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Preface

Here, in the first part of my thesis for all of you to read and the last part for me to
write, I would like to thank all the people that have helped me getting to this point.

First of all, I am very grateful to my promotor, Paul Klint, for offering me the
opportunity to do the research that is described in this thesis, and for offering me a
deadline that enabled me to actually finish the thesis. I started working for Paul eight
years ago while doing the practical work for my engineering degree and surely there

must have been times that he thought to never get rid of me. Working for Paul has been
a very pleasurable experience with lots of freedom for pursuing my own interests.

A special word of thanks goes out to my co-promotor, Arie van Deursen. His in-
terest, encouragement and enthusiasm were always stimulating and he has taught me
a lot about writing scientific papers and doing research in general. Besides being my

supervisor and mentor, Arie has become a good friend with whom I could talk about
life, Julia, books, Julia, the opera, and just now and then about his daughter Julia . . .
I have truly enjoyed working together with Arie, and our cooperation turned out to
be a productive one, which is shown by the fact that he was a co-author for half of the

chapters of this thesis (Chapters , , ,  & ).

Tobias Kuipers has been there since I started studying at the UvA. His endless sup-
ply of interesting ideas and outspoken opinions were always good for long and fruit-
ful discussions. We had great fun and hanging around with Tobias has taught me to
express myself (although I will probably never become as good as him ;-). Tobias’ re-

search at CWI was closely related to mine: We both worked on software renovation
issues and he is the co-author of Chapter  in which we connect my work on type
inferencing to his work on concept analysis. Another important connection is our
involvement in the Software Improvement Group (SIG), a spin-off company that we

started together with Paul, Arie and others to transfer our research ideas into practice.
The start of this company introduced some delays in the finishing of this thesis, not
only because real work had to be done, but also because dealing with problems from
practice provoked some additional research questions that just had to be pursued.

It was our experience with real-life software development in this company that
inspired the work described in Chapter , which was co-authored by two of SIG’s hard-

core developers: Alex “you’re too technical for me” van den Bergh and Gerard Kok.
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Preface

Eva van Emden is the co-author of Chapter  on quality assurance using code
smells. Eva visited us at CWI at a point where it was thought that I could finish my
thesis by writing the introduction. However, our ideas on exploring smelly code fitted
in too nicely to just ignore them and gave me another excuse for a short delay. Our

common interests in electronic music, gothic literature, rock climbing and whitewater
kayaking resulted in lots of highly enjoyable, off-topic, discussions and coffee breaks
with demonstrations of rescue techniques. If I ever go paddle (or more likely, swim) a
class V rapid, I hope Eva will be there to watch out for me.

I thank the members of my reading committee prof.dr. Hausi Müller, prof.dr.ir.
Loe Feijs, prof.dr. Mike Papazoglou, prof.dr. Jan Bergstra, prof.dr. Peter van Emde
Boas, and prof.dr. Martin Kersten, for their careful review of this thesis.

Merijn de Jonge and Joost Visser shared an office with me at CWI. They have both

contributed to the work described in this thesis, by listening while my half-baked ideas
took form and by developing elaborate tools that I could build upon for my experi-
ments. Although we have never gotten around to writing a paper together, we have
discussed lots of interesting issues that ought to be investigated further and written

down (so let’s really start project ).
In addition to the people mentioned above, I would like to thank Jan Heering

for his constructive comments on various chapters of this thesis, for his inquisitive
remarks (“Maar wat leer ik nu van zo’n metafoor?”) and for his willingness to discuss

random issues, whether they concerned computer science or analog electrical circuitry.
The work presented in this thesis started in the “Programming Research Group”

at the University of Amsterdam (UvA) and was finished in the “Interactive Software
Development and Renovation” group at the Center for Mathematics and Computer

Science (CWI). I would like to thank all colleagues that work or have worked in these
groups for creating a friendly, open and stimulating environment to work in.

Outside the office, Miriam Egas and Daniel Dekkers showed the meaning of true
friendship. They supported me in stressful times, made sure that I enjoyed the oc-

casional rollercoaster and created something which feels like a second home in Eind-
hoven. Let’s go water-skiing soon. I am especially grateful to Daniel for his approval
of the cover picture. It really means a lot to me.

I am very lucky to share my life with Ivonne. None of this would have been possi-

ble without her confidence, encouragement, patience and unconditional love, even at
times when I stayed up way too late to fix some tiny detail. Far too often she has heard
me mumble the dreaded words “nog heel even dit afmaken” (just gotta fix this).

Finally, I would like to thank my parents, Ton and Anny Moonen, for always being

there when I needed them and for supporting me in my choices and my study. I guess
they never expected that this would be the outcome of the maths challenge they gave
me  years ago. It is to them that I dedicate this thesis.

Leon Moonen

Amsterdam, the Netherlands
October 
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Introduction

explorer /ıkspl c:r er/. An explorer is someone who travels to places about

which very little is known, in order to discover what is there.

Collins COBUILD English Language Dictionary

J ust like traditional exploring is about traveling to unknown places for dis-
covery, software exploration is about investigating the unknown aspects of

a software system to find out what is there. The objectives of these investiga-

tions can range from obtaining a birds eye view of the system (cf. reconnaissance
flights) to a detailed examination of a system’s “white spots” (cf. surveying previ-
ously uncharted territory).

In this chapter, we motivate why software exploration is needed by describing
how software evolution causes degradation of (knowledge about) a system after
it is built. We investigate the analogy between software exploration and urban

exploration which results in the concept of legibility of a software system and
a collection of principal elements responsible for this legibility. Next we describe
how these ideas are related to previous work in the areas of program compre-
hension and reverse engineering. We conclude by posing a number of research

questions that are investigated in this thesis.

. Software Evolution

One might wonder why software exploration is needed, and how these unknown areas

appear in a software system. After all, a software system only exists because it was
designed and created by people who clearly must know what is there, or the system
could never have been built in the first place. In the remainder of this section, we will
investigate the forces that operate on a software system and cause the appearance of

white spots.


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A typical software system is modified and extended a number of times during its
lifetime to keep it operational. In fact, the majority of software engineers today are not
involved with the production of new systems but are busy with changing and extending
existing software systems [Jon]. This process of keeping a software system in sync

with the ever-changing needs after it was put in production is called software evolution
or software maintenance.

In the s, Belady and Lehman studied the evolution of several large software
systems (such as IBM’s OS/). Based on these studies, they formulated their Laws

of Program Evolution Dynamics that model the dynamic behavior of a software system
during the evolution of that system [BL, Leha, Lehb]. Recent case studies report
on further evidence for the validity of these laws [Leh, LPR]. The first two of
their laws consider the software system itself and are the most relevant for our work

since they describe the inevitability that parts of a system become less known and need
exploring:

. Continuing Change: any software system that is actually used will undergo con-

tinuous modification or it becomes useless.

Common reasons for these modifications include: removal of program defects, im-
provement of the system’s performance, adaptation to a new hardware or software

environment and extensions or changes to the functionality of the system.

. Increasing Complexity: as a result of these modifications, the complexity of a
system will increase unless specific actions are undertaken to prevent this.

Recurring changes and extensions to a system deteriorate its structure and pollute

originally “clean” designs. Gradually, the relation between the system and its design
documentation diminishes and the system becomes less and less maintainable. When
less information is available, subsequent changes will have an even more damaging
impact on structure and maintainability.

This kind of resistance to change is not unique to software systems. For example,
it was also observed in architecture [Bra]. In his book “How Buildings Learn: What
Happens After They’re Built”, Brand states: “Almost no buildings adapt well. They’re
designed not to adapt; also budgeted and financed not to, constructed not to, administered

not to, maintained not to, regulated and taxed not to, even remodeled not to. But all
buildings (except monuments) adapt anyway, however poorly, because the usages in and
around them are changing constantly” [Bra]. Although software systems are designed
to be flexible, in practice they often turn out to resist change just as strong as buildings

do, especially in the case of legacy software systems. In fact, Brodie and Stonebreaker
define a legacy system as: “any information system that resists change” [BS]. To over-
come this resistance, software engineers need techniques that help them manage the
increasing complexity that results from evolution. An example of such a technique is

a software exploration tool that assists engineers in collecting up-to-date information
about what is going on in the system.

 Extensions that result from changing user requirements have later been distinguished as a separate law of
Continuous Growth which states that the functional content of a program must be continually increased
over its lifetime to maintain user satisfaction [Leh].


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.. Software Immigration

Another complicating factor in software maintenance is the fact that these mainte-

nance tasks are often performed by others than the original developers of the software
(who might actually still remember how and why a particular piece of code was writ-
ten). Such newcomers to the system have been called software immigrants since they
are faced with the difficult task of finding their way in an existing software system, an

experience similar to that of people who arrive in a new country and need to learn a
new language and understand a new culture [SH].

We can identify two main sources for software immigration: the first turnover
happens after development when a system is transitioned to a different (part of the)

organization that does the maintenance. Arguments for such a transition are that soft-
ware maintenance requires specific skills that not necessarily correlate with the skills of
good software developers. Moreover, “fresh” maintainers are more apt to make signifi-
cant changes since they will be less attached to the program than its original developers

[Pig]. A second type of turnover happens whenever new employees are added to an
existing software project (either in the development or in the maintenance stage) to
make up for staff turnover, replace personnel, or to disengage senior team members.
In both cases the new maintainers are confronted with an existing software system that

they need to familiarize themselves with and investigate all its unknown aspects to find
out what is there.

The result of all these complications is that software maintenance is an expensive

part of the software life-cycle. Several studies report that the bulk of today’s soft-
ware budgets are being spent on software maintenance. Estimates range from approx-
imately % [Ben] up to % [Pig] of the total software costs. Consequently,
research that improves the maintenance process can make a tremendous contribution

to decreasing the total costs of software.

Bohner and Arnold report that the two most expensive activities in software main-
tenance are understanding the software system that has to be maintained and deter-

mining the impact of proposed change requests [BA]. It is our objective to lower
the cost of these activities by improving the support for exploring software systems by
software engineers.

. Exploring Software Systems

In this thesis, we investigate various possibilities of providing software engineers with

tools that help them explore the software system at hand and survey the uncharted
terrain that results from software evolution and immigration. We introduce the issues
surrounding software exploration by drawing the analogy with traditional exploration.

Historically, exploration is associated with people that go on a voyage of discov-

ery and examine uncharted territory. This rarely happens these days since most of
earth’s geographical areas have been visited by man. However, there is a related type

 One could argue that geographic exploration is replaced by space exploration.


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of exploration that is very common in our everyday life and has been researched ex-
tensively: whenever we visit a new city or building, we use exploratory techniques to
orient ourselves and get to the places we want to visit.

Below, we will first look at the traditional exploring metaphor and then investigate

how urban planning techniques can help software exploration.

.. A Voyage of Discovery

When explorers went on a voyage of discovery, they traveled to areas for which they did
not have a map or at best only had a rough map that was based on hearsay information
or focused on different aspects of the region. A similar situation occurs in software

engineering when the engineer has to deal with a software system for which no up-to-
date or relevant documentation is available.

We can ask ourselves how this problem was solved by traditional explorers? When
examining a given terrain, the explorer typically starts at a known point and investi-

gates possible routes that leave from that point. These routes can be existing trails or
courses determined by taking the bearings of features that are visible from the current
position. Generally, the selection of routes of interest is based on the goal of the ex-
pedition, for example the mountain to climb or the desert to cross, and the terrain

survey is a by-product of that expedition.
If we translate this approach to the software domain, we get the following descrip-

tion of the exploration process: a software explorer starts at a known point and in-
vestigates possible routes that leave from that point. However, because software is not

tangible, it is much harder to identify what suitable starting points are, what routes
the explorer can follow, and which features can be used to set out a new course. These
concepts need to be made manifest in a software system before it can be examined by
a software explorer using the approach described above.

To illustrate the general idea of software exploration, we will give a few examples
of routes and features here: When we start exploring a software system at a given pro-
gram, features of interest might be all other programs that are affected by this program.
In that case, potential routes to explore are the calls from this program to other pro-

grams. A different set of interesting routes originate from data flow relations that result
from database entries that are written by one and read by the other program. Another
potential starting point could be a certain variable type (e.g. date or currency) with
routes that lead the explorer to all program locations in which that type is used.

.. Urban Exploration

Whenever we visit a new city or building, we use exploratory techniques to learn about
the space and get to the places we want to visit. The process that people apply during
such visits can be thought of as continually trying to answer the following three ques-
tions:

. Orientation: Where am I?

. Discovery: What else is out there?


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. Navigation: How do I get there?

This process of spatial exploration is referred to as wayfinding.

Wayfinding and spatial cognition are studied intensively in architecture and city
planning. The goal is to collect principles and guidelines that can be applied in the

design of cities and public buildings to allow its users to better orient themselves and
improve how they navigate through the space.

Legibility of the city

The foundations for wayfinding research were laid out by city planner Kevin Lynch in
his book “The Image of the City” [Lyn]. In this book, he uses the concept of legi-
bility of a city to develop a theory of city planning and urban design where he defines
legibility as “the ease with which its parts may be recognized and can be organized into a

coherent pattern”.

Lynch studied how people organize spatial information about their environment
by asking them to draw simple maps of their hometowns. Based on these surveys, he
identified five principal elements that are used to build a mental model of a city:

Landmarks: The outstanding (static) features in a city. Examples include prominent
buildings, monuments, and shop-fronts. Landmarks are used as reference points
by the observer: they give a sense of location and bearing.

Paths: Streets or footpaths that allow the observer to travel through the city.

Nodes: The important points of interest along paths, for example, street intersections,
bridges or town squares.

Districts: The areas in a city that have a common property allowing them to be viewed
as a single entity. Examples of districts are shopping areas, residential areas, but

also the historic center or the business district.

Edges: The boundaries to areas. They form a physical barrier to travelers. Examples
include rivers and major roads (for pedestrians).

These structural elements can be used to divide a complex environment into smaller,
connected and more manageable pieces that can be used directly to create a mental

map detailing spatial knowledge about that environment. People generally start their
orientation in a new environment using landmarks and gradually extend their knowl-
edge using the other elements until a mental map is constructed.

Lynch discovered that in cities in which these elements are not manifest, people

have much more trouble with creating mental overviews of their surroundings and
relating their position to the total system. Using that knowledge, he proposes a design
methodology that helps to design or improve cities so people can easier find their way.
Basically this is done by ensuring that all these elements are used and can be easily

recognized.


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Wayfinding in Architecture

A followup study was done by architect Romedi Passini, who investigated how people
navigate in large public buildings and malls [Pas]. He describes wayfinding as an

iterative three-staged process consisting of mental mapping to create cognitive maps of
the environment, decision making to formulate action plans and decision execution to
execute those plans. Passini identified many environmental factors that influence the
process, such as building symmetry, user expectations, behavior of other people in the

building, and old memories of being in that environment. Based on these results, he
proposes a number of design guidelines that help to improve legibility of buildings.

In his guidelines, Passini uses the two structural elements of Lynch that he con-
siders to be the most important: paths and landmarks, and introduces the notion of

enclosures (or containers) to replace nodes and districts. These containers are used as
a more general “node” element that itself can consist of a collection of organized ele-
ments. Since the user’s ability to understand and orient in the environment is affected
by the (apparent) logic of how the elements are arranged, Passini argues that it should

follow a known organizational scheme. For example, the streets and canals in the cen-
ter of Amsterdam are organized in a circular pattern, whereas the streets in Manhattan
are organized as a grid. When we know the organizational scheme, it becomes easier
to navigate, determine our location and memorize a route.

Together with graphic designer Paul Arthur, Passini studied how wayfinding in

existing buildings can be improved by adding signage and if such signage can be incor-
porated in the architecture of a building (so called “environmental communication”)
[AP]. An example of such incorporation is using the burbling sound of a foun-
tain to help people find and recognize the lobby of a building as public space. Their

conclusion is that the addition of signs can be an efficient way to improve wayfind-
ing in an existing space but since there are other factors that limit people’s wayfinding
capabilities (discussed above), the addition of signs alone does not suffice.

Application to Software

We can define legibility of software using the same terms as Lynch used for legibility
of the city: “the ease with which its parts may be recognized and can be organized into a
coherent pattern”. Improving the legibility of software is an important aspect of sup-
porting the exploration of software systems because legible systems are more memo-

rable and generate stronger mental models, which makes them easier to explore, and
therefore easier to maintain.

However, in urban environments legibility is defined in the context of solving the
spatial exploration problem that has a rather static nature. The set of structural ele-
ments for a given space are largely fixed (although there will be some variation between

people based on cultural backgrounds and mobility). In contrast, the legibility of a
software system is much more dependent on the particular problem that an engineer
has to solve [Bro]. For example, the elements of interest that are used to explore the
impact of a Euro conversion on a software system will differ significantly from the ele-

ments for exploring quality aspects of that same system. Consequently, our focus will
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be on flexible techniques that allow us to improve the legibility of software in respect
to a given task instead of aiming at overall legibility improvement.

Some examples of software legibility elements are:

Landmarks: Particular variable types such as dates, account numbers, and currencies.

Code characteristics such as code smells and points at which a certain refactor-
ing can be applied.

Nodes: “Structural” entities in software systems such as programs, modules, functions,
types, classes, methods, variables.

Paths: Relations that can exist between nodes such as call relations, inheritance, links
between variables of the same type, etc.

Districts: Separation of the so-called business logic or business rules that describe how
the system contributes to an organization’s bottom line from the technical as-

pects such as database access, communication with the environment, user inter-
facing, etc.

The modules in a software architecture, for example, the Linux operating system
kernel can be thought of as consisting of separate districts for process schedul-

ing, memory management, file system access, network interfacing, and inter-
process communication [BHB].

Edges: The boundary between libraries (both system libraries and third party libraries)
and the application code written by the developers, boundaries between parts

that were produced by different teams that have code ownership, or the bound-
aries between client and server code.

Before we can investigate how these ideas can be applied in concrete software ex-
ploration tools, we need to take a more detailed look at the cognitive and technical
issues of program comprehension.

. Program Comprehension

The overall goal of software exploration is to gain a better understanding of a software
system. It is a widely accepted fact that software engineers spend a large amount of
their time on understanding the system that they are working on. Corbi reports that at
least % of a software engineers’ time is spent on trying to figure out what is actually

going on in the system [Cor]. Effective understanding is needed before one can
find and fix defects, add new functionality, improve the implementation, etc. Because
program comprehension (or program understanding) is such an important aspect of
the software engineering process, numerous studies have been performed to come to

a theory of program comprehension and identify techniques that can assist engineers
with this task.

Comprehension is characterized as the construction of mental models that rep-

resent the objects in a text and the relationships between them [DK]. In program
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comprehension, these mental models represent the examined software system at vari-
ous levels of abstraction. They can range from models of the code itself (e.g. the main
components of the system and their relation to each other) to models of the underly-
ing application domain (e.g tasks performed by the system). Software engineers need

these models during the maintenance, evolution, and re-engineering of the system.

Comprehension is an incremental process: software engineers gradually build up
their knowledge by studying various aspects of the system, possibly at different times,
and possibly by revisiting previously examined parts. They make use of comprehension

strategies which help them manage information and reach a particular goal.

A number of people have studied the cognitive processes that are involved with
program comprehension and the strategies that are used to build the mental models.
Detailed surveys of these processes are presented by von Mayrhauser and Vans [MV]
and Storey [Sto]. Here, we will give a short overview of the three main approaches

that can be distinguished:

. Top-down: this approach tries to reconstruct the mappings from the problem

domain into the programming domain that were made when programming the
system. This reconstruction is an expectation driven process: understanding
starts with some pre-existing hypotheses about the functionality of the system
and the engineer investigates whether they hold, should be rejected or refined in

a hierarchical way (Brooks [Bro], Soloway and Ehrlich [SE]).

. Bottom-up: this approach starts understanding from the source code, construct-
ing higher level abstractions using chunking and concept assignment (Shneider-

man and Mayer [SM], Pennington [Pen]). Chunking creates new higher
level abstractions from lower level structures. When higher level structures are
recognized, they replace the more detailed lower level ones. This helps to over-
come the limitations of the human memory when confronted with too many

pieces of information [Mil]. The term concept assignment was introduced
by Biggerstaff et al. for the process of describing the intent of certain parts of
the system using terms at a higher level of abstraction than the source code
[BMW].

. Opportunistic combinations of top-down and bottom-up: according to this theory,
programmers frequently change between top-down and bottom-up approaches

(Letovsky [Let]), or even combine them at the same time (von Mayrhauser
and Vans [MV, MV, MV]), to create mental representations of a software
system.

All these approaches have in common that they are based on the recognition of certain
features in the code that are used for both abstraction and orientation. Brooks in-
troduces the notion of beacons which are (sets of) easily recognizable features that ap-

pear in the code and are used for the generation and validation of hypotheses [Bro].

 We use the word “features” in its English meaning which refers to the traits, characteristics, elements,
aspects, and properties of a system in contrast to software jargon where the meaning of features is limited
to the functional aspects of a software system.
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Soloway and Ehrlich describe the use of programming plans to capture the intent of
the code: plans are patterns of features that indicate that a piece of code has a specific
task. Biggerstaff et al. introduce the notion of signatures to describe sets of features that
together signal the occurrence of a specific concept [BMW].

These notions described above are all examples of software elements that can be
used as landmark elements for the application of the wayfinding theories of Lynch
and Passini. One of the goals of our work is to enable automatic detection and man-
ifestation of such landmarks in a software system. Such automatic detection can be

performed using reverse engineering.

. Reverse Engineering

Reverse engineering techniques are often used to support program comprehension.
Reverse engineering is defined as the process of analyzing a subject system to identify

the system’s components and their interrelationships and, create representations of the
system in another form or at a higher level of abstraction [CC]. The goal of reverse
engineering is identification and recovery of the design artifacts of a system, such as
its requirements, specifications, and architecture. In most cases, the process starts

with analyzing the system’s source code. From there, several higher-level abstractions
can be derived such as its major building blocks (components), their relations and
dependencies, architectural views of the system structure, etc. This information can
be used to support comprehension of the system since such higher-level views help the

maintainer to manage the complexity of the lower (source) levels.

A typical application of this technique deals with the (automatic) redocumentation
of software systems. There, reverse engineering techniques are used to generate (tech-
nical) documentation from the sources of a software system to support maintenance

activities [DKa]. The obvious advantage of automatic redocumentation is that the
documentation can be regenerated whenever the source is changed so it will never be
out-of-date. Furthermore, the quality of the functional part of the documentation
(which cannot be generated) will generally improve since maintainers don’t have to

spend time on the (boring) technical part of the documentation.

Many reverse engineering tools make use of compiler technologies such as lexical,
syntactic, and semantic (static) analysis [BKV]. Static analysis is a technique for
computing approximate information about the dynamic behavior of computer pro-

grams. Static analysis of computer programs can for example be used to infer types,
identify unreachable code, detect variable aliasing and find uninitialized variables. An
overview of the major approaches to static program analysis is given by Nielson et al.
in [NNH].

Figure . presents a general architecture that can be found in the majority of re-
verse engineering tools. It consists of three phases:

. Extraction: Each reverse engineering effort starts with extracting facts (also re-
ferred to as source models) from a software system’s artifacts such as its source

code, build scripts and configuration files. It is also possible to collect informa-
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Figure .: General architecture of a reverse engineering toolset.

tion using dynamic analysis of a system during its execution (e.g. using instru-
mentation to trace execution steps in a log). The resulting source models are

stored in some kind of repository (either in memory, in files, or in a database
management system).

. Abstraction: In the next phase, new knowledge about the system is inferred by
querying and manipulation of the data that is available in the repository. Gen-

erally, the results of this step are also stored in the repository to allow for an
iterative abstraction process that can combine raw facts with previously inferred
information to create new knowledge.

