-
tributions other than the means. In addition, we observe
that, as r → ∞, the limiting distribution of N2 is indepen-
dent of the weights, whereas that of N1 does depend on the
ratio of the weights.

K ≥ 2 customer classes
The results of Theorem 4 can be extended to more than
two customer classes. Let the arrival rates and service re-
quirements of class k be scaled with rK−k: λ

(r)
k = rK−kλ

(1)
k

and P(r)(Bk ≤ x) = Bk(rK−kx). We then have, for class
i = 1, . . . , K,

lim
r→∞

E(r)[Ni|Ni+1 = ni+1, . . . , NK = nK ]

=

(∑K
j=i+1 njwj

wi
+ 1

)
ρi

1−
∑i

j=1 ρj

,

with

lim
r→∞

E(r)NK = ρK/(1− ρ).

We can thus recursively compute limr→∞ E(r)NK−k, k =
1, . . . K − 1.

5. HEAVY TRAFFIC
We now discuss a second asymptotic regime (no longer

assuming a separation of time scales). In heavy traffic, with

ρ =
∑K

k=1 ρk → 1, the numbers of customers in the system
of all classes will increase to infinity (with probability 1).
However, when scaled with 1− ρ we show that there is a
proper limiting distribution.

Theorem 5. If the service requirement distributions are
of phase type, then for (ρ1, . . . , ρK) → (ρ̄1, . . . , ρ̄K), with∑K

k=1 ρ̄k = 1,

(1− ρ)(N1, N2, . . . , NK)
d→ E · ( ρ̄1

w1
,

ρ̄2

w2
, . . . ,

ρ̄K

wK
),

where
d→ denotes convergence in distribution and E is an

exponentially distributed random variable with mean∑
k pkE[(Bk)2]/

∑
k pkEBk∑

k
1

wk
ρ̄kE[(Bk)2]/EBk

,

which is equal to 1 in the case of standard PS, i.e., when
wk = 1 for all k.

This result reflects a so-called state-space collapse. In
heavy traffic, the random vector (1 − ρ)(N1, N2, . . . , NK)
converges in distribution to a constant vector multiplied
with an exponentially distributed random scalar. This is
proved by showing that the mean of (N1, N2, . . . , NK) as well
as the variance around this mean are of the order O( 1

1−ρ
).

The exact form of the result can be understood by noting

that ρi = E
[

wiNi∑
k wkNk

1{
∑

k wkNk>0}

]
, where 1{A} equals 1 if

A holds and it equals 0 otherwise. Then, if Ni/Nk tends to
a constant, say ni/nk, it must be that wini = ρ̄i

∑
k wknk,

i = 1, 2, . . . , K. Solving for ni yields the result up to a multi-
plicative constant. The latter can be found by realizing that
DPS is a work-conserving service discipline. Therefore, the
mean workload is given by the Pollaczek-Khintchine formula

EV =
ρ

2(1− ρ)

∑
k

pkE[(Bk)2]/
∑

k

pkEBk,

which tends to 1
2

∑
k pkE[(Bk)2]/

∑
k pkEBk, when scaling

with 1− ρ and passing ρ → 1.
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