From line numbers to origins

Paul Klint

September 4, 1995

Dedicated to Frans Kruseman Aretz.

Abstract

Many aspects of computer science were first shown to me by Frans Kruseman Aretz in the period
1969-1971.

The first computer architecture I ever saw was the OEBRA (for Onbestaanbare Elektronische
Binaire Rekenautomaat): a very simple machine originally designed by A. van der Sluis. Frans
explained it in full detail by giving all hardware diagrams as well as an interpreter for OEBRA
assembly language programs (written in Algol60). Later on he showed how a real PDP8 (with a main
memory of 4K 12 bit words) could assemble programs by exclusively using paper tape as storage
medium (for representing the assembler itself, the source program, the intermediate output of the
assembler, and, finally, the binary version of the source program).

On another occasion we visited the machine room of the EL-X8 of the Mathematisch Centrum
then located at the Tweede Boerhaevestraat 48 in Amsterdam. Acting like a professional piano
player, Frans used the switch register for entering a program that would set the complete memory
(28K 27 bit words) of the machine to zero’s. Before pushing the “run” button, however, he asked
each student how long it would take to execute this program. Probably due to selective amnesia, I
do not remember what my guess was, but the very short flash of the lights on the console registers
while executing the program impressed me deeply. This X8 was a really fast machine with its 2.5usec
cycle time (= 0.4 MHz)!

The first operating system I saw was the Milli operating system for the X8 (written by Frans
Kruseman Aretz in ELAN, the assembly language of the X8). The first compiler I saw was the
Algol60 compiler for the X8 (written, again, by Frans Kruseman Aretz in Algol60). His standard
approach was to give a brief global overview of the issues and techniques involved and then start a
meticulous explanation at the source code level of each system he was discussing.

I remember various small, but very instructive, programs he treated during his courses: for
instance, a Lisp interpreter in Algol60 (highlighting variable binding and recursive evaluation), and
an interpreter for Turing machines (using Algol60’s call-by-name mechanism to represent the infinite
tape of the Turing machine). A puzzle he gave me once was to determine the number of logical
functions of three variables that can be built using at most one inverter gate.

Frans supervised my Master’s thesis [Kli73] concerning a semi-automatic proof of the termination
of the X8 Algol60 compiler as well as my PhD thesis [Kli82] on the design of string manipulation
languages. Clearly, I owe very much to him and I am glad to contribute the following paper on the
occasion of his retirement from the University of Eindhoven.

This contribution is devoted to another theme of common interest (which can, for instance, be ver-
ified by inspecting the bibliographical notes in [WG84], p323): maintaining references to a program’s
source text during its execution. [KruT71] deals with a technique for generating the minimal number
of instructions for correctly maintaining line numbers at run time. [K1i79] deals with a technique for
concisely encoding line numbers in abstract machine instructions.

I give a new formalization of origin tracking [vDKT93], a technique for maintaining references
between the normal form and the initial term of a term rewriting process.

1 Introduction

Term rewriting systems are frequently used to execute algebraic specifications: the equations in the
specification are interpreted as rewrite rules and a given initial term is reduced according to these rules;

if no further reductions are possible we have obtained an irreducible term (the normal form) constituting
the answer of the computation.

A typical function in a specification (such as an evaluator, type checker or translator) operates on the
abstract syntax tree of a program (which is part of the initial term). During the term rewriting process,
pieces of the program such as identifiers, expressions, or statements, recur in intermediate terms.

In [vDKT93] we have introduced the notion of “origin tracking”: by establishing reverse links from
the normal form to the initial term of the term rewriting process we obtain information that is important
for interactive tools like error reporters (associate an error message with a part of the source program)
and animators (visualize the statement currently being executed).

The existing formalization of origin tracking proceeds in two stages. First, relations are defined for
elementary reduction steps 7; — T;41. Next, these relations are extended to complete reduction sequences
To — Ty — ... = T,,. In particular, relations are established between subterms of an intermediate term
T;, and subterms of the initial term 7. The process of incrementally computing origins is called origin
tracking. In Appendix B of [vD94] an ASF+SDF specification is given following along these lines. Here, I
want to simplify the two stage approach by concentrating on the information that has to be propagated
for elementary reduction steps only. In this way, we get a direct formalization of origin tracking itself.
The basic intuition of this new approach is to attach unique labels to the initial term and to define how
these labels are propagated during rewriting.