. Presentation: In the final phase, the information in the repository is presented to

the user in a suitable form. For a software redocumentation tool, this form may
resemble printed technical documentation. In a development environment, one
could think of decorating an editor with extra warnings which indicate that
methods or classes possess certain bad characteristics.

. Research Questions

The work described in this thesis concerns the creation of tools that support explo-

ration of software systems using reverse engineering techniques and the application of
such tools to perform particular maintenance tasks. The research is structured around
four central questions discussed below.

.. Effective Extraction

Question : How can we effectively extract information from a software system’s
artifacts that can be used in a software exploration tool?

One of the first challenges that a software exploration tool has to cope with is parsing
the artifacts during the extraction phase. These artifacts typically contain irregularities
that make it hard (or even impossible) to parse the code using common parser based
approaches. Examples of such irregularities are syntax errors, programming language

dialects, missing parts, etc. Furthermore, since the information needed to improve
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legibility is task dependent, one can not a priori determine what type of source model
should be extracted. Consequently, we should investigate techniques for robust pars-
ing of artifacts that allow flexible specification of the extracted models.

.. Creating New Knowledge

Question : How can we combine and abstract facts about a software system to
create new knowledge?

The challenge is to find (new) abstraction levels that are not explicitly available in the
code and help software engineers gain knowledge about the system. There are two
ways in which abstractions can contribute to the knowledge about a system: () they

identify new landmarks that act as beacons for comprehension, and () they disclose
new routes for navigation through the system. Example abstractions one can think
of are: architectural views that show the modules in a system and how they depend
on each other, data flow that shows how data propagates through the statements in a

program and between the programs in a system (for example via program calls, but
also via databases), and types that group the variables in a system to make them more
manageable. Since a lot of legacy systems are written in a language without types, an
interesting issue is whether we can infer “substitute” types for the variables in those

systems, and if they can be used like ordinary types in the exploration process.

.. Supporting Maintenance

Question : How can we use the information obtained in the first two questions

to support maintenance?

Several issues have to be addressed before the information obtained in the first two

questions can be used to support maintenance tasks: What are useful methods for
presenting the results of our analysis to the user? How to deal with the differences
between the conceptual view in the programmer’s mind and the technical view used
by the machine (e.g. in a compiler, but also in a reverse engineering tool like ours)? In

order to address these issues, we need to perform a number of case studies that inves-
tigate how software exploration techniques can be used to support particular tasks.

.. Software Quality Assurance

Question : How can we use software exploration tools to investigate and im-

prove the quality of a software system?

Our final question addresses the use of software exploration tooling for the purpose

of software quality assurance. In particular, software exploration may be used to find
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places in the code that can be improved using refactoring. “Refactoring is the process
of changing a software system in such a way that it does not alter the external behavior of
the code yet improves its internal structure“ [Fow]. The places that could benefit from
refactoring are identified using so-called code smells. Code smells are a metaphor for

patterns in code that are generally associated with bad program design and bad pro-
gramming practices. As such, code smells are landmarks that can be used to assess and
explore the quality of a software system: when a system possesses a lot of smells, it’s
quality is questionable and the smells guide the way to the places that need to be im-

proved. Some examples of code smells are: duplicated code, methods that are too long,
classes that perform too much tasks, classes that violate data hiding or encapsulation
rules or classes that delegate the majority of their functionality to other classes.

. Organization of this Thesis

The subsequent chapters of this thesis were originally written as a separate articles that
investigate various issues in software exploration. As a result of this, there is a small
amount of overlap between some chapters in the form of reiteration of definitions

and examples. We have deliberately chosen to leave this overlap in place to make the
work more accessible and to ensure that the chapters can still be read as self-contained
papers.

This thesis consists of three parts: In the first part, we consider automated extrac-
tion of source models from software artifacts and the use of those models in impact
analysis. One of the major challenges of source model extraction is dealing with ir-
regularities in the artifacts that are typical for the reverse engineering domain (e.g.

syntactic errors, incomplete source code, language dialects and embedded languages).
Chapter  presents a solution in the form of island grammars that are used to generate
robust parsers which combine the detail and accuracy of syntactical analysis with the
flexibility and development speed of lexical approaches. In Chapter , we motivate

that lightweight impact analysis is needed for the planning and estimation of software
maintenance projects and present a technique for the generation of lightweight impact
analyzers from island grammars. We demonstrate this technique using a real-world
case study that concerns the impact of mass transformation in the software portfolio

of a large bank.

The second part of the thesis considers inferred types as an abstraction that groups
the variables that occur in a software system. Types are a natural abstraction in pro-

gramming languages and form a good starting point for software exploration and
re-engineering tasks. Unfortunately, the software systems that require re-engineering
most desperately are often written in languages without an adequate type system (such
as C). Additionally, in languages that do have types (such as C), developers often

only use the same built-in type (e.g. char, int or float) to represent different “logical”
types (e.g. amount and age). As a result, types cannot be used as abstractions since
they group variables that should be different. To solve these issues, Chapter  presents
a method of automated type inference that considers the way in which types are actu-

ally used in a software system. We present the formal type system and inference rules
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for this approach, show their effect on various real life C fragments, and describe
the implementation of these ideas in a prototype type inference tool for C.

We continue our study in Chapter  with the analysis of type pollution, the phe-

nomenon that inferred types become too large and contain variables that intuitively
should not belong to the same type. We present an improved type inference mecha-
nism that uses subtyping and provide empirical evidence that this is an effective way

for dealing with pollution. In Chapter , we combine type inference and mathemati-
cal concept analysis to logically group the procedures in a legacy system together with
the data types they operate on. The results are abstractions that are very similar to
abstract data types. These abstractions can be used for exploration and are the starting

point for an object oriented re-design of the system. Finally, Chapter  investigates
how an invented abstraction as inferred types can be presented meaningfully to soft-
ware engineers. We describe the construction of TE: a tool that supports
exploration of C software systems based on inferred types and illustrate how it

can be used by examining an industrial C legacy system of , lines of code.

In the third and last part of this thesis, we explore the quality aspects of a software
system from a refactoring and testing perspective. In Chapter , we present a method

for the automatic detection and visualization of code smells in J code. These results
can be applied in two ways: () to support automatic code inspections where smells
are used to guide the inspection process; and () the creation of intelligent refactoring
tools that not only perform the transformation (as currently is state-of-the-art) but

also suggest that a refactoring can be applied at a given point. Chapter  argues that
refactoring test code is different from refactoring production code. We present a set of
bad smells that indicate trouble in test code and a collection of test specific refactorings
to remove these smells. In Chapter , we explore the relation between testing and

refactoring and investigate how they become intertwined when refactorings invalidate
tests (e.g. by removing a method that is expected by a test). We describe the conditions
under which such invalidation can occur and survey which of the refactorings from
[Fow] affect the test code. Finally, we present the notion of “test-first refactoring”:

a method for improving the quality of software that uses smells in the test code as
landmarks to explore where production code may be improved.

. Origins of the Chapters

The chapters in this thesis have appeared as a paper in a journal or in the proceedings
of an international conference. Only minor changes have been made to each published

paper. The remainder of this section gives an overview of the earlier publications.

Chapter  L. Moonen. Generating Robust Parsers using Island Grammars. In Pro-

ceedings of the th Working Conference on Reverse Engineering (WCRE ).
IEEE Computer Society Press, October .
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Chapter  L. Moonen. Lightweight Impact Analysis Using Island Grammars. In
Proceedings of the th International Workshop on Program Comprehension

(IWPC ). IEEE Computer Society Press, June .

Chapter  A. van Deursen and L. Moonen. Type Inference for C Systems. In
Proceedings of the th Working Conference on Reverse Engineering (WCRE

), pages -. IEEE Computer Society Press, October .

Chapter  A. van Deursen and L. Moonen. An Empirical Study into C Type
Inferencing. Science of Computer Programming, (–):–, July .

Chapter  T. Kuipers and L. Moonen. Types and Concept Analysis for Legacy Sys-
tems. In Proceedings of the International Workshop on Programming Com-
prehension (IWPC ). IEEE Computer Society Press, June .

Chapter  A. van Deursen and L. Moonen. Exploring Legacy Systems Using Types.
In Proceedings of the th Working Conference on Reverse Engineering (WCRE

), pages -. IEEE Computer Society Press, October .

Chapter  E. van Emden and L. Moonen. Java Quality Assurance by Detecting Code
Smells. In Proceedings of the th Working Conference on Reverse Engineer-
ing (WCRE ). IEEE Computer Society Press, October .

Chapter  A. van Deursen, L. Moonen, A. van den Bergh and G. Kok. Refactoring
Test Code. In Proceedings of the nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP ), May

.
This chapter will also appear in the book eXtreme Programming Perspec-
tives, edited by M. Marchesi, G. Succi, D. Wells, and L. Williams. Addison-

Wesley. Scheduled for release in August .

Chapter  A. van Deursen and L. Moonen. The Video Store Revisited — Thoughts
on Refactoring and Testing. In Proceedings of the nd International Confer-

ence on Extreme Programming and Agile Processes in Software Engineering
(XP ), May .
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C       
Generating Robust Parsers using

Island Grammars

S
ource model extraction—the automated extraction of information from sys-
tem artifacts—is a common phase in reverse engineering tools. One of the

major challenges of this phase is creating extractors that can deal with irregular-
ities in the artifacts that are typical for the reverse engineering domain (for ex-
ample, syntactic errors, incomplete source code, language dialects and embedded
languages).

This chapter proposes a solution in the form of island grammars, a special kind
of grammars that combine the detailed specification possibilities of grammars

with the liberal behavior of lexical approaches. We show how island grammars
can be used to generate robust parsers that combine the accuracy of syntactical
analysis with the speed, flexibility and tolerance usually only found in lexical
analysis. We conclude with a discussion of the development of MANGROVE, a

generator for source model extractors based on island grammars and describe its
application to a number of case studies. The work presented in this chapter was
published earlier as [Mooa].

. Introduction

Software engineers spend a large amount of their time on understanding the system
that is being maintained (estimates of up to % are not uncommon). Consequently,
much research is being invested in the development of tools that assist with such pro-

gram understanding and program maintenance activities. The majority of these tools
consist of three phases: () extraction of information (often referred to as source mod-
els) from the system’s artifacts, () manipulation, querying and abstraction of source
models, and () presentation of the results. This chapter focuses on the first phase:

extracting source models from system artifacts.





Generating Robust Parsers using Island Grammars Contents

One of the challenges reverse engineering tools have to cope with is parsing the
artifacts during the extraction phase. These artifacts typically contain irregularities
that make it hard (or even impossible) to parse the code using common parser based
approaches. Our goal is to obtain robust parsers that can handle artifacts with such

irregularities. Examples of the kind of irregularities we want to deal with include:

Syntax errors: In a program maintenance environment, we want to be able to deal
with systems containing syntax errors (e.g., browse or query code to fix those
errors). Most parser based techniques will fail when encountering syntactic er-
rors.

Completeness: The source code of a system may be incomplete. A typical situation

is that some of the header files (or copybooks) of a system are lost or mutilated
over the years, making a full reconstruction impossible.

Dialects: A legacy language like C (but also a language like C) has a large number
of, slightly different, vendor-specific dialects. Ideally, we can support them all.
However, a parser for one dialect may not accept code written in another.

Embedded languages: Several programming languages have been upgraded with em-
bedded languages for database access, transaction handling, screen definition,

etc. C examples include , , and . Whether we choose to an-
alyze or to ignore such extensions, the extraction should not be hampered by
them. However, a standard parser will.

Grammar availability: When supporting legacy systems, we will come across lan-
guages for which there is no grammar available. These can be proprietary lan-

guages, for which a grammar was never disclosed, or languages for which there
never was a grammar since the parser (or processor) was hand-written. Reviving
such grammars from scratch is expensive, and may not pay back at all.

Customer-specific idioms: Systems can use specific idioms (e.g., assigning values to
“special” variables) in combination with libraries to interface with other sys-
tems, or to bypass limitations in a compiler or runtime system. Standard parsers

will not recognize such customer-specific idioms and are generally not flexible
enough to be made aware of them. An example regarding C CALL analysis
is shown in Section ...

Preprocessing: Conceptual problems can arise with analysis of code that uses a pre-
processor: Parsers usually read preprocessed code so the resulting models are

based on preprocessed code. However, a maintainer’s mental model is based on
unpreprocessed code. It can be very hard to map these models onto another,
especially when conditional compilation is used.

People have tried to bypass these problems by reusing an existing parser via a com-
mon exchange format (e.g.,  [HWS]), or via interface generation (for example,

 [Dev]). Although these are good solutions from an engineering perspective
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(you may not have to write a parser yourself) they do not solve the problems described
above.

Others have proposed to use lexical analysis techniques to remedy these problems

[MN, CC]. Lexical analysis provides a flexible and robust solution that can handle
incomplete and syntactically incorrect code at the cost of losing some accuracy and
completeness.

An additional advantage of lexical analysis is that it often takes less time to develop

a solution based on lexical analysis than on syntactical analysis. It is tedious and expen-
sive to write a parser for a language or to write a grammar that can be used to generate
such a parser. For example, van den Brand et al. report a period of four months for
the development of a fairly complete C grammar [BSVb].

This chapter proposes another solution to remedy these problems: we describe
the use of island grammars to generate robust parsers that are used to build source
model extractors. Island grammars are grammars that contain detailed productions

(rules) describing the language constructs of interest, and generic productions that
capture the remainder. Island grammars have been briefly sketched before in [DKa,
DKM]. In this chapter, we present a more detailed account.

By generating parsers from island grammars, we combine the accuracy of syntacti-
cal analysis with the speed, flexibility and robustness of lexical analysis. The remainder
of this chapter presents island grammars and their use in M, a generator for
source model extractors based on island grammars. We propose a reusable frame-

work for defining island grammars and describe how the mapping from parse results
to source models can be specified using patterns in a term rewriting language and in
J. We conclude with the application of M in a number of case studies and
a discussion of related work.

. Island Grammars

Parsers for reverse engineering tools have a number of requirements. Most impor-
tantly, the parser should recognize certain constructs of interest in a given language.
Additionally, the parser should be robust: it should not be obstructed by irregulari-

ties in the input. In this chapter, we study how such parsers can be generated from
(context-free) grammar definitions.

Recall from compiler class that, given a language L, we can give a description of L

by defining a context-free grammar G such that the language L(G) generated by G sat-
isfies L(G) = L. In order to satisfy the requirements stated above, we need to describe
L using a grammar that on the one hand generates more sentences than available in
the actual language L (namely also sentences with irregularities) but on the other

hand should give an exact specification of the interesting parts of that language. This

 In short: if G = (V ,Σ, P , S) is a context-free grammar with sets of non-terminals V , terminals Σ and
productions P ⊆ (V ∪ Σ)∗ × V , a start symbol S ∈ V , and V ∩ Σ = ∅, then a string s ∈ Σ∗ is a sentence

of G, iff S
∗
→ s (s can be derived from S by repeatedly applying productions from P). The language

generated by G contains all sentences L(G) = {s | s ∈ Σ∗ ∧ S
∗
→ s}. We refer to [Sud, pp. –] for

more information.
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is exactly what an island grammar amounts to, as follows from the following defini-
tion:

Definition .. An island grammar is a grammar that consists of two parts: (i) detailed
productions describing certain constructs of interest (the islands), and (ii) liberal produc-
tions that catch the remainder (the water).

or expressed in terms of language properties:

Definition .. Given a language L, a context free grammar G = (V ,Σ, P , S) such that

L(G) = L and a set of constructs of interest I ⊂ Σ
∗ such that ∀i ∈ I

�
∃s, s ∈ Σ

∗ �

s i s ∈ L(G). An island grammar GI = (VI ,ΣI , PI , SI) for L has the following properties:

. L(G) ⊂ L(GI) GI generates an extension of L(G).

. ∀i ∈ I �
∃v ∈ VI

�
v

∗
→ i

∃s, s ∈ Σ
∗ �
s i s 6∈ L(G)∧ s i s ∈ L(GI)

GI can recognize constructs of interest from I in at least one sentence that is not
recognized by G.

. K(G) > K(GI) G has higher complexity than GI .

Note that island grammars do not require the use of a particular grammar specifi-
cation formalism or parsing technique. However, the limitations of the chosen for-
malism and technique may influence the island grammar. In this chapter, we express

island grammars in S, a syntax definition formalism that is supported by generalized
LR parsing [HHKR, Vis]. We benefit from the expressive power of this combo
which makes development of island grammars easier. Other formalisms and parsing
techniques can, and have been used. For example, JCC (the Java parser generator

by MetaMata/Sun Microsystems) has been used for an island grammar developed to-
gether with our industrial partner, the Software Improvement Group, as part of their
documentation generator DG [DKa, DKM]. The requirements originating
from the LL parsing technique used in JCC made development and extension of

this grammar unwieldy. The tooling described in the next section enables us to reim-
plement this grammar based on S and generalized LR parsing.

.. Island Grammar Example

Figures . and . show an example island grammar that describes C CALL state-

ments. The specification uses the modular syntax definition formalism S. Note that
productions in S are reversed with respect to : on the right-hand side of the ar-
row is the non-terminal that can be produced by the symbols on the left-hand side.
Section .. gives a short introduction to S.

The grammar contains three modules: The module Layout specifies the lexical

non-terminal symbol LAYOUT containing whitespace characters. This symbol has

 The complexity of a context free language K(G) can be computed by analyzing the productions of G. See
[Gru] for a detailed discussion.
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module Layout ()

lexical syntax ()

[\ \t\n] → LAYOUT ()

module Water ()

imports Layout ()

context free syntax ()

Chunk* → Input ()

Water → Chunk ()

lexical syntax ()

∼[\ \t\n]+ → Water {avoid} ()

Figure .: Base for island grammars.

special meaning in our parsers since it can be recognized between any two symbols in
a context-free production.

The module Water uses the definitions from module Layout (line ) and adds two
context-free non-terminals: the symbol Input that can be produced from a list of zero
or more Chunks (line ) and the symbol Chunk that can be produced from Water (line
). Later, we will add more productions for Chunk, thus providing alternatives that

can be recognized instead of Water. The lexical non-terminal Water consists of a list
of one or more characters that are not whitespace (line ). The attribute “{avoid}”
prevents the parser from using this production if others are applicable. This allows
us to specify default behavior that can be overridden by other productions (without

generating ambiguities).

The grammar specified by module Water is extremely robust: it describes almost
all programming languages. It is, however, not very useful by itself since the terminal

symbols in a parsed sentence are indistinguishable. We can turn this into a useful
grammar by adding islands that specify constructs of interest: The module Call adds
such an island by specifying that a Chunk can also be produced by the literal CALL
followed by an identifier (line ). Identifiers are characters followed by zero or more

characters or digits (line ).

module Call ()

imports Water ()

context free syntax ()

"CALL" Id → Chunk {cons(Call)} ()

lexical syntax ()

[A-Z][A-Z-]* → Id ()

Figure .: C program calls.





Generating Robust Parsers using Island Grammars Contents

This very simple grammar allows us to generate a parser that searches for program
calls in C code. Although this may not be a spectacular example (something sim-
ilar could be done, for example, using a tool like grep), we will show below how easy
it is to extend this grammar to do a much more complicated analysis. Furthermore,

the modularity of S allows us to reuse the base grammar developed here for other
island grammars.

Remember the customer specific idioms described in Section .? We found a good
example of that situation when analyzing a C system where program calls were
not made using the CALL statement but by setting a global variable and then calling

a generic call-handler. This call-handler enabled the run-time system to dynamically
load and execute the desired program (instead of static linking supported by the com-
piler). A standard call-graph extractor will not be able to generate useful graphs for
such a system.

We can add support for that situation using the grammar module in Figure ..

Suppose the name of the call-handler is HANDLER and the name of the global variable
is CALLEE. We specify an assignment to CALLEE as if it is a program call (line ). Fur-
thermore, we prevent the parser from recognizing calls to HANDLER using the “{reject}”
attribute (line ).

The “{cons(Call)}” attributes in Figures . and . are used to explicitly specify

the constructor function that has to be used to create an abstract syntax tree. Using
this attribute we can map different concrete syntax productions to the same abstract
syntax. This will make processing easier.

Note the source for potential errors here: () when there are two subsequent as-
signments to CALLEE before the call-handler is called, both will be recognized as calls;

() when the value in CALLEE is computed instead of assigned, it will not be recognized.
These problems can be remediated in a back-end that does a more detailed (data flow)
analysis. In practice, however, we found that such call-handlers were used in a disci-
plined manner following strict coding conventions, so these situations did not occur.

.. Island Grammar Applications

The employment of island grammars is especially suitable for reverse engineering (as
opposed to, for example, compiler construction) since it takes maximum advantage of
the fact that such applications generally do not need the complete parse tree. Particu-

module CallHandler ()

imports Call ()

context free syntax ()

"MOVE" Id "TO" "CALLEE" → Chunk {cons(Call)} ()

"CALL" "HANDLER" → Chunk {reject} ()

Figure .: Dealing with a call-handler.
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larly analyzers that try to arrive at higher levels of abstraction (for example, architec-
ture extraction) can profit from this early elimination of detail in the parsing phase.

By varying the amount and details in productions for the construct of interest,
we can trade off accuracy, completeness and development speed. For example, it is
possible to approach island grammars from a completely different side by starting with
a complete grammar for a given language and extending that grammar with a number

of liberal (water) productions. We will call such a grammar a lake grammar. This
approach is typically useful to allow for arbitrary embedded code in the programs that
can be processed by given tool. Furthermore, we can mix productions for water and
islands to allow variations such as: islands with lakes to specify “nested” constructs such

as conditional or iteration statements, and lakes with islands to combine extraction for
a language with extraction for an embedded extension.

In our opinion, the main application area for island grammars is robust parser
generation for source model extraction and simple analysis. Island grammars can be
used for both local and non-local analysis. Obviously, grammars that only allow local

analysis (for example, the CALL statements of Figure .) will be simpler than those that
allow non-local analysis. Additional work has to be done in the back end of a non-local
analyzer to find and combine islands that “belong together”.

The main advantage that island grammars have over lexical approaches is that it
is much easier to use structure while specifying patterns (which requires state manip-
ulation in a lexical approach). Moreover, solutions can easily be combined and are

completely declarative making them easier to understand.

In theory, island grammars can be used for program transformations. Since the

use is evidently restricted to the parts that are contained by the islands, applications
are probably limited to local transformations. Examples one can think of include sim-
ple structure modifications, normalization of conditions, enforcement of some coding
standards. In general, however, we believe that program transformations require more

in depth knowledge of the source language than what is usually expressed in an island
grammar.

.. Processing

There are a number of ways to process the parse trees obtained after parsing an input
sentence. Initial observations indicate that in most island grammars, the Water sym-

bols always occur in a sequence of symbols. Consequently, removing those subtrees
from a parse tree does not invalidate the tree. Based on this observation, we have cre-
ated a simple filter that removes all subtrees that have been parsed as Water from a
parse tree. After applying this filter, processing the resulting term becomes both eas-

ier and faster (less input to consider). Simple analysis of the term can even be done
using lexical techniques. Note that it is always possible to create grammars for which
Water does not occur in a list context. Use of the filter will invalidate parse tree with
respect to such grammars. This may or may not be a real problem depending on the

processing that remains to be done on the tree.

Another way is to process the parse trees using hand-written C code. Currently,

such processing is cumbersome but this might improve when supportive tooling be-
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comes available that generates access functions on an AST level
In order to be able to create more involved source model extractors that are not

hand-written in C, we have created M, a generator for source model extrac-
tors. M is described in the next section.

. MANGROVE

M is a generator for source model extractors based on island grammars. The
design requirements were similar to those described by Murphy and Notkin for their

lexical source model extractor [MN]. The approach has to be:

• Lightweight: specification of new extractor should be small and relatively easy to
write.