First, a straightforward formalization of term rewriting is given in Section 2 and then we extend it in
Section 3 with origin tracking.

2 Term rewriting

2.1 Terms

First, we define the basic syntactic structure of terms. Observe that functions are always unary, but
they may operate on lists. We assume (but dot not show) a module Layout containing definitions for
comments and white space.

Module BasicTerms
imports Layout(>1)
exports
sorts FUN VAR TERM
lexical syntax
[a-z][A-Za-z0-9\—]* — FUN
[A-Z][A-Za-z0-9\—]x — VAR
context-free syntax
VAR — TERM
nil — TERM
TERM “” TERM — TERM {right}
FUN “(” TERM “)" — TERM
“("” TERM *)” — TERM {bracket}
variables
Var [0-9']% — VAR
Fun [0-9']%*— FUN
T[0-9']x — TERM
equations
Ensure that lists are always right-associative.

(Ti; T2); Ts = T15T2; T [list-1]

Next, we introduce functions for classification, selection (i.e., decomposition) and replacement of terms.
We assume (but do not show) a definition of the module Booleans.

Module Terms
imports BasicTerms(2'1) Booleans(3-1)

exports
context-free syntax
is-fun(TERM) — BOOL
is-non-empty-list(TERM) — BOOL
is-nil (TERM) — BOOL
fun(TERM) — FUN
arg(TERM) — TERM
head(TERM) — TERM
tail(TERM) — TERM
repl-arg(TERM, TERM) — TERM
repl-list(TERM, TERM, TERM) — TERM
equations

Classification functions on terms.

is-fun(Fun(T)) = true

is-fun(T) = false otherwise

is-non-empty-list(T1; T2) = true

is-non-empty-list(T) = false otherwise
is-nil(nil) = true
is-nil(T) = false otherwise

Selection functions on terms.

fun(Fun(T)) = Fun

fun(T) = error otherwise

arg(Fun(T)) = T
arg(T) = nil otherwise

head(Tl; Tg) = Tl
head(T) = nil otherwise

taiI(Tl; Tg) = T2
tail(T) = nil otherwise

[is-fun-1]
[is-fun-2]

[is-non-empty-list-1]

[is-non-empty-list-2]
[is-nil-1]

[is-nil-2]

[fun-1]
[fun-2]

[are-1]
[are-2]

[head-1]
[head-1]

[tail-1]
[tail-2]

Replacement functions on terms. Given a function application (or a list) and a new argument (or two

new list elements) construct a new function application (or list). In this manner replacement operations

are made explicit and can be extended later on (see Section 3.2).

repl-arg(Fun(T1), T2) = Fun(T)
repl-arg(T1, T2) =T otherwise

repl-list(Ty; T2, T1', ') = T1; T
repl-list(T, T1', T2') = Ti; T,' otherwise

[repl-arg-1]
[repl-arg-2]

[repl-list-1]
[repl-list-2]

The definition of a replacement function for complete terms (repl-term) will be given in Section 2.4.

2.2 Substitutions

Substitutions define a mapping from variables to terms and are represented as lists of the form [Var; —
Termy, ..., Var, — Term,]. Three operations are defined for substitutions: composition of two substi-
tutions (o1 o 02), application of a substitution ¢ to a term T' (7%), and checking that a variable Var is

in the domain of a substitution o (Var € o).

Module Substitutions
imports Terms(21) Booleans(>1)
exports
sorts SUBSTITUTION ONE-SUBS
context-free syntax

VAR — TERM — ONE-SUBS
“I” {ONE-SUBS “)"}x “T" — SUBSTITUTION
SUBSTITUTION o SUBSTITUTION — SUBSTITUTION
TERM “* SUBSTITUTION — TERM
VAR € SUBSTITUTION — BOOL
SUBSTITUTION “(" VAR)" — TERM

exports

variables

Subs [0-9']%“x" — {ONE-SUBS “," }«*
o [0-9']* — SUBSTITUTION

equations

Composition of substitutions.
[Subsi] o [Subsy] = [Subs], Subsy]
Variable occurs in substitution.

Var € [Subs], Var— T, Subs,] = true

Varc o false otherwise

Retrieve variable associated with a variable in a given substitution.

[Var — T, Subs*|(Var) = T

Vary # Vary = [Vary — T, Subs*|(Var,) = [Subs*|(Var,)

[l(Var) = Var

Apply substitution to a term.

Var € o = true = Var® = o(Var)

Var € o = false = Var® = Var

is-fun(T) = true = T? = replarg(T, arg(T)7)
is-non-empty-list(T) = true = T° = repl-list(T, head(T) 7 , tail(T) 7)
is-nil(T) = true = T =T

[e-1]

[in-1]
[in-2]

[sv-1]

[sv-2]

[sv-3]

[as-1]
[as-2]
[as-3]
[as-4]

[as-5]

2.3 Matching

Matching two terms T; and T% yields zero or more substitutions {1,032, ...} such that IT7* = Ty (i =
1,2,...) holds. If a match yields {} (the empty set of substitutions), terms 7; and T2 do not match.

For the current paper it would suffice to introduce a unitary matching function that either succeeds
(yielding a single substitution) or fails. The definition given here is more general and can also handle
(non-unitary) list matching.

Module Match
imports Substitutions(?-2)
exports
sorts MATCH
context-free syntax

SUBSTITUTION — MATCH
MATCH & MATCH — MATCH
“(" MATCH “)” — MATCH {bracket}

“{” {MATCH “,"}* “}" — MATCH

match(TERM, TERM) — MATCH
variables
w[0-9'7 — MATCH
W [0-9'%“%" — {MATCH “" }x
w [0-9'%“+"— {MATCH “" }+
equations
Nested lists of matches may be flattened.

{#1 {wsh w3t = {u1, w3, w3} im-1]
Determine the “and” of two matches. The equations for matches consisting of a single substitution are:

Var € o = true,

o(Var) =T

[Var — T, Subs*| & o = [Subs*| & ¢ [mand1]
Var € o = true,
o(Var) # T o
[Var— T, Subs*]| & o = {} [mand2]
Var € o1 = false,
[Subs*] & o1 = 02 "
[Var— T, Subs*] & o1 = [Var+— T] ooy [mand3]
& o = o [mand4]
c&l[] = ¢ [mand5]
The equations for matches consisting of a list of substitutions are:
w& {3} ={ [mand-6]
Y -0 -
{u1} & py = {p & po} [mand-§]
py & {ps} = {p & p,} [mand-9]
{by, w3} & ps = {py & ps, {p3} & ps} [mand-10]
py & {pg, u3} = {p1 & pg, py & {pi}} [mand-11]

Match terms T; and T5.

match(Var, T) = {[Var— T} [match-1]

is-fun(T1) = true, is-fun(T3) = true, fun(Ty) = fun(T3)

h-2
match(T1, T2) = match(arg(T1), arg(T2)) [match-2]
is-nil(T1) = true, is-nil(T2) = true
[match-3]
match(T1, T2) = {[|}
is-non-empty-list(T1) = true, is-non-empty-list(T3) = true
- - [match-4]
match(T1, T2) = match(head(T7), head(T3)) & match(tail(T1), tail(T2))
match(Ty, T2) = {} otherwise [match-5]

2.4 Rewrite Rules

Rewrite rules (in their simplest form) look like 773 — T,. We introduce the decomposition functions 1hs
and rhs to retrieve the sides of a rule and we define term replacement.