• Flexible: few constraints on structure of the artifact that is analyzed (possible to
create analyzers for both source and structured data).

• Tolerant: few constrains on the condition of the artifact that is analyzed (possible
to analyze code that cannot compile).

An overview of the M architecture is given in Figure .. Tools are drawn

as ellipses, artifacts as boxes. The generation of a extractor is based on two types of
input (the grey boxes in Figure .): The first defines an island grammar describing
the syntax of constructs that need to be recognized. It is used to generate an island
parser; The second specifies the mapping of those constructs to the desired source

model. It is used with the grammar to generate an extractor that reads the output of
the island parser and converts it to the source model.

In contrast to most lexical approaches, our approach separates parsing and analysis
instead of attaching semantic actions to the constructs to be recognized. This has the

advantage that the resulting analyzers are easier to adapt and that it is easier to combine
two existing analyzers into a new one. Most lexical analyzers are hard to adapt since the
analysis logic is entangled with the constructs that have to be recognized. Combining
two of these analyzers into a single new one is even more tricky.

artifacts

island parser

island grammar

syntax
tree

extractor

parser generator

extractor
generator

extractor
specification

source model

Figure .: M architecture.





Contents M

The two inputs are generally small and easy to write down; therefore, we feel that
our approach satisfies the lightweight requirement. The flexibility and robustness re-
quirements are satisfied by using island grammars to generate the parser.

The extractor generator in Figure . is drawn with a dotted line to indicate that
there are several possible instantiations. These allow the user to choose the language
in which he describes the mapping of constructs on the source model. We have made
two instantiations of this tool that are described below. One allows the user to write

the mapping using traversals over the AST in Java, the other using concrete syntax
patterns in a simple functional specification.

.. Syntax Definition in SDF

M reads island grammars that are written in the syntax definition formalism

S [HHKR, Vis]. These definitions combine the definition of lexical and context-
free syntax in the same formalism. The definitions are purely declarative (as opposed
to, for example, definitions in  that can use semantic actions to influence parsing)
and describe both concrete and abstract syntax.

S definitions can be modular: productions for the same non-terminal can be
distributed over different modules and a given module can reuse productions by im-
porting the modules that define them. This allows for the definition of a base or kernel

grammar that is extended by definitions in other modules. An example of this is mod-
ule Water defined in Figure . that is extended by module Call in Figure ..

S provides a number of operators to define optional symbols (S
�
), alternatives

(S|S), iteration of symbols (S+ and S∗), and more. These operators can be arbitrar-
ily nested to describe more complex symbols. Furthermore, S provides a number of
disambiguation constructs such as relative priorities between productions, preference
attributes to indicate that a production should be preferred of avoided when alterna-

tives exist, and associativity attributes for binary productions (for example, the left
associative operator op can be defined as: S op S → S {left}).

S is supported by a parser generator that generates generalized LR (GLR) parsers.

Generalized parsing allows definition of the complete class of context-free grammars
instead of restricting it to a non-ambiguous subclass of the context-free grammars,
such as the LL(k), LR(k) or LALR() class restrictions common to most other parser
generators [Tom, Rek]. This allows for a more natural definition of the intended

syntax because a grammar developer no longer needs to encode it in a restricted sub-
class. Moreover, since the full class of context-free grammars is closed under com-
position (the combination of two CF grammars is again a CF grammar), generalized

parsing allows for better modularity and syntax reuse. For more information on S,
we refer to [HHKR, Vis].

.. MANGROVE/JAVA

M/J allows the extractor builder to process the results of the island parser
using the object-oriented programming language J. An overview of the tool is

given in Figure .. Apart from the obvious advantage of being able to process using
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a mainstream object-oriented programming language, this also allows the tool builder
to reuse the large amount of tools, libraries and interoperability techniques that are
available for J.

From an island grammar in S, we generate J code for the construction, repre-
sentation, and manipulation of syntax trees in an object-oriented style. The generated

classes relate to the abstract syntax of the grammar using the following scheme: (i)
for every non-terminal, an abstract class is generated and (ii) for every production, a
concrete class is generated that refines the abstract class corresponding to the result of
the production. Factory methods are generated to convert a parsed input string into

an abstract syntax tree (object structure). Furthermore, several variants on the Visi-
tor pattern are generated that provide tree traversals over these ASTs. We have reused
JJF for the generation of this J code [KV].

The generated code can be extended by a tool builder to perform the actual map-

ping between the AST and the desired source model. This is done by refining the
generated visitors and feeding them to the generated accept method of a given AST
node. These accept methods perform the actual traversal over the AST and call visit
methods defined in the visitor. This approach has the advantage that the user does not

have to reconstruct the traversal behavior when refining visitors. Consequently, it is
easier and less error-prone to write extensions and refinements of the generated code.

User extensions are compiled together with the generated code using a standard
J compiler to create an extractor (i.e., byte code that can be executed using the J

virtual machine). This extractor interfaces with the generated island parser using a

utility that implodes the parse tree into an abstract syntax tree.

Example: Figure . presents an  class diagram showing the classes that are gen-

erated for the island grammar presented in the C program call example (Sec-
tion ..). The grey class (CallCollect) was not generated but is an example of an
analysis that can be added by a user. This class refines the standard visitor so that it
collects the identifiers of all called programs. The J code that implements this class

is shown in Figure ..

artifacts

island parser

island grammar

syntax
tree

user supplied
refinements

extractor source model

parser generator

JJForester
generated
 visitors

javac

Figure .: M instantiation that allows processing in J.
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Visitor

CallCollect1..*

getChunkIterator

Visitable

getId

visitWater
visitCall

Chunk

Water CallChunkPlus

Input

accept

Figure .: UML class diagram for Call collector.

.. MANGROVE/ASF

M/A allows the extractor writer to process parse results in a functional
fashion using the term rewriting language A [BHK].

Programming in A is done by creating specifications that consist of a number

of rewrite rules. These rules are defined using pattern matching on concrete syntax
defined in an S grammar. The use of concrete syntax has the advantage that the
extractor writer does not have to learn a new language for processing terms. The use
of term rewriting allows for a natural expression of the translation of one language

into another.

The combination of syntax definition formalism S and term rewriting language
A is supported by the A+S Meta-Environment [Kli, BDH+]. This environ-

ment generates parsers and syntax directed editors from S definitions and provides
an interpreter and compiler for A specifications.

public class CallCollect extends Visitor {

public Set set = new HashSet();

public void visitCall(Call c) {

set.add(c.getId());

}

}

Figure .: J visitor for collecting program calls.
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In M/A, we instantiate the extractor generator using the A+S

Meta-Environment. For an architectural overview, we refer to the M

overview in Figure ..

The A+S Meta-Environment contains special support for the generation of
term traversal functions [BKV]. When a user attaches a “{traverse}” attribute to a
production in S, additional functionality is inferred that can perform a traversal of

the first argument of the production. Conceptually, adding such an attribute is short-
hand for adding a set of productions and rewrite rules (which can be calculated from
the grammar). The default behavior of the generated rewrite rules is to do nothing.
A user can override that behavior by adding a concrete rewrite rule for a particular

(sub)term.

Example: Figures . and . show an example of the use of generated traversals for

the program call example described in Section ... Again, we will build a tool to
collect the identifiers of all called programs. The grammar (Figure .) defines two
functions: one that we will use to start the traversal (line ) and the actual traversal
function in line . This traversal function has two arguments, the first contains the

term to traverse, the second is the accumulator in which traversal results are gathered.
The A equations in Figure . define the rewrite rules. We see that rule [c] starts
the traversal using a copy of the input and an empty accumulator. The other two
rules contain patterns for which we want specific behavior: Rule [c] specifies that

whenever a CALL statement is matched with arbitrary identifier, we add that identifier
to the accumulated set. Call-handlers are supported using rule [c] that collects all

module CallCollect ()

imports CallHandler Set ()

context free syntax ()

collect( Input ) → Set ()

collect( Input , Set ) → Set {traverse} ()

variables ()

"in" → Input ()

"set" → Set ()

Figure .: Grammar for collecting program calls.

equations

[c] collect( in ) = collect( in , {} )

[c] collect( CALL id , set ) = {id} ∪ set

[c] collect( MOVE id TO CALLEE , set ) = {id} ∪ set

Figure .: Equations for collecting program calls.
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identifiers that are assigned to the CALLEE variable.

. Case Studies

We have done a number of case studies to validate our hypothesis that island grammars
can be used to create robust parsers that allow for construction of lightweight, flexible

and tolerant source model extractors.

The first case uses island grammars to build an analyzer that computes the cy-

clomatic complexity of C programs. The second case was done in cooperation
with the Software Improvement Group and involves the creation of a source model
extractor for U systems.

.. COBOL Cyclomatic Complexity

McCabe’s cyclomatic complexity measure [McC] is one of the better known software
metrics that can be computed from source code. In this case study we build a sim-
ple analyzer that computes this complexity measure for C programs using island
grammars.

The cyclomatic complexity metric is based on the control graph of the program. It
computes the number of linearly independent control flow graphs using the number

of nodes (n) and edges (e) in a control flow graph. For a graph with n nodes and e
edges, McCabe defines the cyclomatic complexity as G(v) = e−n+ .

However, there is a simpler definition that does not require us to construct a con-
trol flow graph in advance. In the NIST report on structured testing, McCabe defines
the cyclomatic complexity by counting the number of decision predicates in the code

[WM]. We will use this latter approach in this case. Our analyzer basically tra-
verses a parse tree and counts occurrences of decision predicates. We show how we use
M/J to build the analyzer in four steps.

First, we create an island grammar for C that describes the constructs that
can influence the cyclomatic complexity. In the case of C, these are standard

constructs like IF-THEN, REPEAT-UNTIL, and EVALUATE-WHEN (C’s case statement)
but also constructs like GO-DEPENDING that jumps to one of a list of locations based
on the value of a variable. Other constructs of interest are predicates that surround
code that has to be executed in case of errors, such as ON-ERROR and ON-OVERFLOW for

computational statements, and INVALID-KEY and AT-END for access to flat-file databases.

Note that we have to take special precautions to prevent occurrences of these con-

structs in strings or comments from being recognized as real occurrences (so called
false positives). This can be done by adding specific productions to the island grammar
that specify that strings should be recognized as water and that comments should be
considered LAYOUT. An example of such productions can be found in Figure ..

Second, a parser and J classes are generated from this island grammar as de-

scribed in Section ..

Third, we refine the generated visitor so that computes the cyclomatic complexity

during traversal of the parse tree. This is done by incrementing a counter every time
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the abstract syntax tree contains one of the complexity increasing constructs that were
specified in the island grammar.

Finally, we compile the code to build an executable analyzer. The parts that we had
to write to create such an analyzer are small and easy to write: construction, testing

and refinement took – hours. The grammar consists of  productions,  for de-
scribing constructs of interest,  we reused from the base grammar of Figure ., and
 were added to prevent false positives. The J code that refines the generated vis-

itor contains one integer field (the complexity counter) and seven methods that each
perform exactly one statement: increment the complexity.

We have applied our analyzer to a number of C systems (each around ,

lines) that were written in different dialects and contained various extensions (,

, ). These irregularities posed no problems for the analysis. Initial results show
that the performance is good but should be measured in more detail. For example, the
implosion prototype that converts parse trees to ASTs is slow for very large inputs. A
reimplementation will solve these issues.

.. UNIFACE Component Coupling

In a case study performed in cooperation with the Software Improvement Group (SIG)
we developed an island grammar and source model extractor to parse U com-

ponents and collect facts about the coupling between them.

U is a GL application development environment that is marketed by Com-
puware [Com]. It allows for the development of both conventional and web-based

applications. The application development is model-driven and component-based.
Developers create models of business processes. These models are used to generate
components that inherit properties from the model. Whenever the model is changed,
components are updated accordingly. To eliminate the need to build systems from

scratch, developers can reuse components from other systems and standard libraries.
Components contain operations that specify behavior. Components can interoperate
with each other by activating operations in other components (similar to objects and
methods in an object-oriented setting).

To get insight in U systems, a SIG customer would like to get information
about the components in a system and the coupling between them. To collect this
information, we have built a source model extractor that analyses U compo-
nents and gathers facts about the activation of other components and of the activation

parameters.

module StringsAsWater ()

lexical syntax ()

[\"] ∼[\"]* [\"] → Water ()

Figure .: Strings as water.
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The extractor was generated using an island grammar that describes module acti-
vation and parameter passing in U. This grammar extends the base grammar
from Figure . and was developed without prior knowledge of U (but with help
of activate documentation). It took approximately one day to develop, test and refine

the island grammar and about the same amount of time to develop the source model
mapping in J.

The complete island grammar contains  productions, including the base gram-
mar and productions to prevent false positives. This relatively high number is influ-
enced by the act that U is case insensitive, thus our grammar contains a number

of productions whose sole purpose is to specify case insensitive variants of keywords
that have to be recognized.

The resulting source model extractor can process both U source listings and
 dumps of modules. The extractor emits a source model that describes component
coupling in textual or in  format [HWS].

. Discussion

.. Expressive Power

Island grammars do not depend on a particular grammar specification formalism or

parsing technique. However, the expressive power of an island grammar is limited
by the chosen syntax definition formalism and more important by the chosen pars-
ing technique. In M, we have chosen to express island grammars in S, a
syntax definition formalism that is supported by generalized LR parsing techniques.

Since we inherit the expressive power, we can express the complete class of context
free languages using our island grammars.

The different M instantiations allow an extractor writer to choose a pro-
cessing language that fits his needs. The J instantiation enables processing in
a mainstream object-oriented programming language and allows reuse of the large

amount of tools, libraries and interoperability techniques that are available for J.
The A instantiation allows processing using term rewriting with patterns over con-
crete syntax. This has the advantage that the extractor writer does not have to learn a
new language and term rewriting allows for natural expression of translation between

languages.

.. Accuracy

Island grammars do not give a restrictive description of the language that is analyzed.

On the one hand, we consider this an advantage since this is, after all, the property that
allows for irregularities, releases structural requirements on the artifacts and increases
development speed. On the other hand, however, this lack of detail may result in
erroneous results.

We distinguish two kinds of extraction errors: (i) false positives occur when the

grammar allows constructs to be recognized in places where they should not have been
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recognized. (ii) false negatives occur when the grammar is too restrictive and does not
allow constructs to be recognized in places where they should be recognized.

False positives can be solved by extending the part of the grammar that specifies
Water. For example, false recognition of constructs inside of strings can be prevented

by adding a production that specifies string syntax as Water. Figure . gives a simple
example of such a specification. It specifies strings as starting with a double quote, a
number of characters and ending with a double quote.

False negatives are not that straightforward to solve. One needs to reconsider
the grammar and look for productions that are too restrictive. A common source
of false negatives are “nested” constructs, for example statements such as if-then and
while-do that contain statements themselves.

. Related Work

Related work can be divided into methods that perform lexical analysis and syntactical

analysis. Another division comes from application domain with research focus-sing
on computer language processing or on natural language processing.

.. Lexical Analysis

Several tools are available that perform lexical analysis of textual files. The most well-
known tool is probably grep and its variants (fgrep, egrep, agrep, etc.) that allows
one to search text for strings matching a regular expression. These tools generally give

little to no support to process the matched strings, they just print matching lines.

This kind of support is available in more advanced text processing languages such
as  [AKW] and  [WS], and in the  scanner generator [LS] that allow

a user to execute certain actions when a specific expression is matched.  provides a
pattern matching and parsing library for C++ that generates parse trees for the strings
that match a regular expression [Kea].

.. Hierarchical Lexical Analysis

Murphy and Notkin describe the Lexical Source Model Extractor () [MN].
Their approach uses a set of hierarchically related regular expressions to describe lan-

guage constructs that have to be mapped to the source model. By using hierarchical
patterns they avoid some of the pitfalls of plain lexical patterns but maintain the flexi-
bility and robustness of that approach.

The ML system of Cox and Clarke [CC] uses a similar hierarchical ap-

proach. The main difference with  is that it focuses at extracting information at
the abstract syntax tree level whereas  extracts higher level source models.

This hierarchical technique is related to work in computational linguistics that di-
vides natural language into chunks that can be recognized using a finite-state cascade

parser [Abn].





Contents Related Work

.. Syntactic Matching

Parser based approaches are used to increase the accuracy and level of detail that can

be expressed. Syntactic matchers create a syntax tree of the input and allow the user to
traverse, query or match the tree to look for certain patterns. This relieves them from
having to handle all aspects of a language and focus on interesting parts.

Systems in this category are * [LR] that provide traversals over parse trees with
-like pattern matching and processing,  [GAM] that provides similar op-
erations on abstract syntax trees with processing in .

Other tools support querying of the abstract syntax trees such as  [Dev]
that uses its own traversal language,  [MNB+] that allows queries in first order
logic and  [PP] that allows queries using concrete syntax.

The disadvantage of these systems is that they are all based on a full parse of the
complete language making it hard/impossible to deal with incomplete sources, dialects
or syntax errors. However, with the proper amount of interfacing, it should be possible
to connect them to the island parsers we generate which would remove such problems.

.. Fuzzy Parsing

The notion of fuzzy parsing comes in two flavors. The first flavor are parsers that rec-
ognize a sentence as belonging to a language with a certain degree of correctness (thus
allowing for grammatical errors) [LZ]. This type of fuzzy parsers is mainly used
in computational linguistics for natural language processing. Productions in a fuzzy

grammar are annotated with correctness degrees that are used to assess the quality of
the input sentence. This can be used to model grammatical errors by adding special
productions with a correctness degree less than  to an ordinary grammar. For more
information, we refer to [Asv].

The second flavor of fuzzy parsers are parsers that are able to discard tokens and
recognize only certain parts of a programming language [Kop]. The  pro-
gramming environment was the first to use this kind of fuzzy parsing [Bis]. Since

then, it has been used in a number of other programming environments and pro-
gram browsers such as: ,  ,  , and the
 tool. These fuzzy parsers are hand crafted to perform a specific task. They
focus mainly on fuzzy parsing  and C++ to support program browsing. Typically this

involves extracting information regarding references to a symbol, global definitions,
functions calls, file includes, etc.

.. Parser Reuse

Some approaches address the problems associated with parser or grammar develop-

ment by reusing existing parsers (for example, in / [Dev]). Others reuse

 http://cscope.sourceforge.net/
 http://sources.redhat.com/sourcenav/
 http://www.intland.com/
 http://www.vital.com/crtags.html
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or retrieve grammars that are used in existing tools [SV]. However, both approaches
ignore the fact that the structure of a grammar used in a tool is often tightly coupled
to the design of that tool. Another tool may need a completely different grammar.
Such parser reuse problems were also signaled by Reubenstein et al. [RPR]. Further-

more, this does not solve the robustness issues (dealing with missing code, embedded
extensions or syntactical errors).

.. Island Parsing

The term island parsing is also used in computational linguistics (for example [Car,

SFI]). However, this is different notion referring to island parsers that start at some
point in a sentence (by recognizing an island) and parse the complete sentence by
extending that island to the left and right (in contrast to left-to-right scanning done
by LL and LR parsers). This technique is used for example for speech recognition. A

similar approach has been applied by Rekers and Koorn for computer languages to
provide error recovery and completion in syntax directed editors [RK].

.. Island Grammars

The term island grammars was coined in [DKa] which provides an informal defini-
tion and small example but does not present a detailed discussion, nor does it describe

tool support. We try to fill those gaps by improving the definition, describing proper-
ties of island grammars and providing a number of detailed examples that result in a
reusable framework for island grammar definitions. Furthermore, we present a gen-
erator for source model extractors based on island grammars that supports various

programming languages and show how it can be used in a number of case studies. A
case study for C island grammars is described in [Ver].

. Conclusions

Robust parsing is a prerequisite for most reverse engineering tools. This chapter shows

that island grammars can be used to generate such parsers. The generated parsers
combine the accuracy of syntactical analysis with the speed, flexibility and tolerance
usually only found in lexical analysis.

Contributions of this chapter are the extension of previous work on island gram-
mars [DKa, DKM] with a detailed discussion and definition of island grammars.
We present M, a generator for source model extractors based on island gram-
mars. We provide a reusable framework for the definition of island grammars in syntax

definition formalism S and support various processing languages allowing a devel-
oper to pick the language that fits his needs. We have shown how M supports
J and A programmers by providing generated traversals that ease the mapping
from parse results to source models. We report on the application of M to a

number of case studies and provide a detailed discussion of related work.





Contents Conclusions

The combination of island grammars with generated traversals combines two
forms of attractive default behavior: (i) island grammars allow us to limit ourselves
to that part of the grammar necessary to describe the problem at hand, and (ii) gen-
erated traversals allow us to treat only those cases for which we need specific behavior.

Consequently, extractor specifications are small and easy to write, modify and com-
bine resulting in a lightweight, flexible and tolerant approach.
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C       
Lightweight Impact Analysis using

Island Grammars

C
hange impact analysis is needed for the planning and estimation of software

maintenance projects. Traditional impact analysis techniques tend to be too
expensive for this phase, so there is need for more lightweight approaches.

In this chapter, we present a technique for the generation of lightweight impact
analyzers from island grammars. We demonstrate this technique using a real-
world case study in which we describe how island grammars can be used to find
account numbers in the software portfolio of a large bank. We show how we have

implemented our impact analyzer using generative programming. The work pre-
sented in this chapter was published earlier as [Moo].

. Introduction

Estimates indicate that % of software budgets are spent on software maintenance
[Ben]. The two most expensive activities in software maintenance are understanding

the software system that has to be maintained and determining the impact of proposed
change requests [BA]. Consequently, research that addresses techniques to assist
maintainers in performing these tasks can make an important contribution.

A significant part of the program understanding research focuses on generic tools
such as program browsers and documentation generators. These tools generally try to
provide various means of querying or navigating through a software system that can be
used by maintainers to answer their questions. There are obvious advantages to such

a generic approach: it offers wide applicability, and it is easy to see cost-performance
benefits of such tools.

However, we think that there is also a need for program understanding tools that

are more tailored towards the questions to be answered. These tools should generate
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detailed reports or browsers that allow a maintainer to understand code with respect
to such a specific question.

A typical task that would benefit from such problem-directed tooling is, for ex-
ample, assessing the costs of mass change project such as Euro-conversion or database
migration. This typically boils down to estimating questions like: How many sys-

tems are affected? How much code needs to be changed? Where do we need to make
changes? Finding the answers to such questions is the domain of (software change)
impact analysis [BA].

One would expect that making such estimates is relatively cheap; It is hard to jus-
tify that the costs of estimating a mass change project are similar to performing the

project. However, that is exactly what would happen if those estimates were based on
a full blown impact analysis. Performing such an analysis would take almost the same
amount of time and resources as the actual project. Consequently, a more lightweight
form of impact analysis is needed.

A common approach for achieving lightweightness is based on the use of lexical

analysis [DK]. This has several advantages: lexical analysis is a flexible and robust
solution that can handle incomplete and syntactically incorrect code. Additionally, it
often takes little time to develop solutions based on lexical tooling. Unfortunately,
there are also some serious drawbacks: Lexical analysis tends to be sensitive to the

layout of the code that is being analyzed, for example, a simple newline may prevent
recognition of a language feature. Furthermore, it is hard to write lexical analysers that
take the structure of a language into account. Consequently, lexical analysis results
typically have lower accuracy and completeness than those of syntactical analysis.

We think that an approach based on island grammars is better suited for creating

lightweight impact analyzers. In this chapter, we investigate this hypothesis. We will
do this using a case study in which we revisit a project that was performed earlier by
our spin-off, the Software Improvement Group, for one of their customers.