Module Rules
imports Terms(2'1) Substitutions(2-2)
exports

sorts RULE TRS

context-free syntax

TERM “—=" TERM — RULE

Ihs(RULE) — TERM

rhs(RULE) — TERM

“{” {RULE “"}x “}" — TRS

repl-term(TERM, SUBSTITUTION, RULE) — TERM
variables

Rule — RULE

Rule [0-9']%“¥"— {RULE “)” }x
R[0-9']x“x" — {RULE “)"}x
TRS[0-9']x — TRS
equations
Selector functions for left hand side and right hand side of a rule.

|hS(T1 — Tz) =T [hs-1]
I‘hS(Tl — Tz) =T, [rhs-1]

Replace a term by an instantiated right-hand side of a rule. This function will be used to replace redexes
during rewriting. It is parametrized with a complete rule as opposed to, for instance, only the right hand
side of a rule, in order to provide all information that may be relevant for more advanced replacement
operations in which the syntactic structure of the complete rule may determine the propagation of certain
additional information during replacement. This becomes relevant when extending term replacement for
more sophisticated forms of origin tracking.

repl-term (T, o, Rule) = rhs(Rule) ° otherwise [repl-term-1]

2.5 Term Rewriting Systems

Given a term T and a term rewriting system T RS, term rewriting amounts to constructing the sequence
of terms T'= Ty — T1 — ... — T, such that for each step T; — T;41 the following holds:

e in T; occurs a subterm T,

e TRS contains a rule Rule,

match(T, lhs(Rule)) = {o1,...,0m} (m > 0),
e T' = rhs(Rule)’ (for some 0, 0 < j < m), and
e T;11 =TT :=T'] (i-e., the occurrence of T in T; is replaced by T).

In addition, 7}, should be a normal form. In the following specification we use the artifact of a “step”:
either the constant nostep if no step is possible or a pair of the form [Rule, u], where Rule is a rewrite
rule and g is a match.

Note that the following definitions can be generalized in several directions to take into account:

e the ordering that is used when searching for applicable rules (e.g., random, textual, or specificity

of left hand sides);
e reduction strategy (e.g., innermost, outermost, mixed);
e more advanced features in rules (e.g., list variables, conditions).

Here, we will use textual ordering, innermost reduction, and unconditional rules.

Module TRS
imports Match(?-3) Rules(2-%)
exports
sorts STEP
context-free syntax
“I” RULE “)" MATCH] — STEP
nostep — STEP
normalize(TERM, TRS) — TERM
normalizel(TERM, TERM, TRS) — TERM
normalize-args(TERM, TRS) — TERM
find-rule(TERM, TRS, TRS) — STEP
apply-rule(TERM, RULE, MATCH, TRS) — STEP
equations

Normalize a term to normal form. If it is a non-empty list, normalize the list elements.

is-non-empty-list(T) = true
normalize(7, TRS) = repl-list(T, normalize (head(T), TRS), normalize(tail(T), TRS))

[n1]

Else, if there is a matching rule, apply it and continue normalization. Observe that matters related to
the rewriting strategy (e.g., normalization of function arguments) are delegated to find-rule.

is-non-empty-list(T) = false,
find-rule(T, TRS, TRS) = [Rule, {13, o, p3}]

2

normalize(7, TRS) = normalize(repl-term(T, o, Rule), TRS) [n2]
Otherwise, first normalize the term’s arguments and retry normalization.

normalize(7, TRS) = normalizel(T, normalize-args(T, TRS), TRS) otherwise [n3]

Normalization halts if the previous term is equal to the current one; otherwise normalization is continued.

normalizel(T, T, TRS) T [n1-1]
normalizel(T, 7', TRS) = normalize(T, TRS) otherwise [n1-2]

Normalize the arguments of a term.

is-fun(T) = true

-1
normalize-args(T, TRS) = repl-arg(T, normalize(arg(T), TRS)) [na-1]
is-non-empty-list(T) = true ,
normalize-args(T, TRS) = repl-list(T, normalize(head (T), TRS), normalize(tail(T), TRS)) [ra-2]
normalize-args(T, TRS) = T otherwise [na-3]
Find a rule that can be applied to a given term. The first rule that can be applied is used.
apply-rule(7, Rule, {match(lhs(Rule), T)}, TRS) = [Rule, p] .
find-rule(T, TRS, {Rule, Rule'}) = [Rule, 4] te-2]
apply-rule(7, Rule, {match(lhs(Rule), T)}, TRS) = nostep .
find-rule(T, TRS, {Rule, Rule*}) = find-rule(T, TRS, {Rule*}) [f-2]
find-rule(T, TRS, {}) = nostep [fr-3]

Apply a rule to a term. Given a term T and a rule Rule, can Rule be used to reduce T'? Here, we will
use a fixed, innermost strategy, but these definitions can easily be extended to cover other strategies as
well.

T' = normalize-args(T, TRS),
match(lhs(Rule), T') = {u7}
apply-rule(T, Rule, {ut}, TRS) = [Rule, {ut}]

[ar-1]

apply-rule(7T, Rule, 4, TRS) = nostep otherwise [ar-3]

2.6 An example: list reversal

Consider the reversal of a list of two elements, defined as follows (taken from [vD94]):

normalize(
rev(cons(one(nil) ;cons(two(nil);cons(two(nil) ;null(nil))))),
{ rev(null(nil)) -> null(nil),
rev(cons(E;L)) -> append(rev(L);cons(E;null(nil))),

append(null(nil);L) -> L,
append(cons(E;L1);L2) -> cons(E;append(L1;L2))
}
)

Note that our term syntax does not support constants. As a result, all constants have to be written
as functions applied to an empty argument list: we have to write one(nil), two(nil), and null(nil)
instead of one, two and null.

The above initial term will yield the normal form:

cons(two(nil) ; cons(two(nil) ; cons(one(nil) ; null(nil))))

3 Origin Tracking

3.1 Background

As already explained in the introduction, origin tracking amounts to establishing reverse links between
the normal form and the initial term of a term rewriting process. In [vDKT93], all rewriting steps
T — T1 — ... — T,, are taken into account and backward relations are established between the normal
form T, and the initial term 7. Four relations are distinguished: Common Variables, Redez- Contractum,
Contezt, and Common Subterms.

Here, we introduce a labeling of the initial term and define how these are propagated in the forward
direction during rewriting. Labels appearing in the normal form correspond to the desired origin infor-
mation. The presentation proceeds in three steps. First, we introduce the notion of origin sets: sets of
labels of the form {L1, L, ...}. Next, we extend the syntactic form of terms in order to permit the use
of origin sets as labels for (sub)terms. Typically, a term f(a;g(b)) may be labeled as follows: {labi}:
f(a;g({lab2,1ab3}: b)). Finally, we extend the definitions of the access functions for terms in order
to properly preserve origin sets.

It turns out that in this new approach the relations Common Variables, and Contezt become implicit
since they are taken care of by the labeling. For reasons of simplicity (and space), we will not introduce
the Common Subterms relation. Using the terminology of [vD94], we therefore restrict the presentation
to primary origins only.

3.2 Specification of origin tracking

Module Origins
imports TRS(25)
exports
sorts ORG-SET
context-free syntax
“0* {FUN “"}x “}" — ORG-SET
ORG-SET “U” ORG-SET — ORG-SET

ORG-SET “” TERM — TERM

org-set(TERM) — ORG-SET

propagate(TERM, ORG-SET) — TERM

collect(TERM) — ORG-SET

collect1(TERM) — ORG-SET
priorities

TERM “”TERM — TERM < ORG-SET “”TERM — TERM

hiddens
variables
0[0-9']x — ORG-SET
O [0-9']x“x"— {FUN “" }«
equations
Define origin sets as sets of function symbols.

{01} U {03} = {01, 03} [un-1]
{OL Fu"a O;a Fun7 O;} = {OL Fun, O;a ;} [un-2]

Define the cases that an empty origin set, respectively a multiple origin sets, is associated with a term.