This project involved estimating in which parts of the software portfolio of a large

Dutch bank changes have to be made when converting their -digit account numbers
into -digit account numbers. The customer was interested in a quick-scan of their
complete software portfolio for planning and estimation purposes. This portfolio con-
sists of  systems containing a total of ,, lines of C code.

The chapter is organized as follows: Section . gives an overview of the prob-

lem and Section . sketches the impact analysis that is needed to solve this problem.
Island grammars are described in Section ., followed by a discussion of how the im-
pact analysis is translated into island grammars in Section .. The implementation of
our analyzer is described in Section .. Section . generalizes our approach to other

applications . Finally, Sections . and . summarize related work, discuss future ex-
tensions and draw conclusions.

. Problem Description

Currently, most Dutch banks use client account numbers that consist of  digits. Col-

lective agreements ensure that each number is used uniquely and each bank typically
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uses certain sub-ranges of the spectrum. The pool of unassigned account numbers is
managed by a subsidiary where banks can apply for free numbers. Since this supply
of unused numbers is running out, the banks have decided that they will convert their
systems to account numbers that consist of  digits (by prefixing existing numbers

with ’’ and using the prefixes ’. . . ’ for fresh numbers).

This poses several questions for managers that are responsible for the software
portfolio of a bank: How much of our portfolio is affected by this decision? For a given
system, where are the parts that need to be changed? How many of these changes can
be done automatically?

In our case study, we investigate if it is possible to answer such questions using

an impact analysis technique based on island grammars. It is important to keep in
mind that we are looking for a lightweight technique that can be used to analyze the
impact on the complete software portfolio. The goal is to enable correct estimation and
planning of the next steps in this mass change project. Consequently, our focus is more

on short development time and enabling quick feedback for the complete portfolio,
rather than on the detailed and complete impact analysis that would be needed to
actually remedy the situation.

Furthermore, since the need for this conversion has been known for some time,
some of the newer (or updated) parts of the software portfolio are already prepared

for -digit account numbers. An important aspect of this study is that we need to
handle code that contains a mixture of “good” and “bad” account numbers, and that
we need to distinguish between them in order to provide correct estimates.

. Impact Analysis Approach

This section describes how we want to perform the impact analysis that was described

in the previous section. In the next section, we will describe how we have implemented
it.

.. Patterns

The case study started with talking to (representatives of) the maintainers of the soft-
ware to see how they would normally perform this kind of impact analysis. From these
discussions, it turned out that it was possible to search the system’s artifacts for vari-

ables that might represent bank account numbers. This search is partially based on
pattern matching on the names of the variables, so together with the maintainers, a
list of patterns was compiled that would signal bank account numbers in the software.
The starting point for the compilation of such a list is the organization’s data dictio-

nary. Typical examples of patterns in this list are ACCOUNTNR, ACCNR, ACC-NO and GNR

(that last one is used for giro number).

 The examples in this chapter were taken from a Dutch software system. Although we have translated
variable names into English, some names or abbreviations may look strange or uncommon since there
is no good translation. Most notably is “giro”, which is a bank transfer service in Europe.
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.. Classification

Besides the variable name, also the type of the variable plays an important role in the
analysis. We would like to distinguish between variables with a -digit type that need to
be changed, and variables with a -digit type that are already correct. Unfortunately,
C does not have a real type system. Instead, with each variable declaration, a
description of the memory layout that this variable uses is given (so called pictures
or picture clauses). Pictures give a character-by-character definition of the format of
variable. The characters have special meanings. For example, ’X’ is used to denote a
memory position that can hold an alphanumeric character; ’9’ is used for a numeric
characters, and many others exist. Typical bank account numbers may be described in
C as follows:

01 ACCNR PIC 9999999999.

01 FMT-ACCNR PIC 99.99.99.999.

01 ACCOUNTNR PIC 9(10).

The first line describes a variable with name ACCNR that consists of  digits (the
picture 9 indicates  digit, 99 indicates two digits, and so on). The second line declares
a variable FMT-ACCNR consisting of  digits but formatted using dots. The last example,

shows a variable with name ACCOUNTNR consisting of  digits (the number between
brackets indicates repetition).

We will classify the variables with matching names based on their picture clauses.
We distinguish four classes:

A. -digit variables with numeric pictures such as 999999999, 99.99.99.999, 9(9),

and alphanumeric pictures such as X(9), and XX.XX.XX.XXX.

B. -digit variables with numeric pictures such as 9999999999, 999.99.99.999,

9(10), and alphanumeric pictures such as X(10), and XXX.XX.XX.XXX.

C. Record variables do not have their own picture description but consist of a num-
ber of sub-fields. These sub-fields can be used, for example, to address parts of

an account number (some banks use the first  digits of account numbers to
identify the branch where this account was opened).

D. Other variables whose names match with the patterns but whose pictures do not

fall in the above classes.

.. Anti-patterns

As described in Section .., we start with a number of patterns that might indicate

that a variable is used as an account number. However, there are a number of variables
that have names that match with these patterns but we know (for example, from code
inspection) that they are not used for account numbers. We call such variables false
positives. We have taken the following steps to reduce false positives:

• During the project, a number of anti-patterns have been identified that match

with field identifiers that are certainly not used for account numbers;
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• Whenever a variable name matches both a pattern and an anti-pattern, that vari-
able is rejected. When a variable name matches a pattern and none of the anti-
patterns, it is accepted.

This process can be applied iteratively: whenever inspection of the results shows false
positives, anti-patterns are added and the analysis is repeated. Thus, the precision of
the analysis can be increased by investing in these iterations.

.. Presentation

We will report our findings using hypertext documentation consisting of: (i) pages dis-
playing statistics and pie-charts summarizing the analysis results, and (ii) hyperlinked
and pretty-printed artifacts that will lead the maintainer to all affected sites (i.e., all
occurrences of account numbers). We add this second type of reports since they allow

the maintainer to inspect analysis results and check hypotheses about impact. Fur-
thermore, they are useful for identifying false positives and adding anti-patterns. The
account numbers in the hyperlinked code are colored to show their classification: e.g.,
red for -digits, green for  digits, etc.

.. Tool Support

We have created I, a lightweight impact analysis tool to derive the described in-
formation. The basic structure of this tool is depicted in Figure .. It follows the
extract-query-view approach quite common to reverse engineering tools.

We start with parsing the system artifacts using an island parser. The parse results

are processed in two ways:

Source Model Extraction: we extract source models describing for each artifact, the

account numbers that were found, their classification and details about their
origins (file and position information of the actual code). This data will be used
later on for statistics and pie charts. The origins can be used for hyperlinking
the results.

Island Markup: to enable problem-directed pretty-printing, we add markup to the
artifacts, tagging all account numbers for later reference.

island
parser

parse
tree

add island
markup

system
artifacts

source model
extractor

source
model

repository

marked up
artifacts

artifact
presentation

statistics
computation

piechart
generator

hypertext
documentation

Figure .: I architecture.
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The results are stored in a repository which is used by a number of tools: a statis-
tics tool queries the source models to generate statistical overviews, summarizing the
account numbers per program, per system and in the complete portfolio. Another
tool generates pie-charts that give a different view of the impact and affected code. A

third tool presents the artifacts as a hyperlinked website. This tool uses the markup to
pretty-print the code, visualizing the classification with different colors. Furthermore,
it generates cross-references such as tables of content and indexes.

. Island Grammars

One of the challenges of building a lightweight impact analysis tool is parsing a sys-
tem’s artifacts to extract the information we need. There are a number of reasons
why it is hard (or even impossible) to parse the artifacts using common parser based

approaches:

Grammar availability: We might want to analyze legacy systems written in a language
for which there is no grammar available. Writing such grammars from scratch is
tedious and expensive, and may not pay back at all. For example, van den Brand
et al. report a period of four months for the development of a fairly complete

C grammar [BSVb].

Completeness: The source code of a system may be incomplete. For example, some

of the header files (or copybooks) may be lost making a full reconstruction im-
possible, or collecting all files may be too time consuming, making it unfeasible
for cost estimation purposes only.

Dialects: Legacy languages such as C (but also languages like C) have a number
of, slightly different, vendor-specific dialects. A parser for one dialect may not
accept code written in another.

Embedded languages: Several programming languages have been upgraded with em-
bedded languages for database access, transaction handling, screen definition,

etc. We might want to consider both languages in our analysis. Most parser
based approaches have difficulties with that.

Customer-specific idioms: Some systems use specific idioms (e.g., assigning values
to “special” variables) in combination with libraries to interface with other sys-
tems, or to bypass limitations in a compiler or runtime system. A standard
parser will not recognize such constructions.

Preprocessing: The use of preprocessor directives can hinder parsing but analyzing
already preprocessed code might give results that are not expected by the main-

tainer (since his mental views are based on unprocessed code).

It has been proposed to use lexical analysis techniques to remedy these problems

[MN, DK]. Lexical analysis provides a flexible and robust solution that can handle
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incomplete and syntactically incorrect code. Additionally, it often takes less time to
develop a lexical analyzer than a syntactical one.

However, there are also disadvantages to a lexical approach: the analysis results
typically have lower accuracy and completeness than those of syntactical analysis.
Lower accuracy means an increase of false positives (analysis finds properties for code

which it does not have in reality). Lower completeness means an increase of false neg-
atives (analysis misses properties that are present in reality).

In this chapter, we set out to use syntactical analysis based on island grammars
(described in Chapter ) to remedy these problems.

Definition .. An island grammar is a grammar that consists of two parts: (i) detailed
productions that describe the language constructs that we are particularly interested in
(so called islands), and (ii) liberal productions that catch the remainder of the input (so

called water).

In a way, island grammars mix the behavior of parsing with that of lexical approaches

by analyzing the interesting parts of a grammar and brushing aside the non-interesting
parts. By doing that, they combine the accuracy of syntactical analysis with the speed,
flexibility and robustness of lexical analysis. Figure . gives an overview of the ap-
proaches.

Note that island grammars do not require the use of a particular grammar specifi-

cation formalism or parsing technique. However, the limitations of the chosen formal-
ism and technique may influence the island grammar. In this chapter, we express island
grammars in S, a syntax definition formalism that is supported by generalized LR
parsing [HHKR, Vis]. We benefit from the expressive power of this combination

which makes development of island grammars easier. Other formalisms and parsing
techniques can, and have been used. For example, JCC (the Java parser generator
by MetaMata/Sun Microsystems) has been used for an island grammar developed to-
gether with our industrial spin-off, the Software Improvement Group, as part of the

documentation generator DG [DKa]. The requirements originating from the
LL parsing technique used in JCC made development and extension of this gram-
mar unwieldy. The tooling described in Chapter  enables re-implementation based
on S and generalized LR parsing.

lexical syntactical analysis

analysis full grammar island grammar

accurate – + +

complete – + +

flexible + – +

robust + – +

Figure .: Lexical vs. syntactical analysis.
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.. Syntax Definition in SDF

Before we continue with an island grammar example, we give a short overview of the
syntax definition formalism S. Syntax definitions in S combine the definition
of lexical and context-free syntax in the same formalism. The definitions are purely
declarative (e.g., as opposed to definitions in  that can use semantic actions to

influence parsing) and describe both concrete and abstract syntax.

S definitions can be modular: productions for the same non-terminal can be
distributed over different modules and a given module can reuse productions by im-
porting the modules that define them. This allows for the definition of a base or kernel
grammar that is extended by definitions in other modules. An example of this is mod-

ule Water in Figure . that is extended by module DataFields in Figure ..

S provides a number of operators to define optional symbols (S
�
), alternatives

(S|S), iteration of symbols (S+ and S∗), and more. These operators can be arbitrar-
ily nested to describe more complex symbols. Furthermore, S provides a number of

disambiguation constructs such as relative priorities between productions, preference
attributes to indicate that a production should be preferred or avoided when alterna-
tives exist, and associativity attributes for binary productions (for example, S op S → S

{left}). Productions can be labeled with identifiers using the {cons} attribute. These

labels appear in the parse tree so we can see which production was used to construct a
given (sub)term.

S is supported by a parser generator that produces generalized LR (GLR) parsers.
Generalized parsing allows definition of the complete class of context-free grammars
instead of restricting it to a non-ambiguous subclass such as LL(k), LR(k) or LALR(),

which is common to most other parser generators [Tom, Rek]. This allows for a
more natural definition of the intended syntax because a grammar developer no longer
needs to encode it in a restricted subclass. Moreover, since the full class of context-
free grammars is closed under composition (unlike restricted subclasses), generalized

parsing allows for better modularity and syntax reuse. For more information on S,
we refer to [HHKR, Vis].

.. Island Grammar Example

Figures . and . show an example island grammar that describes C data fields.

Note that productions in S are reversed with respect to : on the right-hand side
of the arrow is the non-terminal that can be produced by the symbols on the left-hand
side.

The grammar contains three modules: The module Layout specifies the lexical
non-terminal symbol LAYOUT containing white-space characters. This symbol has

special meaning in our parsers since it can be recognized between any two symbols in
a context-free production.

The module Water uses definitions from module Layout (line ) and adds two
context-free non-terminals: the symbol Input that can be produced from a list of zero
or more Chunks (line ) and the symbol Chunk that can be produced from Water (line

). Later, we will add more productions for Chunk, thus providing alternatives that
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module Layout ()

lexical syntax ()

[\ \t\n] → LAYOUT ()

module Water ()

imports Layout ()

context free syntax ()

Chunk* → Input ()

Water → Chunk ()

lexical syntax ()

∼[\ \t\n]+ → Water {avoid} ()

Figure .: Base for island grammars.

can be recognized instead of Water. The lexical non-terminal Water consists of a list
of one or more characters that are not white-space (line ). The attribute “{avoid}”
prevents the parser from using this production if others are applicable. This allows

us to specify default behavior that can be overridden by other productions (without
generating ambiguities).

The grammar specified by module Water is extremely robust: it describes almost
all programming languages. It is, however, not very useful by itself since the terminal
symbols in a parsed sentence are indistinguishable. We can turn this into a useful
grammar by adding islands that specify constructs of interest: The module DataFields

in Figure . adds such an island by specifying that a Chunk can also be produced by a
Level number followed by a DataName (line ). DataNames are characters followed by
zero or more characters or digits (line ). Level numbers lie between  and  (lines 

and )

This very simple grammar allows us to generate a parser that searches for data fields
in C code. Although this may not be a spectacular example (something similar

module DataFields ()

imports Water DataParts ()

context free syntax ()

Level DataName → Chunk {cons(Data)} ()

module DataParts ()

lexical syntax ()

[A-Z][A-Z-\-]* → DataName ()

[][-] → Level ()

[-][-] → Level ()

Figure .: C data fields.
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could be done, for example, using a tool like grep), we will show below how we can
extend this grammar to do a more complicated analysis. Furthermore, the modularity
of S allows us to reuse the base grammar developed here for other island grammars.

The grammar in Figure . is not very discerning. Consider an input program that
contains the following line:

IF C > 10 AND C < 20

The grammar will recognize this line as water containing the text IF C >, followed by a
data field with level 10 and name AND, followed by water containing C < 20. Something
similar will happen for all other number–name sequences in the code. Obviously, this

is not correct, so we need to improve our grammar.

The solution is to restrict the grammar so it will only look for data fields in the
data division of the program. This can be done by refining the grammar into the one

that is shown in Figure .. The production on line  and  specifies that non-terminals
of type DdChunk are only to be recognized in a context that starts with the text DATA
DIVISION and ends with the text PROCEDURE DIVISION. Line  defines these DdChuncks
to be our data fields that can be produced by a Level and a DataName (similar as in

our original grammar). Furthermore, our grammar needs to be made robust against
other data that can occur in this context (i.e., parts of the input that do not match with
the data field definition). We do this by also allowing water to be recognized between
the markers (line ).

This example shows some of the advantages that island grammars have over lexical
approaches. Most importantly, it is much easier to use structure while specifying pat-
terns to be analyzed. For example, it would be really hard to limit grep so it would only
match in the data division. In other lexical approaches one would use state manipula-

tion to achieve such results. However, when parts of the analysis logic are hard-coded,
adapting the analyzer or combining two analyzers into a single new one becomes a
tricky job. In contrast, solutions based on island grammars can easily be combined
and are declarative, making them easier to understand.

module DataFieldsWithContext ()

imports Water DataParts ()

context free syntax ()

"DATA DIVISION" DdChunk* ()

"PROCEDURE DIVISION" → Chunk ()

Level DataName → DdChunk {cons(Data)} ()

Water → DdChunk ()

Figure .: C data fields in context.
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. Impact Analysis using Island Grammars

To perform impact analysis, we create an island grammar in which the islands are

based on the patterns, anti-patterns and classification described in Section .. When
we then parse the artifacts using a parser that is generated from this grammar, the
parse trees will contain the analysis results.

Unfortunately, the complete grammar that was used for our case study is too large
to show completely in this chapter. It consists of  productions which is mainly due
to the large amount of patterns and anti-patterns ( to be precise). Below, we will

describe and show the most interesting parts.

When developing the grammar, we start with an “empty” island grammar that

“parses” the complete input as water. This is the grammar shown in Figure ..

Next, we extend this grammar with island productions for data fields with generic

field identifiers. The resulting grammar can be used to extract all data fields from
C sources. However, we are interested in more specific information: we are look-
ing for data fields whose names match with the account number patterns. Therefore,
we refine the identifier syntax so it only matches with the account number patterns.

The consequence of this refinement is that all data fields whose names do not match
are now parsed as water.

The following step is filtering all data fields whose names match with anti-patterns.
In S, we can use the reject attribute to prevent that names that match with an anti-
pattern can be parsed as valid data names. The resulting grammar will only parse data
fields whose names match with one of the patterns and with none of the anti-patterns.

The grammar parts responsible for recognizing data names by matching patterns
and rejecting anti-patterns are shown in Figure .. The actual data names are de-

scribed in module DataNames: line  defines that a DataName contains at least one of
the patterns, line  defines that a DataName containing one of the anti-patterns is not

module DataNames ()

imports Patterns AntiPatterns ()

lexical syntax ()

DNPart Pattern DNPart → DataName ()

DNPart AntiPattern DNPart → DataName {reject} ()

[A-Z-\-]* → DNPart ()

module Patterns ()

lexical syntax ()

"ACCNO" | "GNR" | . . . → Pattern ()

module AntiPatterns ()

lexical syntax ()

"DAGNR" | . . . → AntiPattern ()

Figure .: Matching patterns in data names.
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module Pictures

context free syntax

"" | "()" | "..." → Pict {cons(Short)} ()

"" | "()" | "..." → Pict {cons(Long)} ()

PictureString → RestPict {cons(Other)} ()

Pict → RestPict {reject} ()

Pict | RestPict → Picture ()

lexical syntax ()

[-XxAa\(\)pZzVvSszBCRD\/\,\$\+\-\*\:]+ → PictureString ()

Figure .: Recognizing and classifying picture clauses.

valid (i.e, should be rejected), and line  defines the possible pre- and postfixes for the
patterns.

The patterns are defined in modules Patterns and AntiPatterns. For brevity, we
show only a few patterns of the actual list. The anti-pattern DAGNR in line  is a Dutch
abbreviation for day number which would normally give a false match with GNR.

Classification of the account number variables is done by building up all potential
picture clauses from a number of patterns for each class. This is shown in Figure ..

We start with a production describing the -digit pictures (line ), followed by the -
digit pictures in line . Furthermore, we want a production for all remaining pictures
of variables that match a pattern. We let the parser construct that class by specifying
that it consists of an arbitrary PictureString (line  and ) but prevent that the -digit

and -digit pictures are parsed by this production using the reject in line . In a way,
this reject allows us to “subtract” a set of pictures from the large set described by the
production in line .

The grammar that combines data names with picture clauses into data descrip-
tions is shown in Figure .. We can use these data descriptions to refine the grammar
from Figure . by replacing the definition of DdChunk in line  with a production:

module DataDesc ()

imports DataNames Pictures ()

context free syntax ()

Level DataName "." → DataDesc {cons(Rec)} ()

Level DataName Water* ()

"PIC" Picture → DataDesc {cons(Field)} ()

lexical syntax ()

[][-] → Level ()

[-][-] → Level ()

Figure .: Recognizing valid data descriptions.
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DataDesc → DdChunk. The resulting island grammar can be used to extract account
numbers from a C source and classify them using their picture clauses.

. Generation of Impact Analyzers

This section describes implementation details of how we have built the I impact
analyzer. As discussed in the introduction, we expect that there is general interest for
the kind of lightweight impact analyzers described in Section .. Therefore, we set out

to build tooling that can help the maintainer to create such tools. Our design goal is to
minimize the amount of work needed for creation of a new analyzer. We achieve this
goal using generative programming [CE].

We have composed a generative framework for the creation of impact analyzers us-
ing island grammars. A maintainer can instantiate the framework using simple spec-
ifications detailing the problem at hand. This results in generation of a new impact
analyzer that performs an analysis dedicated to the given problem. An overview of the

generator framework is shown in Figure .. The gray boxes depict maintainer inputs.

The minimal amount of work that needs to be done to create a new analyzer is

very small: it consists of writing the island grammar that specifies affected sites in the
artifacts. This grammar plays a central role in the generation of the remaining parts. It
is used to generate an island parser and it is part of the inputs needed for the generation
of source model extraction and artifact markup.

For the remaining steps in the process, we supply generic defaults. These include:

• A source model extractor that stores information regarding islands recognized
by the island parser in a repository.

• A transformation that adds markup to the artifacts, tagging islands recognized
by the island parser with their respective types.

• Tools for computing statistics and generating pie charts based on the types of
islands available in the grammar.

These generic components can be refined by the maintainer to perform a more specific
task (the dashed inputs in Figure .).

.. Source Model Extraction

The source model extractor is created using M/J, a generator for source
model extractors based on island grammars that is described in Section .. The ex-
tractor processes the results of the island parser using J. The default extractor spec-

ification that we provide is a simple J class that stores information regarding all
islands that were recognized by the parser in a repository. This class can easily be re-
fined by a user to perform a more specific task, for example, storing only information
about particular islands or computing extra information based on a combination of

islands.
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.. Island Markup

The transformation that adds markup is generated using M/A (also de-
scribed in Section .). It processes parse results in a functional fashion using the
term rewriting language A [BHK]. Specifications written in A can be executed

using the A+S Meta-Environment [Kli, BDH+]. This environment contains
support for the generation of term traversal functions [BKV]. We use these in our
default specification to tag all islands that are recognized by the parser with their re-
spective types. This specification can also be refined by the user to perform more

specific tasks.
We have chosen to do this transformation using the A+S Meta-Environment

since it allows us to keep the original layout intact while transforming the artifacts
[BV]. Preserving layout is an important feature in a maintenance tool since it helps

a maintainer to orientate when visiting a system that he has seen before.

.. Presentation

We use XML to mark up the artifacts. The marked up artifacts are used for pretty-

printing and to generate indexes and tables that cross-reference the various classes and
sources. Our current back end generates a series of HTML documents. The trans-
formation of XML to HTML is done using XSL transformations (XSLT). These trans-
formations can be done either on the server side, for example using the X XSLT

processor, or on the client side using a modern browser such as N  or I-
 E . The account numbers in the generated documentation are colored
to show their classification: red for -digits, green for  digits, etc. The actual colors
that are used can be changed easily by editing a style-sheet.

. Applications

In this chapter, we have focused on solving a specific case: the impact of expanding
-digit bank account number into -digit numbers. There are many more of such

problems to which our technique can be applied. In this section we describe a number
of similar problems that we have seen in practice:

Product codes: We have encountered a problem that was very similar to the bank
account number analysis in another project that was done by our spin-off, the

Software Improvement Group. The problem there was a large software system
that used product codes that consisted of  digits. The goal of the project was
a transformation of this system that expanded the product codes to consist of 

digits (surprisingly with a maximum of  instead of ).

Trading natural gas: Liberalization of the gas-market in Western Europe makes it pos-
sible for consumers to pick the gas supplier they like. To enable this, the various

gas networks have been interconnected, making it easier for producers to sell

 http://xml.apache.org/xalan-j/
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their gas in more remote markets. Before liberalization, gas trading contracts
were based on capacities in m per hour. However, the caloric value of natural
gas differs between gas reserves, so the actual energy value that is purchased/sold
with  m also differs per gas reserve. Since this is not a competitive price model

when trading between various gas reserves, gas trading companies want to con-
vert from capacities in m per hour to capacities in kW per hour. Obviously,
this conversion implies mass changes in their trading and accounting software.

Selling natural gas: Another change that gas trading companies want to make in their
software has to do with consumer accounting. Historically, gas supply days run
from am one day to am the next day. This poses several problems for service
integration, for example, when one would like to combine gas and electricity

billing. Therefore these supply days need to be changed into the standard am-
pm schedule.

Date format conversion: Changing the date representation in a system from the U.S.
date format (MM/DD/YYYY), or the European date format (DD/MM/YYYY),

into the international ISO date format (YYYY-MM-DD).

. Related Work

.. Impact Analysis

Bohner and Arnold give a tutorial style overview of research topics in the area of soft-
ware change impact analysis [BA]. The articles in this book focus on the traditional
full-blown impact analysis that one would use to process a change request, and not on

the kind of lightweight impact analysis that we focus on. The techniques described in
the book will be too expensive to be practical for the estimation and planning phase
of a software change project. However, they will be needed in the next phases of the
project.

Most of the traditional impact analysis approaches are based on program slicing
[GL] and program dependence graph analysis [LM]. Han describes an impact
analysis approach that is based on direct analysis of the system artifacts [Han]. Sim-

ilar to our approach, it analyzes the parse trees to determine impact and change prop-
agation. Han argues that such a direct approach is better suited for providing impact
analysis and change propagation as integral parts of a software engineering environ-
ment.

Fyson and Boldyreff describe the use of program understanding to support impact
analysis [FB]. They use information derived by a program understanding system to
populate a so called ripple propagation graph. By tracing the edges of this graph, one

can identify all systems that are affected by a change.
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.. Lexical Approaches

Several tools are available to perform lexical analysis. The most well-known tools are
probably grep and  that allows one to search text for strings using regular expres-
sions.

Murphy and Notkin describe the Lexical Source Model Extractor () [MN].
Their approach uses a set of hierarchically related regular expressions to describe lan-

guage constructs that have to be mapped to the source model. By using hierarchical
patterns they avoid some of the pitfalls of plain lexical patterns but maintain the flexi-
bility and robustness of that approach.

The ML system of Cox and Clarke [CC] uses a similar hierarchical ap-
proach. The main difference with  is that it focuses at extracting information at
the abstract syntax tree level whereas  extracts higher level source models.

These tools offer no immediate support for impact analysis. They are directed at
extracting the facts from system artifacts and not at querying, combining and present-

ing those facts to the maintainer to answer a question or to perform impact estimation.

.. Rapid System Understanding

Van Deursen and Kuipers describe techniques for rapid system understanding that
are based on lexical analysis [DK]. They describe an open architecture for system
understanding that can be easily adapted to perform a problem-directed analysis. This

makes it easy to use their technique for performing impact analysis for estimation and
planning.

.. Island Grammars

Island grammars are a technique for syntactical analysis that allows us to mix the be-
havior of parsing with that of lexical approaches by analyzing the interesting parts of

a grammar and brushing aside the non-interesting parts. Thereby, island grammars
combine the accuracy of syntactical analysis with the speed, flexibility and robustness
of lexical analysis. In the previous chapter, we describe the definition of island gram-
mars using the syntax definition formalism S and present M, a generator

for source model extractors based on island grammars that supports refinements in
various programming languages and show how it can be used. For a more detailed
discussion of related work regarding island grammars and source model extraction

using syntactical and lexical analysis, we refer to Chapter .

. Concluding Remarks

.. Evaluation

By using an island grammar to perform impact analysis, we limit ourselves to types of
analysis that can actually be described using grammars. These are the kind of analyses

that are based on determining the presence, absence, and classification of features in an
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artifact. They exclude, for example, analyses that are based on data flow information or
dependency tracking. Note that when a more detailed analysis is needed, an approach
based on island grammars can be improved to a certain extent by doing more involved
computations in the tools that extract source models and markup artifacts.

We argue that the type of analysis that can be described using island grammars is

sufficient for our goal: lightweight impact analysis for estimation and planning. This
is supported by the fact that others revert to lexical analysis techniques to achieve this
goal (e.g., [DK]). The use of island grammars has several advantages over lexical
approaches. Most importantly, it is much easier to use structure in the specification

of the patterns. Furthermore, solutions based on island grammars can easily be com-
bined and are declarative, making them easier to understand.

We identify two potential sources of problems with island grammars: (i) false pos-
itives that occur when the grammar allows constructs to be recognized in places where
they should not have been recognized. (ii) false negatives that occur when the grammar
is too restrictive and does not allows constructs to be recognized in places where they

should be recognized. These errors can be solved by strengthening the grammar, we
refer to Chapter  for a discussion of possible approaches.

The expressive power of an island grammar is limited by the chosen syntax defi-
nition formalism and more important by the chosen parsing technique. We express
island grammars in S, a syntax definition formalism that is supported by generalized

LR parsing techniques. Consequently, we inherit their expressive power, which allows
us to express the complete class of context free languages.

To get an indication of the speed and scalability of our approach, we have tested
the generated impact analyzer on representative parts of the earlier described software
portfolio (the complete portfolio could not be used due to disclosure restrictions). We

have performed two tests: (a) one on a single system, and (b) one on a collection of
four systems. Figure . gives an overview of the test results. The analysis time is the
user CPU time as reported by the GNU time command and the maximum memory
usage was observed using top. The tests were performed on a computer with an AMD

Athlon processor (. Ghz) and  Mb main memory running linux ..-.

Since the tests were done on representative systems (with similar average, largest
and smallest program size), we think that these results can be extrapolated. Thus,
impact analysis of the complete portfolio of ,, LOC will take approximately

 And some non-context free languages because the reject attribute allows us to compute the difference or
intersection of two languages. For more details, see the discussion in [Vis, p. –].

test no. of total size analysis speed memory

programs (LOC) time (s) (LOC/s) usage

(a)  ,    Mb

(b)  , ,   Mb

Figure .: Benchmark results





Contents Concluding Remarks

one day ( hours), which is more than acceptable for estimation purposes on a project
of this size.

.. Future Work

We are interested in investigating how we can extend our approach with dependency
tracking to perform a more detailed analysis. We want to do this using the type infer-
encing technique described in Chapters  and . The basic idea is as follows: we will

use the data fields found by the lightweight impact analysis as seeds. Initially, these
seeds get a unique type. These types will be propagated through the statements in the
program and track all related (type equivalent) fields encountered during this propa-
gation.

We need to make the following additions to our framework: First, the island gram-
mar is refined so the generated parser will recognize assignments and expressions as
islands. Then, we extend the source model extractor, so it emits primitive type rela-
tions for the seeds, type equivalencies for expressions and subtyping for assignments

that are encountered. These relations can be used to find all fields that are type equiv-
alent with the seeds following the algorithm described in Chapter  (Figure ., page
). We can classify these sets using the classification that was found for the seeds since
all type equivalent fields should be in the same category. Finally, we can use this new

information to generate a more detailed overview of the impact on the code.

.. Contributions

Lightweight impact analysis is a prerequisite for estimating and planning large scale
software maintenance projects. This chapter shows that island grammars can be used
to generate such lightweight impact analyzers.

We have given a detailed description of the process of translating an impact anal-

ysis problem into an island grammar. We have discussed the advantages that this ap-
proach has over other techniques for impact analysis. We have presented a generative
framework that allows a maintainer to create lightweight and problem-directed impact
analyzers. We have demonstrated our technique using a real-world case study where

island grammars are used to find account numbers in the software portfolio of a large
bank.
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C       
Type Inference for COBOL

T
ypes are a good starting point for various software reengineering tasks. Un-
fortunately, programs requiring reengineering most desperately are written

in languages without an adequate type system (such as COBOL). To solve this

problem, we propose a method of automated type inference for these languages.
The main ingredients are that if variables are compared using some relational
operator their types must be the same; likewise if an expression is assigned to a

variable, the type of the expression must be a subtype of that of the variable. We
present the formal type system and inference rules for this approach, show their
effect on various real life COBOL fragments, describe the implementation of our
ideas in a prototype type inference tool for COBOL, and discuss a number of ap-

plications. The work presented in this chapter was published earlier as [DM].

. Introduction

The many different variables occurring in a typical program, can generally be grouped
into types. A type can play a number of roles:

• It is an indication of the set of values that is allowed for a variable;

• A type groups variables that represent the same kind of entities;

• A type helps to hide the actual representation (array versus record, length of

array, ...) used;

• Types for input and output parameters of a procedure provide a “signature” of

the expected use of that procedure.

Traditionally, types are associated with strongly-typed languages, in which explicit
variable and type declarations help to detect programming errors at compile time in-

stead of run time.
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In this chapter we will be concerned with a rather different use of types. In our
opinion, types are a good starting point for various software reengineering activities.
We argue that the use of types as described in this chapter is in fact the underlying
theory of the approach followed by a number of existing reverse engineering tools.

For example, types can be used for migrating from a procedural to an object-oriented
language, isolating reusable components from legacy sources, searching for potential
year  infections, or for searching code that will be affected by the introduction of
the Euro: the single European currency.

Unfortunately, systems for which such reengineering activities are most necessary,

are generally written in languages with a rather limited type system. This makes reengi-
neering for such languages difficult. To solve this problem, we propose methods to
infer a set of types from programs written in such languages automatically. These au-
tomatically inferred types can then be the starting point for objectification, year 

remediation, etc.

The language we deal with in this chapter is C. We show how to infer a set of
types automatically from (a system of) C programs. We present several varieties
of our type system, taking sub-typing, byte representations and inter-program types
into account. We describe how we made a prototype tool that performs type inference

on C code.

We have evaluated our approach using a case-study where we apply the ideas de-
scribed above to M: a , LOC C system from the banking area.
The examples in this chapter are taken from that system.

We conclude by describing a number of important applications of our technique

in the area of software reengineering.

. Approach and Motivation

At first sight, C may appear to be a typed language. Every variable occurring
in the statements of the procedure division, must be declared in the data division
first. A typical declaration is shown on Figure .. Here, three variables are declared:
TAB100-FILLED, which is an integer (picture “9”) comprising three bytes initialised with

value zero; TAB100-POS, which is a single character byte (picture “X”) occurring 

times, i.e., an array of length ; and TAB100 which is a record defined at level 01,
having the two variables with higher level numbers, namely 05, as fields.

Unfortunately, the variable declarations in the data division suffer from a number
of problems, making them unsuitable to fulfil the roles of types as listed in the begin-

01 TAB100.

05 TAB100-POS PIC X(01) OCCURS 40.

05 TAB100-FILLED PIC S9(03) VALUE 0.

Figure .: Fragment of C data division.
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ning of this chapter. First of all, since it is not possible to separate type definitions from
variable declarations, when two variables for the same record structure are needed, the
full record construction needs to be repeated. This violates the principle that the type
hides the actual representation chosen.

Besides that, the absence of type definitions makes it difficult to group variables
that represent the same kind of entities. Although it might well be possible that such
variables have the same byte representation. Unfortunately, the converse does not
hold: One cannot conclude that whenever two variables share the same byte represen-

tation, they must represent the same kind of entity.
In addition to these important problems pertaining to type definitions, C

only has limited means to accurately indicate the allowed set of values for a variable
(i.e., there are no ranges or enumeration types). Moreover, in C, sections or

paragraphs that are used as procedures are typeless, and have no explicit parameter
declarations.

In our approach, we use types to group variables that represent the same kind of
entities. We start with the situation that every variable is of a unique primitive type. We

then generate equivalences between these types based on their usage: if variables are
compared using some relational operator, we infer that they must belong to the same
type; and if an expression is assigned to a variable, the type of the variable must be that
of the expression. We also propose a more refined scheme, in which a subtype relation

between the types of the expression and the variable is inferred for assignments.
Furthermore, we use a similar approach to infer a minimal set of literal values that

should be included in certain types. This information can be used to replace hard
wired literal constants in a program with symbolic constants (i.e., replace them by

variables that have the same initial value and are not changed in the program). Type
information is important for such renovations since the constants for each type might
need to be changed independently as a result of maintenance of the program.

Finally, from the minimal set of values of a given type and the usage of variables of

that type, we infer whether such a type is an enumeration type: if variables of such a
type only get assigned values from this set and there are no computations that might
change that value then the type is an enumeration type.

. Notation

In this chapter, we will consider the following primitive types:

Definition .. The set T of primitive types is defined by the following productions:

N
� �
= Natural numbers

I
� �
= Set of identifiers

B
� �
= Set of byte sorts

P
� �
= B+ (Pictures of bytes)

T
� �
= elem(I, P) (Elementary variable)

| rec(I, T+) (Record type)
| array(I, T ,N) (Array type)
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In other words, we distinguish type constructors for elementary data types, for
records, and for arrays (with a given length). All types have a name as their first com-
ponent. The precise choice of the set of byte sorts B can be chosen at will: for our
purposes, it consists of the C byte markers such as X (character byte), 9 (decimal

digit), etc., as occurring in C picture clauses.
We will use TA to refer to the primitive type that can be derived for a given variable

A from the data division of a program in which A is used.
Below we define the language constructs that are used to describe the type inference

rules in the rest of this chapter.

Definition .. The set S of syntactic constructs is defined by the following productions:

L
� �
= Set of literals

V
� �
= I (Identifier)
| I(E) (Array access)

E
� �
= L (Literal value)
| V (Variable)

| E a-op E (Arithmetic operator)
C

� �
= E (Expression)
| E rel-op E (Relational operator)

| V
�
= E (Assignment)

S
� �
= C+ (Syntax)

The set L corresponds to literals such as numbers and strings, V are variable and array
accesses, and E are arithmetic expressions. The set C consists of the set of constructs
that are needed for our purposes: arithmetic expressions, relational expressions, and
assignments. It contains only those language constructs that affect the type inference

algorithm. The top or start set S is just a collection of constructs from C.
Following [Car], we will use so-called judgements to express relations between

syntactic constructs, and types. Let Γ be a type environment, i.e., a mapping from
identifiers to types. We will distinguish the following five judgements:

• Γ ` �

Γ is a well-formed type environment.

• Γ ` E �
T

Expression E is of type T .

• Γ ` S �
T ≡ T

An equivalence relation indicating that given construct S, types T and T are the
same.

• Γ ` S �
T 4 T

A partial order indicating that given construct S, type T is a subtype of type T.

• Γ ` S �
L ∈ T

Given construct S, literal L is an element of type T .





Contents Inference Rules

The sections to come will include a number of inference rules indicating for what
particular language constructs these judgements hold.

. Inference Rules

In this section we describe a method to find an equivalence relation between the primi-
tive types within a single module (C program). Later, we will extend this method
to system level types and refine the results using subtypes.

.. The Data Division

Every variable declared in one of the various sections of the data division of a C

program corresponds to a type from the set T of primitive types in a straightfor-
ward manner. For simple variables, the PIC clause is used to obtain the sequence of

byte sorts. OCCUR clauses result in arrays, and record definitions yield (nested) record
types. To avoid name clashes between fields with the same name coming from differ-
ent records, variables should be qualified using the full nested record structure. This is
a trivial translation that can be done in a preprocessing phase on the incoming C

code. As an example, Figure . shows the type environment resulting from the C

variable declarations shown in Section .. Observe that every C variable obtains
a unique type. In order to focus the presentation on the most relevant issues, we post-
pone the treatment of REDEFINEs until Section ..

.. Types for Expressions

An arithmetic expression is constructed from variables, constants, and arithmetic op-
erators such as +,−,∗, .... We derive the type of such an expression by distinguishing

the following cases:

. Variable access: If e is a variable, array access, or record field access, its type is the
one obtained from analysing the data division.

. Arithmetic operators: Let e be an arithmetic expression of the form e a-op e.

We then infer several types for this combined expression: every type of e and

TAB100 , record(TAB100,

array(TAB100-POS, elem(TAB100-POS[],X), ��� )
elem(TAB100-FILLED,S9999)),

TAB100-POS , array(TAB100-POS, elem(TAB100-POS[],X), ��� ),
TAB100-POS[] , elem(TAB100-POS[],X),

TAB100-FILLED , elem(TAB100-FILLED,S9999)

Figure .: Type environment derived from data division fragment.
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every type of e is also a type of e.

The rules formalising these cases are shown in Figure .. As an example, an expression
consisting of just the variable A will have one type, TA, the primitive type derived for A
from the data division. An expression A + B will have two different types: it is both of

type TA as well as of type TB .
One might think that the type of an expression can be any of the types of the

identifiers occurring in that expression. In general, however, this is not the case: an
expression can contain an array access, for example A(I+1) + B(J+1), but the type of

variables occurring in the access (namely I and J) are not part of the type of the full
expression.

Observe that we take advantage of the fact that in C all arithmetic operators
take arguments that must have the same type, namely a numeric type. If C would

contain other operators, for example involving both strings and numeric arguments,
these operands should not receive the same type. Support for such operators could
easily be added to our system by refining the inference rules for operators.

Furthermore, there are no rules for literal expressions (constants): At this stage we

are only interested in finding out type information about variables.

.. The Procedure Division

Now that we know how to derive types for variables and arithmetic expressions, we
can define how to infer relations between the types of the syntactic constructs from S.
We distinguish the following cases:

. Arithmetic expression: If s ∈ S is an arithmetic expression, as we have seen in the

previous section, the types of its operands are defined to be equivalent.

. Relational operator: If s ∈ S is a relational operator, such as >,<,=, ..., the types

of the operands are defined to be equivalent.

. Assignment: If s ∈ S is an assignment of the form v
�
= e (recall that this corre-

sponds to C statements such as MOVE, COMPUTE, MULTIPLY, ...), we define that

the types of e and v are equivalent.

(Γ, i, t, Γ) ` �

(Γ, i, t, Γ) ` i
�
t

Variable Types

Γ ` e
�
t

Γ ` e a-op e
�
t

A-Op Left

Γ ` e
�
t

Γ ` e a-op e
�
t

A-Op Right

Figure .: Types for variable access and arithmetic expressions.
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. Array access: If S contains two constructs that both have array accesses to the
same variable, say v(e) and v(e), then the types of the index expressions are
defined to be equivalent. Note that this includes any pair of accesses to the same
array v in a program.

The rules formalising these cases are shown in Figure .. Note that the Array

Index rule uses a context variable of the form S[...], which represents the source tree S
with a subtree left open. We refer to [DHK] for more details.

As an example, let us infer the type relations for the expression A + B < D. The
subexpression A + B leads, via rule A-Exp, to an equivalence between TA and TB . As
was shown in the previous section, this subexpression has both type TA and type TB .
These two types are used when inferring the relations between the types of the com-

plete expression: Following rule Rel-Op, any type of A + B is equivalent to the type of D.
Hence we infer two more equivalences, namely between TA and TD as well as between
TB and TD . Thus, the expression A + B < D results in three equivalences: TA ≡ TB ,
TA ≡ TD, and TB ≡ TD.

.. Example

For practical purposes, the most important result of the type inference procedure are

the equivalence classes for types. As an example, consider Figure ., which shows a
C fragment manipulating strings. At first sight, the exact relationship between
the seven declared variables will be unclear. Applying our type equivalence procedure
to this fragment, will infer that N100, TAB100-MAX, and TAB100-FILLED all belong to the

same type, due to the statements

MOVE TAB100-MAX TO N100.

and
MOVE N100 TO TAB100-FILLED

Γ ` e
�
t Γ ` e

�
t

Γ ` e a-op e
�
t ≡ t

A-Exp

Γ ` e
�
t Γ ` e

�
t

Γ ` e rel-op e
�
t ≡ t

Rel-Op

Γ ` v
�
t Γ ` e

�
t

Γ ` v
�
= e

�
t ≡ t

Assignment

Γ ` e
�
t Γ ` e

�
t

Γ ` S[v(e)][v(e)]
�
t ≡ t

Array Index

Figure .: Rules to infer equivalences between types.
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The equivalence class of these three types corresponds to the index type of the
TAB100-POS array.

The information that these three variables belong to the same type, can be graphi-

cally displayed in an editor (for example by giving them the same colour) which would
help the programmer to understand relationships between variables when browsing
the program. Moreover, this information can be used when migrating a C appli-
cation to a typed language. The typical Pascal type for this equivalence class would be

a range from  to  used as array index type.

Other applications of type information in reverse engineering are described in Sec-
tion ..

. System-Level Types

The previous section describes a way of finding sets of equivalent primitive types

within a single module (C program). Given the type relations per program, we
can infer further type equivalences based on inter-program relations in the following
manner:

• Make all identifiers unique per program, by qualifying them with the program
name.

01 N000.

05 N100 PIC S9(03) COMP-3.

...

01 TAB000.

05 TAB100-NAME-PART

10 TAB100-POS PIC X(01) OCCURS 40.

05 TAB100-MAX PIC S9(03) COMP-3 VALUE 40.

05 TAB100-FILLED PIC S9(03) COMP-3 VALUE ZERO.

...

R300-COMPOSE-NAME SECTION.

MOVE TAB100-MAX TO N100.

MOVE ZERO TO TAB100-FILLED.

PERFORM UNTIL N100 EQUAL ZERO

IF TAB100-POS (N100) EQUAL SPACE

SUBTRACT 1 FROM N100

ELSE

MOVE N100 TO TAB100-FILLED

MOVE ZERO TO N100

END-IF

END-PERFORM.

Figure .: C fragment for manipulating strings.
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LINKAGE SECTION.

01 L001-FUNCTION PIC S9(05) COMP-3.

01 L001-RAR001-FIXED PIC X(274).

01 L001-FORMATTED-NAME PIC X(46).

01 L001-ENTITY.

05 L001-ENTITY-NR PIC S9(11) COMP-3.

05 L001-ENTITY-TYPE PIC X(01).

01 L001-STATUS PIC S9(05) COMP-3.

Figure .: Linkage section (formal parameters) of program RA36.

Variables declared in copybooks that are included in the data division should be
qualified using the copybook’s name — in this way variables declared in copy-
books included in multiple programs will have the same type.

• In a program call, the actual parameters (the C USING clause) are assigned
to the formal parameters (the C linkage section), resulting in an inferred
equivalence between their types.

• Read and write operations of different variables to the same database result in

an inferred equivalence between the variable’s types.

A fairly typical call is shown in Figures . and .. Regarding type equivalence, a

first observation is that in the call statements, RAR001-FIXED is an array of  bytes. In
other statements (not shown), it is assigned to variables declared as a record also con-
sist of  bytes. This is typical C programming style, and done to keep the inter-
face of the call statement simple. Our type inference approach will find equivalences

01 L000.

05 L100-RA36.

10 L100-FUNCTION PIC S9(05) COMP-3.

10 L100-RAR001-FIXED PIC X(274).

10 L100-FORMATTED-NAME PIC X(046).

10 L100-ENTITY.

15 L100-ENTITY-NR PIC S9(11) COMP-3.

15 L100-ENTITY-TYPE PIC X(01).

10 L100-STATUS PIC S9(05) COMP-3.

...

CALL ’RA36’ USING

L100-FUNCTION L100-RAR001-FIXED

L100-FORMATTED-NAME L100-ENTITY L100-STATUS.

Figure .: Call to program RA36, together with actual parameters.
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between these byte arrays and full records. This allows us to retrieve the complete
(complex) interface that programs actually use for their inter-program communica-
tion.