{3:T =T [empty-org]
0:0,: T OLuUO0,: T [dup-org]

Extend the classification functions on terms.

is-fun(O: T) is-fun(T) [is-fun-3]
is-non-empty-list(O: T) = is-non-empty-list(T) [is-list-3]
is-nil (0 : T) = is-nil(T) [is-nil-3]

Extend the selection functions on terms.

fun(O: T) = fun(T7) [fun-3]
arg(0: T) = arg(7) [arg-3]
head(O: T) = head(T) [head-3]

tail(O: T) = tail(T) [tail-3]
Extend the replacement functions on terms.

repl-arg(O: Ty, T2) = O: repl-arg(Ty, Ta) [repl-arg-2]

repl-list(O : T1, T2, T3) = O:repl-list(Ty, T2, T3) [repl-list-2]

Replace a term T by an instantiated right-hand side of a rule. First, collect the origin sets associated
with T and then propagate them to the instantiated right-hand side.

repl-term (T, o, Rule) = propagate(rhs(Rule) 7 , collect(T)) [repl-term-2]

Retrieve the origin set directly associated with a term. If no origin set is associated with it, return the
empty set.

org-set(0O: T) = O [org-set-1]
org-set(T) = {} otherwise [org-set-2]

Determine the origin set of a redex. If an origin set is attached at the outermost level, return it.

collect(O: T) = O [coll-1]
collect(T) = collect1(7T) otherwise [coll-2]

Otherwise, return the origin information attached to embedded function arguments or list elements.

is-fun(T) = true

11-1
collect1(T) = org-set(arg(T)) feotiz-1]
is-non-empty-list(T) = true

- [coll1-2]

collect1(T) = org-set(head(T)) U org-set(tail(7))
collectl(7) = {} otherwise [coll1-3]

Propagate a given origin set to the arguments or list elements in a term.
is-fun(T) = true)
propagate(T, O) = O : org-set(T) : fun(T)(propagate(arg(T), O)) [prop-1]
is-non-empty-list(T) = true

-2
propagate(T, O) = org-set(T) : (propagate(head(T), O); propagate(tail(T), O)) [prop-2]
propagate(T, O) = T otherwise [prop-3]

10

3.3 Example: list reversal with origin sets

Applying the same rewrite rules as in Section 2.6 to a labeled term

normalize(
rev(cons({a}:one(nil) ;cons({b}:two(nil);cons({c}:two(nil);null(nil))))),
{ rev(null(nil)) -> null(nil),
rev(cons(E;L)) -> append(rev(L);cons(E;null(nil))),

append(null(nil);L) -> L,
append(cons(E;L1);L2) -> cons(E;append(L1;L2))
}
)

will yield an appropriately labeled normal form:
cons({c}:two(nil) ; cons({b}:two(nil) ; cons({a}:one(nil) ; null(nil))))

By removing all origin sets we obtain the same normal form as yielded by ordinary rewriting. Also observe
that with ordinary rewriting the two occurrences of the constant two(nil) could not be distinguished.
Using origin tracking, the different origins of these two constants are now explicitly indicated in the
normal form.

4 Discussion

This paper presents origin tracking as a straightforward extension of ordinary term rewriting. Clearly,
many issues have not been discussed here (e.g., rewriting strategies, conditional rules). However, the
approach has several merits:

e The definition of origin tracking is much simpler than the one given in earlier papers.
e It provides a starting point for studying different origin propagation rules.

e It gives guidance to an implementation of origin tracking.

Acknowledgements

Appendix B of [vD94] formed the starting point for this exercise. Arie van Deursen commented on a
draft of this paper.

References

[K1i73] P. Klint. Enumerability and termination. Technical report, University of Amsterdam, 1973.
[K1i79] P. Klint. Line numbers made cheap. Communications of the ACM, 22:557-559, 1979.

[K1i82] P. Klint. From Spring to Summer — Design, Definition, and Implementation of Programming
Languages for String Manipulation and Pattern Matching. PhD thesis, Technical University
Eindhoven, 1982.

[Kru71] F.E.J. Kruseman Aretz. On the bookkeeping of source-text line numbers during the execution
phase of ALGOL 60 programs. In MC-25 Informatica Symposium, volume 37 of Mathematical
Centre Tracts, pages 6.1-6.12, 1971.

[vD94] A. van Deursen. Ezecutable Language Definitions — Case Studies and Origin Tracking Tech-
niques. PhD thesis, University of Amsterdam, Programming Research Group, 1994.

11

[vDKT93] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic Computation,
15:523-545, 1993.

[WG84] W.M. Waite and G. Goos. Compiler Construction. Springer, 1984.

12