A second observation is that the L100-ENTITY parameter is in fact a record. The

parameter passing is treated as an assignment from L100-ENTITY to L001-ENTITY. This,
in turn is used to infer a type equivalence between these two records. When looking
at the example, however, we immediately see that the fields of these records, namely
ENTITY-NR and ENTITY-TYPE, should also be of the same type. This, however, is not

inferred by the rules given so far.

Clearly, this is a situation which can occur not only at the inter-program level, but
also within programs. What we need is a rule which says that if two structure types are
inferred to be equivalent, and if these types have the same structure (without looking
at the names), we can infer an additional equivalence between the sub-level types.

To formalise this, we first need the notion of representation (i, p, t,n are variables
ranging over I, P , T ,N, respectively):

Definition .. We define rep �
T → P , which gives the byte representation of a type

inductively by

rep(elem(i, p)) = p

rep(rec(i, t . . . tn)) = rep(t) . . . rep(tn)
rep(array(i, t, n)) = rep(t)n

The rules in Figure . then deal with inferring equivalence for subconstructs. The
Fields rule states that if we know that two records are inferred to be equivalent, and if

we know that they have exactly the same number of fields, and every two fields have
the same representation, then we can infer that the fields must be equivalent as well.

The Arrays rule states that if we know that two arrays are inferred to be equivalent,
and if we know that their elements have the same representation, then we can infer
that these elements must be equivalent as well.

(j =  . . . n) (∀k � ...n
� rep(fk) = rep(f ′k))

Γ ` S
� rec(i, f, . . . , fn) ≡ rec(i′, f ′ , . . . , f

′
n)

Γ ` S
�
fj ≡ f

′
j

Fields

(rep(t) = rep(t′))

Γ ` S
� array(i, t, n) ≡ array(i′, t′, n)

Γ ` S
�
t ≡ t′

Arrays

Figure .: Rules for substructure completion.





Contents Assessment of Type Equivalence

. Assessment of Type Equivalence

The rules provided so far describe how an equivalence relation between primitive types

can be derived from a C program. These rules are intuitive, and in general they
provide meaningful equivalences. There are, however, a number of problematic situa-
tions for which inferring type equivalences is not satisfactory.

First of all, it may be the case that one variable is being used for different purposes
in different slices of the program. For example, a variable TMP may be assigned the -
digit variable PHONE-NR in one slice, and an -digit DATE in another. The rules provided

so far will infer equivalences for both assignments. By transitivity of equivalence, we
then get that PHONE-NR and DATE are of the same type.

A similar situation can occur in a procedure call. In C, this can happen in a

program CALL, where the variables in the USING clause are the actual parameters, and
those in the LINKAGE SECTION the formal ones. Alternatively, a PERFORM statement can
be used, in which case global variables can be used as formal parameters (for an exam-

ple, see the next section). With the rules given so far, all actual and formal parameters
of a procedure will obtain the same type. This may lead to undesirable situations, if the
procedure, for example, deals with strings in general, and is given actual parameters of
different sorts such as STREET or CITY.

Another situation that does occur in practice is that a single variable, for example
ZEROES, is assigned to many different variables during the initialisation phase. Alter-
natively, one variable, for example PRINT-LINE, can receive values from many different

variables occurring in a sequence of assignments involving output operations. Again,
this will give all these variables the same type.

In all these situations, the inference rules lead to too many equivalences, to which
we will refer as type pollution. In the next section, we discuss how subtyping can be
used to address this problem.

. Subtypes

A type is an indication for a set of permitted values. If the set of permitted values for
type T is a subset of the values of type T, type T is said to be a subtype of T, written
T 4 T. Subtyping makes a type system more flexible, since an element of a type can

be considered also as an element of any of its supertypes, thus allowing an element to
be used flexibly in many different contexts [Car, Section ].

The rule for reasoning about type assertions in the presence of subtyping is shown

in Figure .. In addition to that, we need rules to explicitly infer a subtype relationship

Γ ` e
�
t Γ ` S

�
t 4 t

Γ ` e
�
t

Subsumption

Figure .: The has-type relation in the presence of subtyping.
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Γ ` v
�
t Γ ` e

�
t

Γ ` v
�
= e

�
t 4 t

Sub-Assignment

Figure .: Subtype inference rule for assignments.

between two types. Assignments are the natural place for this: If v is assigned an
expression e, the type of v should at least contain the values of e, i.e., the type of e
is a subtype of the type of v. The rule formalising this is shown in Figure .. With

subtyping this rule should be used instead of the “Assign” rule from Figure ., which
infers a straight type equivalence.

Inferring subtypes has some important practical benefits. Consider, for example,
the fragment of Figure ., which invokes the procedure R300-COMPOSE-NAME two times.

Since C procedures cannot have parameters, the variable TAB100-NAME-PART is
used to simulate an input parameter. In the first PERFORM statement, it is given the
value of RAR001-INITIALS, in the second the value of RAR001-NAME.

Looking at the names and declarations, one can clearly see that the type of
RAR001-NAME, a string of length  representing a person’s last name, and the type of
RAR001-INITIALS, a string of length  representing a person’s initials, should be differ-
ent. However, when inferring type equivalences for assignments, they would become

equal, by transitivity via variable TAB100-NAME-PART. With subtyping, we do not in-
fer such an equivalence, but infer that they should both have a common supertype,
namely the type of TAB100-NAME-PART (which has length ). As described above, sim-
ilar situations can occur with variables that are used for collecting lines to be printed,

temporary variables, etc.

01 RAR001-RECORD

03 RAR001-VAST

05 RAR001-NAME PIC X(27).

05 RAR001-INITIALS PIC X(05).

...

R210-INITIALS SECTION.

MOVE RAR001-INITIALS TO TAB100-NAME-PART

PERFORM R300-COMPOSE-NAME

EXIT.

R230-NAME SECTION.

MOVE RAR001-NAME TO TAB100-NAME-PART

PERFORM R300-COMPOSE-NAME

EXIT.

Figure .: Two calls to a procedure with a simulated parameter.
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Using subtyping, REDEFINEs can be handled by a simple extension of our type lan-
guage. In C, REDEFINE clauses are used to define data structures that are known
as variant records in Pascal (or unions in C); these can be dealt with by adding a union
type constructor to the set of primitive types T . During analysis of the data division,

the type generated for a number of redefined variables is the union type constructed
from the types of the individual variables. Furthermore, a rule is added which infers
a subtype relation between the components of a union type and the complete union
type. The remaining type inference rules stay the same. For more information on

union types, we refer to [Car].

. Literal Analysis

A natural extension of our type inference algorithm involves the analysis of literals that
occur in a C program.

The basic idea is that whenever a variable v is assigned a literal value l, or com-

pared with l, then the type of v should at least contain the literal l. Moreover, when-
ever we infer that two types must be equivalent, elements contained in one should be
contained in the other. Figure . formalises these ideas.

An example of the use of this literal analysis can be shown using the following piece
of code:

EVALUATE RAR001-NATURE

WHEN 001 GO TO R180-100

WHEN 002 GO TO R180-100

WHEN 003 GO TO R180-100

WHEN 013 GO TO R180-100

WHEN OTHER GO TO R180-999

END-EVALUATE.

Γ ` e
�
t

Γ ` e rel-op l �
l ∈ t

Right literal

Γ ` e
�
t

Γ ` l rel-op e �
l ∈ t

Left literal

Γ ` v
�
t

Γ ` v
�
= l

�
l ∈ t

Literal assignment

Γ ` S
�
l ∈ t Γ ` S

�
t ≡ t

Γ ` S
�
l ∈ t

Equivalent types

Γ ` S
�
l ∈ t Γ ` S

�
t 4 t

Γ ` S
�
l ∈ t

Subtypes

Figure .: Rules for inferring minimal literal containment in types.
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In this example, the type NATURE is a number indicating the kind of entity described in
some large record. Depending on this kind, different actions are taken. In our case-
study of the M system, our technique was able to find all constants that are
used for all variables of type NATURE.

Consider the following piece of code (also taken from the M system):

IF RAR001-NATURE EQUAL 8

IF RAR008-NUMBER EQUAL 1234 AND

RAR008-ZIPCODE EQUAL ’5678AB’

...

In this example, a selection is made based on a specific address that is included in the
code. Our analysis will help to identify such “special values” for a particular type,
which provides insight in the nature and actual usage of that type.

The literal type information can also be used to improve the replacement of hard

wired literal constants in a program with symbolic constants. The algorithm is simple:
replace the constants by fresh variables that are initialised to the given literal value and
are not changed in the program. For example, the tool set of Sneed [Snea] has an
option called reassign for such constant replacements. His approach is to introduce

only one symbolic constant which is substituted for all occurrences of the literal con-
stant (e.g. all occurrences of the literal ’’ are replaced by CONST-18 and a new data
item ‘01 CONST-18 PIC 99 VALUE 18. is added to the data division).

This approach has the disadvantage that the value of such constants can never be
changed during the remaining life time of the reverse engineered program because the

literal values that were replaced could have been from different types. For example:
consider a program with two literal values ’’, one is used to check the number of
passengers on a boat, the other is used to check their age. Either of these values might
need to be modified during maintenance and by replacing them both by the same

symbolic constant CONST-18 such changes can not be made.

The types we infer for literals allow a much more refined renovation: they can
be used to replace all occurrences of a literal constant of a given type with a symbolic
constant for that type. As a result, the constants can be modified independently of
each other.

Note that generating names for these constants is no problem, they can either be
derived from the name of the type or a fresh prefix can be generated for each new type,
similar to the CONST-18 example above.

The results of the literal type inference described above provide an indication of
the minimal set of values that should be included in a given type equivalence class.

From this set of values of a given type and the usage of variables of that type, we infer
whether such a type is an enumeration type, i.e., if variables of such a type only get
assigned values from this set and there are no computations that might change that
value then the type is an enumeration type.

 The actual address has been changed to protect the innocent.
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. Implementation

We have implemented our ideas in a tool performing type inference on C code.
The tool reads C source code and its outputs are the types, typed literal elements,
and enumeration types that occur in that code. The architecture of the tool is shown
in Figure .. The boxes represent data, the ellipses represent processes and the arrows

depict the flow of data through the system. The solid objects in the figure describe the
basic type inference tool. The dashed and dotted objects refer to the extension of our
system with literal type detection (dashed) and enumeration type detection (dotted)
described in Section ..

We start with the step extract primitive types which finds a set P of primitive types

given the data division of the source code. This set is stored in a type environment for
the variables of the data division.

We then perform the derive type relations step, which combines the primitive types
and the usage of variables in the procedure division. The result is a set of relations,
which can either be equivalences (T ≡ T) or partial orderings (T 4 T) for subtyping.

For example, the C statement MOVE A TO B results in the relation TA 4 TB .

The type resolution step infers the types by computing P/ ≡: the partition of the
set of primitive types that is induced by the derived equivalence relation. Thus the
inferred types are the equivalence classes of primitive types modulo ≡. The derived

subtyping order 4 on primitive types can be used to compute a subtyping order on
the inferred types: if T 4 T then [T]≡ 4 [T]≡.

Obviously, it is not possible to fully automatically find a meaningful name (or
representative) from a set of primitive types. However, we found that it is possible to
derive a suggestion for the type name by lexical analysis of the names of the variables

that are of a given derived type. Our case study shows that in almost all cases these
variables have a common substring. We suggest to use this string as base for the type-
name.

COBOL
source code

extract
primitive types

primitive
types

derive typed
literal elements

derive
type relations

type relations
type

resolution
types

typed
literal elements

derive
enumeration types

enumeration
types

Figure .: Type inferencing tool architecture.
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.. Platform

We have implemented the architecture using the A+S Meta-Environment [Kli,
DHK, BDK+]. Furthermore, some pre- and post-processing was done using stan-

dard Unix tools like perl.

The A+S Meta-Environment is an interactive development environment for
the algebraic specification of formal (programming) languages. It takes a syntax defini-

tion of a language and an algebraic specification that describes operations on programs
written in that language. From these two, the system generates a programming envi-
ronment that contains scanners, parsers and syntax-directed editors for the language,
and tools that perform the specified operations on programs written in that language

[DHK].

To get an environment for analysing C, we have instantiated the A+S

Meta-Environment with a C grammar [BSVb] and generated native patterns

and traversal functions from this grammar [BSVa, SV]. This gives us a tool that
provides a default pass over the full abstract syntax tree of C programs. This
default pass can be specialised for particular constructs which allows us to focus only
on the C constructs that are important for our problem. In a single traversal of

the source code we extract the primitive types, and derive the relations between types.
Since the A+S Meta-Environment uses algebraic specifications, we were able to
use the type-inference rules presented in the Figures ., ., ., ., ., and .
almost literally.

. Case Study

In order to assess the effect of type inference on real life systems, we studied an existing
legacy system called M, a C/ application of , lines of code.

It consists of an on-line (interactive) part, as well as a batch part, and it is in fact a
subsystem of a larger ( MLOC) system.

We used the implementation of type inference described in the previous section to
infer the equivalence classes as well as the subtype relations between them. To enable
us to assess the resulting types, we visualised the type relations as directed graphs in
which variables are nodes, and arrows and lines represent subtype and equivalence

relations respectively. Inspection of these graphs revealed the following issues.

First, assignments are the predominant factor responsible for creating type rela-
tions. In other words, C programs contain more MOVE statements than (condi-

tional) expressions.

Second, the sets of related (via subtyping or equivalence) variables are fairly small.
For example, many variables are only once assigned to another variable. We encoun-

tered only very few cases in which there were more than  different variables involved.
This is due to the fact that the types inferred reflect the actual use of variables. This
gives an interesting comparison with languages that are strongly typed. In such lan-
guages, one would declare many different variables of type “int”, which may be used for

 This system was also used as case study in [WBF, DK].
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many different purposes. Type inferencing finds different types for all these purposes,
based on their actual use (see also [OJ]).

A question of interest is to what extent type pollution (inferring too many equiva-
lences) as discussed in Section . is present in M, and whether the proposed
solution, subtyping, is adequate. For most of the variables, pollution is not an issue,
i.e., subtyping can be safely replaced by type equivalence. However, all forms of pol-

lution as discussed in Section . do occur in M. Typical cases include the
use of a single MOVE statement to initialise many different variables, the use of alpha-
numeric string variables to represent various types of strings, and the use of sections
that use global variables to simulate formal parameters permitting values of different

types (different sorts of keys, for example). In all these cases, subtyping provides the
proper solution.

Many constants in M deal with enumeration types. Not all enumeration
types in M contain a consecutive series of numbers: in some cases during
maintenance certain numbers may have been removed; in other cases this indicates
that a particular program deals with specific enumerated cases only.

Another group of constants occurring in M deals with program names,
and are used in statements that invoke other modules, but in which the name of the

module is contained in a variable. Our constant analysis helps to identify the possible
values of such variables, which is necessary, for example, if one wants to derive the call
graph of such programs.

In addition to the qualitative statements listed above, it would be useful to have
some quantitative data on types as well, and to collect these for many different systems.

We are in the process of collecting data such as the average and maximum of the size
of equivalence sets, the number of types related via subtyping, and the number of
supertypes per type; the number of equivalence relations divided by the number of
subtype relations; and the percentage of declared variables that is never used (which

may be up to %).

. Concluding Remarks

.. Applications

Type inference for C systems has many applications. We have presented one,
literal analysis, in considerable detail in Section .. Here we discuss a selection of
other applications.

One of the most direct applications of type inferencing is in tool support for year
 and Euro conversions. Type inferencing will find a number of types, and match-
ing on names or record structures in these types will classify certain types as “year”,

“month”, “two-digit date”, “currency”, etc. Indeed several of the published year 

solutions [HP, KMUO] search for date-infections by propagating date-seeds via
an equivalence relation between variables that is very similar to inferred type equiv-
alence. Moreover, type inferencing can be used to realize the static date analyser dis-

cussed in [DWQ].
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An application using all types rather than just the date-related ones is migrating
C systems to a typed language, such as Pascal or C.

One step further is migrating C to an object oriented language. A typical
route is to use subsystem classification techniques [Lak] for that purpose, which aim
at decomposing a large system into, potentially reusable, components or classes. This is
generally by applying a numerical clustering algorithm to group syntactic units based

on various interconnection relations. One way is to group procedures based on the
types they use. As Lakhotia [Lak] remarks, however, this technique cannot be used if
the source language does not support types. Type inferencing makes these techniques
available for the C domain as well.

A rather different potential application of type inferencing is during software main-
tenance: if types are inferred both before and after the modifications, a presentation

of the difference between the inferred type sets to the programmer may help to detect
inconsistencies and potential errors: for example, if the new typing scheme unifies two
old types that are perceived as different, the modification made may contain an error.

.. Related Work

A principal source of inspiration to us was Lackwit, a tool for understanding C pro-

grams by means of type inference [OJ]. New in our work is not only the significantly
different source language: Also new is the inference of subtyping for assignments, and
the use of type inference to classify literals.

The approach of Kawabe et al. [KMUO] uses an equivalence relation between
variables to deal with the year  problem, which is similar to our inferred type
equivalence. They pay a lot of attention to noise reduction, but have no solution similar

to our subtyping approach. They formulate their work in terms of C, and do not
provide a formal type system. They discuss year  as an application.

Chen et al. [CTJ+] describe a C variable classification mechanism. They
distinguish a fixed set of categories, such as input/output, constant, local variable etc.
They provide a set of rules to infer these automatically, essentially using data flow
analysis. Their technique is orthogonal to ours: types we infer can be used in local or

global variables, for database output or not, etc.

Newcomb and Kotik [NK] describe a method for migrating C to object ori-
entation. Their approach takes all level  records as starting point for classes. Records

that are structurally equivalent, i.e., matching in record length, field offset, field length,
and field picture, but possibly with different names, are considered “aliases”. Accord-
ing to Newcomb and Kotik, “for complex records consisting of - or more fields, the
likelihood of false positives is relatively small, but for smaller records the probability of

false positives is fairly large.” [NK, p. ]. Our way of type inferencing provides a
complementary way of grouping such  level records together, and will help to reduce
this risk of false positives for small records.

Wegman and Zadeck [WZ] describe a method to detect whether the value of a
variable occurring at a particular point in the program is constant and, if so, what that
value is. Merlo et al. [MGHDM] describe an extension of this method that allows

detection of all constants that can be the value of a particular variable occurrence.
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This differs from our approach which finds all constants that can be assigned to any
variable of a given type. Furthermore, the methods described in both papers take the
flow of control into account where as our approach is flow insensitive (control flow
is completely ignored). Consequently, their results are more precise (e.g., we report

constants that are used in dead code) but their approach is also more expensive.
Gravley and Lakhotia [GL] identify enumeration types that are modelled using

symbolic constants. Their approach is orthogonal to ours since they group constants
which are defined in the same context whereas we group constants based on their usage

in the source code.

.. Future Work

We are currently in the process of extending our work in the following ways:

• Inference of input and output parameters for C sections and paragraphs,
by means of data flow analysis [Moo]. This information can then be used to
refine the inferred subtype relations.

• Extension of the empirical results, in order to further demonstrate the useful-
ness of type inferencing, and to assess the validity of the choices made. In partic-

ular, we want to apply our technique to other C systems and collect quan-
titative data on the inferred types.

• We are working on applying type inferencing to component extraction, follow-
ing [Lak, DK].

• Extension to new languages, most notably Fortran and IBM  assembler.

• Visualization of the inferred equivalence and subtype relations, the typed literal
and enumerations types on the level of C programs as well as visualization

of (the usage of) system-level types in complete C systems.

.. Contributions

In this chapter we have proposed a formal system for inferring types from C

programs, which we explained by means of a number of real-life C fragments. We
formulated rules for inferring type equivalence classes, and we discussed how subtype
relations can be inferred to refine the analysis and deal with, for example, variables

representing lines to be printed or variables simulating input parameters. We discussed
a number of applications, most notably the use of type inference to introduce variables
for literals occurring in statements. We have implemented the type inference rules in
the A+S Meta-Environment [Kli, DHK] and successfully applied this tool to

a real life, , lines of code C system.
 This work is reported on in the next chapter (Chapter ).
 Support for object identification that is based on the combination of inferred types with concept analysis

is presented in Chapter .
 The visualization of these aspects in the context of using types to support software exploration and

re-documentation is described in Chapter .
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C       
An Empirical Study into

COBOL Type Inferencing

F or a typical COBOL program, the data division consists of % of the lines
of code. Automatic type inference can help to understand the large collec-

tions of variable declarations contained therein, showing how variables are re-
lated based on their actual usage. The most problematic aspect of type inference

is pollution, the phenomenon that types become too large, and contain variables
that intuitively should not belong to the same type.

The aim of the chapter is to provide empirical evidence for the hypothesis that
the use of subtyping is an effective way for dealing with pollution. The main
results include a tool set to carry out type inference experiments, a suite of metrics

characterizing type inference outcomes, and the conclusion that only one instance
of pollution was found in the case study conducted. The work presented in this
chapter was published earlier as [DM].

. Introduction

In this chapter, we will be concerned with the variables occurring in a C program.
The two main parts of a C program are the data division, containing declarations
for all variables used, and the procedure division, which contains the statements per-
forming the program’s functionality. Since it is in the procedure division that the ac-

tual computations are made, one would expect this division to be larger than the data
division. Surprisingly, we found that in a typical C system this is not the case: the
data division often comprises more than % of the lines of code. We even encoun-
tered several programs in which % of the lines of code were part of the data division.

 For three different systems, each approximately , LOC, we found averages of %, %, and %,
respectively.
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(As we have seen in the previous chapter, one reason for this is that C does not
distinguish between type and variable declarations.)

These figures have two implications. First of all, they suggest that only a subset of
all declared variables are actually used in a C program. If % of the lines are

variable declarations, it is unlikely that the remaining % will use all these variables.
Indeed, in the systems we studied, we have observed that less than % of the variables
declared are used in the procedure division.

These figures also indicate that maintenance programmers need help when trying

to understand the data division part. Just reading the data division will involve brows-
ing through a lot of irrelevant information. Thus, the minimal help is to see which
variables are in fact used, and which ones are not. In addition to that, the maintenance
programmer will want to understand the relationships that hold between variables. In

C, some of these relations can be derived from the data division, such as whether
a variable is part of a larger record, whether it is a redefine (alias) of another variable,
or whether it is a predicate on another variable (level ).

But not all relevant relations between variables are available in the data division.

When do two different variables hold values that represent the same business entity?
Can a given variable ever receive a value from some other given variable? What values
are permitted for this variable? Is the value of this variable ever written to file? Is the

value of this variable passed as output to some other program? What values are actually
used for a given variable? What are the operations permitted on a given variable?

In strongly typed languages, questions like these can be answered by inspecting the
types that are used in a program. First, a type helps to understand what set of values is

permitted for a variable. Second, types help to see when variables represent the same
kind of entities. Third, they help to hide the actual representation used (array versus
record, length of array, ...), allowing a more abstract view of the variable. Last but
not least, types for input and output parameters of procedures immediately provide a

“signature” of the intended use of the procedure.

Unfortunately, the variable declarations in a C data division suffer from a
number of problems that make them unsuitable to fulfill the roles of types as dis-
cussed above. In C, it is not possible to separate type definitions from variable

declarations. This has three unpleasant consequences. First, when two variables need
the same record structure, this structure is repeated. Second, whenever a data division
contains a repeated record structure, the lack of type definitions makes it difficult to
determine whether that repetition is accidental (the two variables are not related), or

whether it is intentional (the two variables should represent the same sort of entity).
Third, the absence of explicit types leads to a lack of abstraction, since there is no way
to hide the actual representation of a variable into some type name.

In short, the problem we face with C programs is that types are needed to

understand the myriads of different variables, but that the C language does not
support the notion of types.

 For the M system under study in this chapter, on average % of the variables declared in a
program were never used, the percentages ranging from .% for the smallest up to % for the largest
program.
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In Chapter , we have proposed a solution to this problem. Instead of deriving
type information from the data division, we perform a static analysis on the programs
to infer types from the usage of variables in the procedure division. The basic idea
of type inference is simple: if the value of a variable is assigned or compared to an-

other variable, we want to infer that these two variables should have the same type.
However, just inferring a type equivalence for every assignment will not do. As an ex-
ample, a temporary string value could receive values from names, streets, cities, etc.,
which should all have different types. Via transitivity of equivalence, however, all vari-

ables assigned to that string variable would receive the same type. This phenomenon,
that a type equivalence class becomes too large, and contains variables that intuitively
should not belong to the same type, is called pollution. In order to avoid pollution,
we have proposed to introduce subtyping for assignments rather than type equivalence

(Chapter ).

In this chapter, we will carefully study the problem of pollution, and test the hy-
pothesis that it is handled by deriving subtypes rather than equivalences. This is done
by presenting statistical data illustrating the presence of pollution, and the effective-

ness of subtyping for dealing with it. In particular, we look at the interplay between
subtyping and equivalence (For example, consider two types TA and TB . When we have
TA 4 TB , and TB 4 TA, we get TA ≡ TB — How does this affect pollution?).

Moreover, we will discuss how relational algebra can be used for implementing

C type inferencing. Relational algebra has recently been proposed as a valuable
tool for various reverse engineering and program understanding activities, such as ar-
chitecture recovery [Hol, FKO]. It is based on Tarski’s relational operators [Tar],
such as union, subtraction, relational composition, etc. The use of relational algebra

helps us to completely separate C-specific source code analysis from calculating
with types. Moreover, it enables us to specify type relationships at an appropriate level
of abstraction.

All experiments are done on M, a real-life C/ system from the

banking environment. This system consists of , lines of code; with all copy-
books (include files) expanded (unfolded), it consists of , lines of code. It con-
forms to the C- standard, which is the most widely used C version. Com-
pared to a C code base of  million lines we have available, M contains

fairly representative C code (it is neither the worst nor the best code).

. Type Inference

In this section, we summarize the essentials of C type inferencing: a more com-
plete presentation is given in Chapter . We start by describing the primitive types

that we distinguish. Then, we describe how type relations can be derived from the
statements in a single C program, and how this approach can be extended to
system-level analysis leading to inter-program dependencies. Finally, we show how the
analysis can be extended to include types for literals, discuss the notion of pollution,

and conclude with an example.
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.. Primitive Types

We distinguish three primitive types: () elementary types such as numeric values or
strings; () arrays; and () records. Initially every declared variable gets a unique prim-

itive type. Since variable names qualified with their complete record name must be
unique in a C program, these names can be used as labels within a type to en-
sure uniqueness. Furthermore, we qualify variable names with program or copybook
names to obtain uniqueness at the system level. We use TA to denote the primitive type

of variable A.

.. Type Equivalence

By looking at the expressions occurring in statements, an equivalence relation between

primitive types can be inferred. We distinguish three cases:

. Relational expressions: from a relational expression such as v = u or v ≤ u an
equivalence between Tv and Tu is inferred.

. Arithmetic expressions: from an arithmetic expression such as v +u or v ∗u an

equivalence between Tv and Tu is inferred.

. Array accesses: from two different accesses to the same array, such as a[v] and
a[u] an equivalence between Tv and Tu is inferred.

When we speak of a type we will generally mean an equivalence class of primitive types.
For presentation purposes, we may also give names to types based on the names of
the variables part of the type. For example, the type of a variable with the name
L100-DESCRIPTION will be called DESCRIPTION-type.

.. Subtyping

By looking at the assignment statements, we infer a subtype relation between primitive
types. Note that the notion of assignment statements corresponds to C state-
ments such as MOVE, COMPUTE, MULTIPLY, etc. From an assignment of the form v

�
= u

we infer that Tu is a subtype of Tv , i.e., v can hold at least all the values u can hold.

.. Union Types

From a C redefine clause, we infer a union type relation between primitive types.

When a given entry v in the data division redefines another entry u, we infer that Tv
and Tu are part of the same union type.

.. System-Level Analysis

In addition to inferring type relations within individual programs, we derive type re-

lations at the system-wide level. We infer that the types of the actual parameters of
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a program call (listed in the C USING clause) are subtypes of the formal parame-
ters (listed in the C LINKAGE section), and that variables read from or written to
the same file or table have equivalent types. Furthermore, we want to ensure that if
a variable is declared in a copybook, its type is the same in all the different programs

that copybook is included in. In order to do this, we derive relations that denote the
origins of primitive types and the import relation between programs and copybooks.
These relations are then used to link types via copybooks.

.. Literals

A natural extension of our type inference algorithm involves the analysis of literals that
occur in a C program. Whenever a literal value l is assigned to a variable v, we

conclude that the value lmust be a permitted value for the type of v. Likewise, when v
and l are compared, l is considered a permitted value for the type of v. Literal analysis
indicates permitted values for a type. Moreover, if additional analysis indicates that
variables in this type are only assigned values from this set of literals, we can infer that

the type in question is an enumeration type.

.. Pollution

The intuition behind type equivalence is that if the programmer would have used a
typed language, he or she would have chosen to give a single type to two different
C variables whose types are inferred to be equivalent. We speak of type pollution
if an equivalence is inferred which is in conflict with this intuition.

Typical situations in which pollution occurs include the use of a single variable for

different purposes in different program slices; the use of a global variable acting as a
formal parameter, to which a range of different variables can be assigned; and the use
of a PRINT-LINE string variable for collecting output from various variables.

.. Example

Figure . contains a C fragment illustrating various aspects of type inferencing.
The first half contains the declarations of variables, containing their physical types,

i.e., how many bytes they occupy. The second half contains the actual statements from
which type relations between variables are inferred.

Going from bottom to top, we first see (line ) that variable A00-FILLED is com-
pared to N100, from which we infer that they belong to the same type. From line ,
we then infer an additional type equivalence, adding A00-MAX to this equivalence class.

We thus obtain one type, for three different variables. If we also take a look at the
data division, we see that this equivalence is in accordance with their declared picture
layouts (in lines , , and ), which are all numeric data elements. However, we can-
not infer such equivalences from just the pictures, as entirely unrelated data structures

may share the same physical layout (for example, N200 in line ).

An assignment example is given in line , where NAME is assigned to NAME-PART.

Here we infer that the type of NAME is a subtype of NAME-PART. In line , another vari-
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 / variables containing business data.

 01 PERSON-RECORD.

 03 INITIALS PIC X(05).

 03 NAME PIC X(27).

 03 STREET PIC X(18).

 ...



 / variables containing char array of length 40,

 / as well as several counters.

 01 TAB000.

 03 A00-NAME-PART.

 05 A00-POS PIC X(01) OCCURS 40.

 03 A00-MAX PIC S9(03) COMP-3 VALUE 40.

 03 A00-FILLED PIC S9(03) COMP-3 VALUE ZERO.



 ...



 / other counters declared elsewhere.

 01 N000.

 03 N100 PIC S9(03) COMP-3 VALUE ZERO.

 03 N200 PIC S9(03) COMP-3 VALUE ZERO.

 ...



 / procedure dealing with initials.

 R210-VOORLT SECTION.

 MOVE INITIALS TO A00-NAME-PART.

 PERFORM R300-COMPOSE-NAME.



 / procedure dealing with last names.

 R230-NAME SECTION.

 MOVE NAME TO A00-NAME-PART.

 PERFORM R300-COMPOSE-NAME.



 / procedure for computing a result based on the

 / value of the A00-NAME-PART.

 / Uses A00-FILLED, A00-MAX, and N100 for array indexing.

 R300-COMPOSE-NAME SECTION.

 ...

 PERFORM UNTIL N100 > A00-MAX

 ...

 IF A00-FILLED = N100

 ...

Figure .: Excerpt from a real-life C program.
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able, INITIALS, is assigned to NAME-PART as well, giving rise to a second subtype rela-
tionship, now between INITIALS and NAME-PART. In this way, INITIALS and NAME share
a common supertype (NAME-PART), but there is no direct relationship inferred between
them. If we look at the declared physical layout we see that all three are strings of a

different length (in lines , , and ). NAME-PART is the largest, capable of accepting
values from both INITIALS and NAME.

In fact, NAME-PART is a global variable acting as a formal parameter for the proce-
dure R300-COMPOSE-NAME (C does not support the declaration of parameters for
procedures). What we infer is that the type of the actual parameter is a subtype of
the formal parameter. Just deriving equivalences from assignments would lead to pol-

lution: it would give all the actual parameters, in this case the two different concepts
“initials” and “first name”, the same type.

.. Practical Value

C type inferencing provides a theory for grouping variables based on their usage.
This is of great practical value for the understanding and (semi-automated) transfor-

mation of C legacy systems. Example application areas are discussed in Chapter ,
and include the introduction of symbolic names for literal values (per type), extraction
of system interfaces based on parameter types, migration to strongly typed languages
such as Pascal, identification of candidate classes in legacy systems, and type-related

modifications such as the Euro and year  problem.

Another major application is to use type inferencing to support the migration of

C to the new C standard, which is an object-oriented extension of C-
 [ISO]. This new version of C does support types, and offers the possibility
of using type definitions. Type inferencing supports the detection of these types in
existing C programs, thus allowing old systems to benefit from the new language

features.

. Implementation using Relational Algebra

This section describes how we use relational algebra to implement type inference for
C systems. We start by giving an overview of the tool architecture. Then, we
describe the facts that are derived from C sources. We continue with a discussion

of how these facts are combined and abstracted to infer more involved type relations.
Finally, we describe the extension of this approach to the system level.

.. Tool Architecture

The set of tools we use for applying type inference to C systems is shown in Fig-
ure .. It separates source code analysis, inferencing and presentation, making it easier
to adapt the toolset to different source languages or other ways of presenting the types

found.
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In the first phase, a collection (database) of facts is derived from the C sources.
For that purpose, we use a parser generated from the C grammar discussed in
[BSVa]. The parser produces abstract syntax trees (ASTs) in a textual representa-
tion called the AF format. These ASTs are then processed using a Java package

which implements the visitor design pattern [GHJV]. The fact extractor itself is a
refinement of this visitor which emits type facts at every node of interest (for example,
assignments, relational expressions, etc.).

In the second phase, the derived facts are combined and abstracted to infer a num-
ber of conclusions regarding type relations. Both facts and conclusions are stored in a
simple ASCII format, as also used in, for example, Rigi [MOTU]. One of the tools

we use for inferring type relations is  [Hol], a calculator for relational algebra
[Tar]. Relational algebra provides operators for relational composition, for com-
puting the transitive closure of a relation, for computing the difference between two
relations, and so on. We use it, for example, to turn the derived type facts into the

required equivalence relation. In addition to relational algebra, we use Unix tools like
sort, uniq, awk, etc. to manipulate the relation files.

In the final phase, we pass information about the type relations to the end-user.
In this chapter, we conduct an analysis of the effects of pollution, for which we collect
and present a range of statistical data. Other options include the generation of data

structures in a language supporting explicit type definitions, and visualization of type
information via graphs.

.. Derived Facts

The different kinds of facts derived from the C sources are listed in Figure ..

The contain and union relations are derived from the data division, the remaining ones
from the procedure division.

Observe that the relations in this figure indicate the degree of language indepen-
dence of type inferencing: it can be applied to any language from which these facts can
be derived. Other languages like Fortran, C, or IBM  assembly, can be analyzed by

Type
relations

Querying

Abstraction
Data structure

extractor

Type statistics
collector

Visualizer

Cobol
sources

Fact
extractor

Figure .: Overview of the type inference tool set.
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relation dom rng description

assign Tv Tu an expression of type Tv is assigned to a variable of

type Tu
expression Tv Tu variables of types Tv and Tu are used in the same

expression

arrayIndex Ta Ti variable of type Ti is used as index in array of type

Ta

contain Tr Tf structured type Tr contains Tf
union Tv Tu types Tv and Tu are part of the same union type

literalAssign Tv l literal l is assigned to a variable of type Tv
literalExp Tv l literal l is compared to a variable of type Tv
arrayLitIdx Ta l literal l is used as index in array of type Ta

Figure .: Derived Facts.

adding a parser and fact extractor for those languages. Furthermore, since the facts
for different languages can easily be combined, this approach allows for the transpar-
ent analysis of multi-language systems where, for example, some parts are written in
C and other parts are written in assembly.

.. Inferred Relations

The resolution process infers relations between types from the facts that were derived
from the C system. Our resolution process is based on relational algebra and is

implemented using  [Hol].

The three key relations inferred are typeEquiv, subtypeOf, and literalType, summa-
rized in Figure .. Besides the relations in Figure ., some auxiliary relations are

inferred. These include: arrayIndexEquiv for equivalence of types through array ac-
cess (if variables i and j are used as indexes for the same array A, their types should
be equivalent), subtypeEquiv for type equivalence through subtyping (if TA 4 TB and
TB 4 TA, we get TA ≡ TB), and transSubtypeOf for the transitive closure of subtypeOf.

The resolution algorithm is outlined in pseudo code in Figure .. The operators
used are those of relational algebra and can be mapped directly to  operators.

Note that function abstraction and unbounded iteration are not available in . For

relation dom rng description

typeEquiv T T type T is equivalent to type T

subtypeOf T T type T is subtype of type T

literalType T l type T contains literal l

Figure .: Inferred Relations.
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arrayIndexEquiv := arrayIndex
-
◦ arrayIndex

typeEquiv := arrayIndexEquiv ∪ expression

subtypeOf := assign

repeat

subtypeEquiv := equiv(subtypeOf+ ∩ (subtypeOf+)-)

typeEquiv := equiv(typeEquiv ∪ subtypeEquiv)

subtypeOf := subtypeOf \ typeEquiv

subtypeOf := subtypeOf ∪ subtypeOf ◦ typeEquiv

∪ typeEquiv ◦ subtypeOf

until fixpoint of (typeEquiv, subtypeOf)

literalType �
= typeEquiv ◦ (literalExp ∪ literalAssign

∪ (arrayIndex
-
◦ arrayLiteralIndex))

fun equiv(R) := (R ∪ R-)∗

Figure .: Outline of the resolution algorithm.

this reason, in the actual implementation the functions were written out explicitly and
bounded iteration is used. The number of iterations was determined heuristically; for

the case study conducted,  iterations were sufficient. We were informed that addition
of unbounded iteration is considered for future releases of .

.. System-Level Types

In order to do system-level type inference, the primitive types have to be unique for
the whole system. As described in Section .., this can be done by qualifying them

with program names. Primitive types derived from copybooks that are included in
the data division should be qualified using the copybook’s name — this ensures that
variables of those types will have the same type in all the programs that this copybook
is included in.

However, this approach does not allow us to deal with system-level type inference
without loading all C sources in memory at once. We would need to analyze

self-contained clusters of programs and copybooks, in order to qualify types with the

relation dom rng description

decl m Tv module m declares Tv
copy m m module m imports m

actualParam P.n Tv nth actual parm. of P has type Tv
formalParam P.n Tv nth formal parm. of P has type Tv

Figure .: Derived System-Level Relations.
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correct names. Such clusters are likely to become as large as the complete system.
To facilitate complete separation of the analysis of copybooks and programs, we

derive all information as before, and add extra facts from C sources concerning
the use of copybooks and declaration of types. The extra relations are described in

Figure ..
Next, we compose the copy and decl relations, and infer a copyOf relation that in-

dicates which types used in a program are actually “copies” of types that were declared
in a copybook (Figure .). This join is done on the imported module field m of the

copy relation with the module field m of the decl relation.
Finally, the copyOf relation between Tp and Tc is interpreted as a substitution on

the derived relations replacing all occurrences of Tp by Tc . This substitution propagates
type dependencies through copybooks.

At this point we have achieved the same database as we would have obtained by
analyzing all sources at once, but now using a modular approach. Such a modular ap-
proach allows us to analyze large industrial-scale systems that are too big to be handled
in memory at once.

Example .. Suppose we derive the following information from programs P and Q:

subtypeOf P.A P.B copy P Z decl Z Z.B

subtypeOf Q.B Q.C copy Q Z

Program P and Q both use variable B and import copybook Z in which B is declared.
Joining the copy and decl relations yields two copyOf facts:

copyOf P.B Z.B copyOf Q.B Z.B

After substituting these in subtypeOf, we get:

subtypeOf P.A Z.B subtypeOf Z.B Q.C

Observe that, via transitivity of the subtypeOf relation, we can now infer that P.A is a
subtype of Q.C, a relation that could not have been found without the propagation through

the copybook.

We have written a dedicated C program to perform the substitution since standard
Unix tools like sed or perl could not handle the amount of substitutions involved.

Time complexity of this program is O(n
�����

n +m
�����

n) (where n is the number

of tuples in copyOf, and m is number of tuples in the database), and its space require-
ments are O(n).

 For example, for M, the copyOf relation contains , tuples.

relation dom rng description

copyOf Tp Tc Tp is a copy of Tc

Figure .: Inferred System-Level Relations.
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. Assessing Derived Facts

In this section we study the nature of the facts that can be directly derived from the
C sources, i.e., without applying the resolution step. This means that we only look

at the intra-module dependencies, and only consider direct subtype relationships, not
transitive ones. This will help us to understand to what extent individual programs
are responsible for causing pollution. In the next section, we will look at inter-module
dependencies, and relationships arising from taking the transitive closure.

The database that is derived from the M sources contains , unique
facts. An overview of these is shown in Figure .. All duplicates were removed, thus,
if variable v is assigned to variable u in two different statements in a certain program,

this results in only one subtype relation between Tv and Tu. The majority of facts are
from decl and contain. Type equivalence and subtype relationships are inferred from
the remaining facts. An interesting observation is that the assign relation is almost 

times as large as the expression relation. This means that variables in a C program

are much more often moved around (assigned) than tested for their value. In this
section, we will particularly look at these assign-facts.

Figure .: Facts derived from M.
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.. Direct Subtypes per Type

A variable that receives values from many different other variables is a potential cause

for pollution. Therefore, in this section we will search for those types that have many
different subtypes, i.e., types of variables that are assigned values from many other
variables.

In Figure . we show, for each program, the highest number of different subtypes
that a single type has. The numbers at the x-axis can be seen as program IDs – they
are given in order of increasing program size. As an example, the program with ID-

number  (one of the smaller programs) has a pulse of length  associated with it, i.e.,
the type with the most different subtypes just has  different subtypes.

The dashed line indicates the average number of subtypes per type. It shows that
most types have just  or  subtypes. To compute the average number of subtypes per
type, only those types that have at least one subtype were taken into account (hence
this average will always be larger than ), ignoring types that were not used at all, or

only in expressions. The overall average number of subtypes is ..

Most programs do not contain types with more than  subtypes; one program

contains a type with an exceptionally large number of  different subtypes. If we look
at the C code underlying these data, we can understand the high maximum of
. This involves the type of a variable called P800-LINE, which is a string of length .
It acts as the formal parameter of a section called Y800-PRINT-LINE. Whenever data is
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Figure .: Max. no. of subtypes per program before resolution.
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to be printed, it is moved into that variable and the Y800-PRINT-LINE section is called.
Type inference concludes that the types of all the variables that are printed this way,
are subtypes of the type of Y800-PRINT-LINE.

.. Direct Supertypes per Type

Another figure of interest consists of the number of supertypes per primitive type, i.e.,
types of variables that are assigned to many other variables. Figure . shows the
number of supertypes per type. Again, most types that have a supertype have one or

two supertypes, the average being .. Most of the maxima are below , but a number
of programs contain types with many more supertypes, for example with , , or 

different ones.

If we look at the C source code, we can explain the role of these types. The
type with  supertypes occurs in a (fairly large) program with ID-number , and

turns out to be the type of a CURSOR variable, used in a  interactive setting. We will
refer to this type as CURSOR-type. The variable of this type navigates through the screen
positions of a terminal. It is compared with, and copied into a number of different
variables representing screen positions of certain fields, such as the position where to

enter the name of a person. All these positions together, each declared with numeric
picture, share one subtype: the CURSOR-type. Thus, the number  is not due to pol-
lution, but rather provides meaningful information for understanding the program,
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namely that all these types share the values of their common CURSOR-subtype. This
CURSOR-mechanism is used by many different programs, and thus is the explanation
for most of the maxima higher than  occurring in Figure ..

One of the non-CURSOR cases occurs in the program with ID-number . It con-
cerns a so-called DESCRIPTION-type which has  different supertypes. It is the type of
an output field of a procedure for reading a value from a particular database. The par-
ticular database contains a wide variety of data, and depending on some of the input

parameters, different sorts of data are returned. Each of these becomes a supertype of
the DESCRIPTION-type.

.. Type Equivalence

In addition to looking at the subtype relations, we can look at the direct type equiv-
alence relations we derive, i.e., we look at types that occur in the same relational or
arithmetic expressions. The statistics derived needed for this is based on fewer input

tuples, as we know from Figure . that there are almost  times fewer expression tuples
than assign tuples. The resulting figure, however, is quite similar to Figure ., so we
omitted the figure.

If we look at the maxima, they are again , , and lower. As with the super-
types, one of the types responsible for this is the CURSOR-type. A variable of this type
is compared with  other variables. Therefore, we conclude that the types of these 

variables must be the same as the CURSOR-type. The resulting type represents a screen

position.

Another type that is equivalent to many other types is the so-called DFHBMEOF-type.

This is the type of a special  variable which has a constant value for a certain
control character. After reading the input entered from a screen, the status characters
for the strings that were read are compared with this  variable. The types of those
status characters are thus equivalent to the type of that  variable in our approach.

. Assessing Inferred Relations

In this section we examine the relations that result from applying the resolution step.
This will help us to understand the merits of resolution and how it affects type pollu-

tion.

Before executing the resolution process, we prepare the derived facts for system-

level analysis. The copyOf relation that is inferred from the copy and decl relations
contains , tuples. The propagation of copyOf information in the derived data-
base takes  seconds. The resolution was done using a  script implementing the
algorithm in Figure . which takes  minutes for the case study at hand (on a Sun

Ultra  (MHz),  Mb memory).

After resolution, the database contains , tuples. An overview of these is
shown in Figure .. For a number of relations (such as arrayIndex or literalExp), the

number of tuples in the resulting database is smaller than before since the substitution
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results in some tuples becoming duplicates. For others, such as subtypeOf, the number
of tuples increases, via propagation of the equivalence relation.

.. Subtype Relation

One of the goals of the resolution process is to improve the subtypeOf relation by re-
moving tuples for which we have more specific information, namely that they are part
of the typeEquiv relation. On the other hand the subtypeOf relation is also extended
with information of the typeEquiv relation. For example, if TA 4 TB and TB ≡ TC then

also TA 4 TC . The percentage of subtypes that are added or removed as a result of both
modifications is shown in Figure ..

In this figure we see that for most programs, resolution reduces the number of
subtypes. The average reduction in these programs is .% with a maximum of .%.
There are however a couple of programs in which the number of subtypes grows. The
average growth in these programs is .% and the maximum is .%. Inspection of

these programs shows that the cause of these large numbers is again the CURSOR that
was earlier described in Sections .. and ... The reason for this is that CURSOR is
the subtype of a lot of types (say set S), and it is equivalent to a number of types (say
set E). Since the resolution process ensures that all types in set E become subtypes of

all the types in set S, the resulting database contains a rather large number of subtypes
(|S| × |E| to be precise) just because of this CURSOR.

Figure .: Information inferred from M.
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As not all variables are used in comparisons (recall that in C it is very common
to just move variables), other types with many sub- or supertypes (such as DESCRIPTION
and P800-LINE) but which are never used in comparisons, play no role of importance
here.

.. Type Equivalence

The typeEquiv partitions types into equivalence classes. An overview of all classes that
occur in M and their sizes is presented in Figure ..

Figure .(a) contains the classes if resolution is only done on a per-program basis,
i.e., without taking system-wide propagation via copybooks and program calls into
account. On this program level, resolution does not have a big influence on these
equivalence classes. The explanation for this is that the classes at the program level

are small and tightly connected, so all relations are already found by analyzing the
code (e.g., if  variables are equivalent, they will all be compared to each other so the
transitive closure does not find new tuples). The maxima are still  and  and the
average class size is . Furthermore, approximately % of the classes have less than 

equivalent elements.

Things get more interesting at the system level presented in Figure .b. The max-

imum class size jumps to , followed by  but the total number of different classes
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drops to , one third of the number of classes before resolution. Again, approxi-
mately % of the classes have less than  equivalent elements.

Inspection of the derived equivalence classes shows that the class with  elements
contains all elements that are equivalent to the CURSOR-type. All CURSOR classes occur-

ring in different programs are taken together, as the underlying CURSOR variable is de-
clared in a copybook. When we look at the code we see that the elements in this class
are typically used in a relational expression with the CURSOR-type, although in some
cases they are both a sub- and supertype of it and therefore inferred to be equivalent.

The next biggest class has  elements and represents a type holding some 

status information. It contains all elements equivalent to the DFHBMEOF-type described
in Section .., again coming from a copybook.

The class with  elements represents the index type for some array type. The
elements in this class were typically found using the rule for array index equivalence.
It contains the primitive types of variables that were used to access arrays in loops and
those that were used for checking array bounds. Here the array variable was declared

in a copybook.

The last class we will discuss here is the one with  elements. This class rep-
resents the so-called RELATION-ID-type and is worth mentioning since it contains a
form of pollution that is not solved by subtyping. The spurious type is the so-called

MORTGAGE-ID-type which is unrelated to the RELATION-ID-type according to the busi-
ness logic. The reason that they end up in the same class is that both types are used as

class # of percent

size classes of total

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%

  .%
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(a) program level
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  .%
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  .%

sum  .%

(b) system level

Figure .: Size and frequency of equivalence classes.
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parameter of a “function” that does a sanity check on the number (-check) and re-
turns the corrected number when necessary. In the call both types become subtypes of
the input type of that function. After the call, the output is moved back so the output
type becomes a subtype of RELATION-ID and MORTGAGE-ID. Since the input and output

type for this function is the same, RELATION-ID becomes a subtype MORTGAGE-ID and
vice versa so they are considered to be equivalent.

We can solve such pollution by deriving an additional cast relation during fact
extraction. Whenever a variable of a supertype is assigned to a variable of a subtype,
we derive that the supertype is casted into the subtype. Furthermore, we can use data

flow analysis to derive what are the input- and what are the output- parameters of a
function. This mechanism also allows us to deal with explicit casts as, for example, can
occur in C programs.

. Related Work

A principal source of inspiration to us was Lackwit, a tool for understanding C pro-
grams by means of type inference [OJ]. Lackwit performs a type analysis of variables

based on their usage. The analysis results are used to find abstract data types, detect
abstraction violations, identify unused variables, and to detect certain types of errors.
New in our work is not only the significantly different source language, but also the

use of subtyping for dealing with pollution, and the use of type inference to classify
literals. Another paper discussing type inference for C is by Sniff and Reps [SR],
who use inferred types to generalize C functions to C++ function templates.

Our approach is also related to various tools for the analysis and correction of the
year  problem where date seeds are tracked through the statements in a program

[HP, NBOS, KMUO]. In year  analysis, preventing pollution (called clas-
sification noise in [KMUO]) is an important issue. We have not been able to find
papers that propose the use of subtyping to do this. This chapter adds a strong empir-
ical basis for using subtyping to reduce pollution.

Recently, two papers appeared which rely on type theory to deal with the year 

problem [RFT, EHM+]. These papers do not address the problem of pollution,
but do contain an interesting algorithm for propagating type information through the
elements of aggregate data structures such as arrays or records. Our approach essen-
tially treats each aggregate as a single scalar value. If, however, two entire records are

moved, types can also be propagated through the individual fields. Such moves may
even cross field boundaries if the two records differ in record layout, or if records are
aliased using C’s redefine statement. [RFT, EHM+] provide an algorithm
that finds a minimal splitting of all aggregates such that types can be correctly prop-

agated for the resulting “atoms”. In the previous chapter (Chapter ), we proposed a
weaker method using an inference rule called substructure completion, which just en-
sures that type equivalences between structurally equivalent aggregates are propagated
to the components. As discussed later, we plan to combine this algorithm with our

type inferencing approach to see if we can further improve the accuracy.

Chen et al. [CTJ+] describe a (semi)-automatic approach for C variable
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classification. They distinguish a fixed set of categories, such as input/output, constant,
local variable etc., and each variable is placed into one or more of these classes. They
provide a set of rules to infer this classification automatically, essentially using data
flow analysis. Their technique is orthogonal to ours: the types we infer can be used for

both local and global variables, for variables that are used for databases access and for
those that are not, etc.

Newcomb and Kotik [NK] describe a method for migrating C to object ori-

entation. Their approach takes all level  records as starting point for classes. Records
that are structurally equivalent, i.e., matching in record length, field offset, field length,
and field picture, but possibly with different names, are called “aliases”. According to
Newcomb and Kotik, “for complex records consisting of - or more fields, the like-

lihood of false positives is relatively small, but for smaller records the probability of
false positives is fairly large.” [NK, p. ]. Our way of type inferencing may help to
reduce this risk, as it provides a complementary way of grouping such  level records
together based on usage.

Wegman and Zadeck [WZ] describe a method to detect whether the value of a
variable occurring at a particular point in the program is constant and, if so, what that
value is. Merlo et al. [MGHDM] describe an extension of this method that allows

detection of all constants that can be the value of a particular variable occurrence.
This differs from our approach which finds all constants that can be assigned to any
variable of a given type. Furthermore, the methods described in both papers take the
flow of control into account where as our approach is flow-insensitive (control flow

is completely ignored). Consequently, their results are more precise (e.g., we report
constants that are used in dead code) but their approach is also more expensive.

Gravley and Lakhotia [GL] identify enumeration types that are modeled using

#define preprocessor directives. Their approach is orthogonal to ours since they
group constants which are defined “in the same context” (i.e., close to each other in
the program text) whereas we group constants based on their usage in the source code.

Concerning the tool used for implementing type inference, there is second suite of
relational algebra tools available from Philips, as described by [FKO]. An alternative
to the use of relational algebra, is to view type inferencing as a graph traversal problem.
A graph querying formalism such as GReQL [KW] can then be used to compute the

closures of several relations. A second alternative is to use one of several program
analysis frameworks. Of particular interest is BANE, the Berkely ANalysis Engine as
described by [AFFS]. BANE provides constraint specification and resolution com-
ponents, which can be to experiment with program analyses in which properties of

types are expressed as constraints.

. Concluding Remarks

.. Contributions

In this chapter, we carried out an empirical study into the relations between variables

established by C type inference. We argued that such relations are necessary in a
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C setting: C programs contain a large number of variable declarations (%
of a program’s lines of code consist of variable declarations), but only half of these
variables are actually used. Inferred types help to understand how variables are used
and how they are related to each other.

The empirical study aimed at finding out how the problem of pollution is handled
by the use of subtyping. Pollution occurs when a counter-intuitive type equivalence
is found for two variables. Since it is impossible to check by hand the hundreds of
type equivalences classes found by type inferencing, we devised a suite of numeric

measurements directing us to potential pollution spots.
We manually inspected, and explained, the results from these measurements. Of

all inferred type equivalence classes, only one contains a clear case of pollution: in
Section .. we discuss how type casts could help to address this problem.

To conduct our experiments, we developed a tool environment permitting all sorts
of experiments. An important new element is the use of relational algebra to do the
inference of type conclusions from derived type facts. Moreover, we devised a mod-
ular approach to infer types for variables playing a system-wide role. Thanks to this

modular approach, system-level type analysis scales up to large systems.

.. Future Work

Now that we have all machinery for conducting large scale type inferencing experi-
ments in place, and now that we understand which data to collect, we are in a position
to apply type inference to more C systems. We intend to do this, and collect
statistical data on other case studies as well.

A question of interest is how we can further improve the accuracy of our type in-
ferencing approach by deconstructing aggregates into “atoms” of the appropriate size,
following the algorithm of [RFT, EHM+]. An important problem to be solved
is how to combine this algorithm with subtyping, in order to minimize the danger of

pollution.
At the moment, we are conducting experiments with new ways of presenting type

relations. One way is to visualize type relations as graphs. We are integrating such
graphs with the C documentation generator covered in [DKa]. This generator

provides an abstract view of C systems, highlighting essential relationships be-
tween programs, databases, screens, etc. Types play an important role in this form of
documentation, as they help to characterize the interfaces of C modules, or the
interplay of variables occurring in the C programs.

 This work on the presentation and visualization of type relations in the context of supporting software
exploration and re-documentation is described in Chapter .





An Empirical Study into C Type Inferencing Contents





C       
Types and Concept Analysis

for Legacy Systems

W e combine type inference and concept analysis in order to gain insight into
legacy software systems. Type inference for COBOL yields the types for vari-

ables and program parameters. These types are used to perform mathematical

concept analysis on legacy systems.

We have developed CONCEPTREFINERY, a tool for interactively manipulating
concepts. We show how this tool facilitates experiments with concept analysis,
and lets reengineers employ their knowedge of the legacy system to refine the re-
sults of concept analysis. The work presented in this chapter was published earlier

as [KM].

. Introduction

Most legacy systems were developed using programming paradigms and languages
that lack adequate means for modularization. Consequently, there is little explicit
structure for a software engineer to hold on to. This makes effective maintenance or
extension of such a system a strenuous task. Furthermore, according to the Laws of

Program Evolution Dynamics, the structure of a system will decrease by maintenance,
unless special care is taken to prevent this [BL].

Object orientation is advocated as a way to enhance a system’s correctness, robust-
ness, extendibility, and reusability, the key factors affecting software quality [Mey].

Many organizations consider migration to object oriented platforms in order to tackle
maintenance problems. However, such migrations are hindered themselves by the lack
of modularization in the legacy code.

A software engineer’s job can be relieved by tools that support remodularization of

legacy systems, for example by making implicit structure explicitly available. Recover-
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ing this information is also a necessary first step in the migration of legacy systems to
object orientation: identification of candidate objects in a given legacy system.

The use of concept analysis has been proposed as a technique for deriving (and
assessing) the modular structure of legacy software [DKb, LS, SR]. This is done
by deriving a concept lattice from the code based on data usage by procedures or pro-

grams. The structure of this lattice reveals a modularization that is (implicitly) availi-
able in the code.

For many legacy applications written in C, the data stored and processed rep-
resent the core of the system. For that reason, many approaches that support iden-
tification of objects in legacy code take the data structures (variables and records) as

starting point for candidate classes [CDDF, FRS, NK]. Unfortunately, legacy
data structures tend to grow over time, and may contain many unrelated fields at the
time of migration. Furthermore, in the case of C, there is an additional disadvan-
tage: since C does not allow type definitions, there is no way to recognize, or treat,

groups of variables that fulfill a similar role. We can, however, infer types for C

automatically, based on an analysis of the use of variables as is described in Chapters 

and . This results in types for variables, program parameters, database records, literal
values, and so on, which can be used during further analysis.

In this chapter, we use the derived type information about the legacy system as

input to the concept analysis. This way, the analysis is more precise than when we use
variables or records as inputs. The concept analysis is used to find candidate classes
in the legacy system. External knowledge of the system can be used to influence the
concepts that are calculated through CR, a tool we have implemented

for this purpose.

All example analyses described are performed on M, a relation admin-
istration subsystem of a large mortgage software system currently in production at
various banks. It is a , LOC C system and uses VSAM files for storing
data. The M system is described in more detail in [DK] and in Chapter .

. Type inference for COBOL

C programs consist of a procedure division, containing the executable statements,
and a data division, containing declarations for all variables used. An example contain-

ing typical variable declarations is given in Figure .. Line  contains a declaration of
variable STREET. Its physical layout is described as picture X(18), which means “a se-
quence of  characters” (characters are indicated by picture code X). Line  declares
the numerical variable N100 with picture 9(3), which is a sequence of three digits (pic-

ture code 9).

The variable PERSON in line  is a record variable. Its record structure is indicated
by level numbers: the full variable has level 01, and the subfields INITIALS, NAME, and
STREET, are at level 03. Line  declares the array A00-POS: it is a single character (picture
X(01)) occurring  times, i.e., an array of length .

When we want to reason about types of variables, C variable declarations suf-

fer from a number of problems. First of all, it is not possible to separate type definitions
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from variable declarations. As a result, whenever two variables have the same record
structure, the complete record construction needs to be repeated. Such practices do
not only increase the chance of inconsistencies, they also make it harder to understand
the program, since a maintainer has to check and compare all record fields in order to

decide that two records indeed have the same structure.
In addition, the absence of type definitions makes it difficult to group variables

that are intended to represent the same kind of entities. On the one hand, all such
variables will share the same physical representation. on the other hand, the converse

does not hold: One cannot conclude that whenever two variables share the same byte
representation, they must represent the same kind of entity.

Besides these problems with type definitions, C only has limited means to
indicate the allowed set of values for a variable (i.e., there are no ranges or enumeration

types). Moreover, C uses sections or paragraphs to represent procedures. Neither
sections nor paragraphs can have formal parameters, forcing the programmer to use
global variables to simulate parameter passing.

To remedy these problems, we have proposed to infer types for C automati-

cally, by analyzing their use in the procedure division. In the remainder of this section,
we summarize the essentials of C type inferencing: a more complete presenta-
tion is given in Chapter . First, we describe the primitive types that are distinguished.
This is followed by a description of the type relations that can be derived from the

statements in a single C program, and how this approach can be extended to
system-level analysis leading to inter-program dependencies. Finally, we show how the
analysis can be extended to include types for literals, discuss the notion of pollution,
and conclude with an example.

.. Primitive Types

The following three primitive types are distinguished: () elementary types such as nu-
meric values or strings; () arrays; and () records. Every declared variable gets assigned
a unique primitive type. Since variable names qualified with their complete record

name must be unique in a C program, these names can be used as labels within
a type to ensure uniqueness. We qualify variable names with program or copybook
names to obtain uniqueness at the system level. In the remainder we will use TA to
denote the primitive type of variable A.

.. Type Equivalence

From expressions that occur in statements, an equivalence relation between primitive
types is inferred. We consider three cases: () relational expressions: such as v = u or
v ≤ u, result in an equivalence between Tv and Tu; () arithmetic expressions: such
as v + u or v ∗ u, result in an equivalence between Tv and Tu; () array accesses: two

different accesses to the same array, such as a[v] and a[u], result in an equivalence
between Tv and Tu.

 In principle the COPY mechanism of C for file inclusion can be used to avoid code duplication
here, but in practice there are many cases in which this is not done.
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 DATA DIVISION.

 / variables containing business data.

 01 PERSON.

 03 INITIALS PIC X(05).

 03 NAME PIC X(27).

 03 STREET PIC X(18).

 ...

 / variables containing char array of length 40,

 / as well as several counters.

 01 TAB000.

 03 A00-NAME-PART.

 05 A00-POS PIC X(01) OCCURS 40.

 03 A00-MAX PIC S9(03) COMP-3 VALUE 40.

 03 A00-FILLED PIC S9(03) COMP-3 VALUE 0.

 ...

 / other counters declared elsewhere.

 01 N000.

 03 N100 PIC S9(03) COMP-3 VALUE 0.

 03 N200 PIC S9(03) COMP-3 VALUE 0.



 PROCEDURE DIVISION.

 / procedure dealing with initials.

 R210-INITIAL SECTION.

 MOVE INITIALS TO A00-NAME-PART.

 PERFORM R300-COMPOSE-NAME.



 / procedure dealing with last names.

 R230-NAME SECTION.

 MOVE NAME TO A00-NAME-PART.

 PERFORM R300-COMPOSE-NAME.



 / procedure for computing a result based

 / on the value of the A00-NAME-PART.

 / Uses A00-FILLED, A00-MAX, and N100

 / for array indexing.

 R300-COMPOSE-NAME SECTION.

 ...

 PERFORM UNTIL N100 > A00-MAX

 ...

 IF A00-FILLED = N100

 ...

Figure .: Excerpt from one of the C programs analyzed.
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When we speak of a type, we will generally mean an equivalence class of primitive
types. For presentation purposes, we will also give names to types based on the names
of the variables part of the type. For example, the type of a variable with the name
L100-DESCRIPTION will be called DESCRIPTION-type.

.. Subtyping

From assignment statements, a subtype relation between primitive types is inferred.

Note that the notion of assignment statements corresponds to C statements such
as MOVE, COMPUTE, MULTIPLY, etc. From an assignment of the form v

�
= u we infer that

Tu is a subtype of Tv , i.e., v can hold at least all the values u can hold.

.. System-Level Analysis

In addition to type relations that are inferred within individual programs, we also infer
type relations at the system-wide level: () Types of the actual parameters of a program

call (listed in the C USING clause) are subtypes of the formal parameters (listed
in the C LINKAGE section). () Variables read from or written to the same file or
table have equivalent types.

To ensure that a variable that is declared in a copybook gets the same type in all
programs that include that copybook, we derive relations that denote the origins of

primitive types and the import relation between programs and copybooks. These re-
lations are then used to link types via copybooks.

.. Literals

An extension of our type inference algorithm involves the analysis of literals that occur
in a C program. When a literal value l is assigned to a variable v, we infer that
the value l must be a permitted value for the type of v. Likewise, when v and l are

compared, value l is considered to be a permitted value for the type of v. Literal
analysis infers for each type, a list of values that is permitted for that type. Moreover,
if additional analysis indicates that variables in this type are only assigned values from
this set of literals, we can infer that the type in question is an enumeration type.

.. Aggregate Structure Identification

When the types of two records are related to each other, types for the fields of those

records should be propagated as well. In our first proposal in Chapter , we adopted
a rule called substructure completion, which infers such type relations for record fields
whenever the two records are identical (having the same number of fields, each of the
same size). Since then, both Eidorff et al. [EHM+] and Ramalingam et al. [RFT]

have published an algorithm to split aggregate structures in smaller “atoms”, such that

 Another (possibly more precise) approach would be to derive a common supertype for all versions that
appear in different programs. Our case studies, however, showed no need for such an approach.
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types can be propagated through record fields even if the records do not have the same
structure.

.. Pollution

The intuition behind type equivalence is that if the programmer would have used a
typed language, he or she would have chosen to give a single type to two different
C variables whose types are inferred to be equivalent. We speak of type pollution

if an equivalence is inferred which is in conflict with this intuition.

Typical situations in which pollution occurs include the use of a single variable for
different purposes in disjunct program slices; simulation of a formal parameter using
a global variable to which a range of different variables are assigned; and the use of a
PRINT-LINE string variable for collecting output from various variables.

The need to avoid pollution is the reason to introduce subtyping for assignments,
rather than just type equivalences. In Chapter , we have described a range of experi-

mental data showing the effectiveness of subtyping for dealing with pollution.

.. Example

Figure . contains a C fragment illustrating various aspects of type inferencing.
It starts with a data division containing the declaration of variables. The second part
is a procedure division containing statements from which type relations are inferred.

In line , variable A00-FILLED is compared to N100, which in line  is compared to
A00-MAX. This results in an equivalence class between the primitive types of these three

variables. Observe that these three variables are also declared with the same picture
(in lines , , and ).

In line , we infer from the assignment that the type of NAME is a subtype of the type
of NAME-PART. From line , we infer that INITIALS is a subtype of of NAME-PART as well,
thus making NAME-PART the common supertype of the other two. Here the three vari-
ables are declared with different pictures, namely strings of different lengths. In fact,

NAME-PART is a global variable simulating a formal parameter for the R300-COMPOSE-NAME
(C does not support the declaration of parameters for procedures). Subtyping
takes care that the different sorts of actual parameters used still have different types.

. Concept Analysis

Concept analysis is a mathematical technique that provides a way to identify groupings

of items that have common features [GW]. It starts with a context: a binary table
(relation) indicating the features of a given set of items. From that table, the analysis
builds up so-called concepts which are maximal sets of items sharing certain features.
The relations between all possible concepts in a binary relation can be given using a

concise lattice representation: the concept lattice.

Recently, the use of concept analysis has been proposed as a technique for analyzing

legacy systems [Sneb]. One of the main applications in this context is deriving (and





Contents Concept Analysis

assessing) the modular structure of legacy software [DKb, LS, SR, ST]. This
is done by deriving a concept lattice from the code based on data usage by procedures
or programs. The structure of this lattice reveals a modularization that is (implicitly)
available in the code. In [DKb], we used concept analysis to find groups of record

fields that are related in the application domain, and compared it with cluster analysis.

In the remainder of this section we will explain concept analysis in more detail.

.. Basic Notions

We start out with a set M of items, a set F of features, and a binary relation (table)
T ⊆ M×F indicating the features possessed by each item. The three tuple (T ,M,F)
is called the context of the concept analysis. In Figure . the items are the field names,

and the features are usage in a given program. We will use this table as example context
to explain the analysis.

For a set of items I ⊆M, we can identify the common features, written σ(I), via:

σ(I) = {f ∈ F | ∀i ∈ I
�
(i, f ) ∈ T}

For example, σ({ZIPCD,STREET}) = {P}.

Likewise, we define for F ⊆ F the set of common items, written τ(F), as:

τ(F) = {i ∈M | ∀f ∈ F
�
(i, f ) ∈ T}

For example, τ({P, P}) = {STREET}.

A concept is a pair (I, F) of items and features such that F = σ(I) and I = τ(F). In
other words, a concept is a maximal collection of items sharing common features. In

our example, the pair ({PREFIX,INITIAL,TITLE,NAME}, {P}) is the concept of those
items having feature P, i.e., the fields used in program P.

 The literature generally uses object for item, and attribute for feature. In order to avoid confusion with
the objects and attributes from object orientation we have changed these names into items and features.

Items \ Features P P P P

NAME ×

TITLE ×

INITIAL ×

PREFIX ×

CITY × ×

STREET × ×

NUMBER ×

NUMBER-EXT ×

ZIPCD ×

Figure .: The list of items and their features.
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items features

c zipcd number-ext number street city prefix initial

title name

c zipcd number-ext number street city p

c street p p

c city p p

c prefix initial title name p

c p p p p

Figure .: All concepts identified for Figure ..

c0

features:

items:

c1

features: P4

items: ZIPCD
NUMBER-EXT

NUMBER

c4

features: P1

items: PREFIX
INITIAL
TITLE
NAME

c2

features: P3

items: STREET

c3

features: P2

items: CITY

c5

features:

items:

Figure .: Lattice for the concepts of Figure ..
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All concepts that can be identified from Figure . are summarized in Figure .. The
items of a concept are called its extent, and the features its intent.

The concepts of a given table are partially ordered via:

(I, F) ≤ (I, F) a (I ⊆ I a F ⊆ F)

For example, for the concepts in Figure ., we see that ⊥ = c ≤ c ≤ c ≤ c = >.
This partial order allows us to organize all concepts in a concept lattice, with meet ∧

and join ∨ defined as

(I, F)∧ (I, F) = (I ∩ I, σ(I ∩ I)

(I, F)∨ (I, F) = (τ(F ∩ F), F ∩ F)

The visualization of the concept lattice shows all concepts, as well as the relation-
ships between them. For our example, the lattice is shown in Figure ..

In such visualizations, the nodes only show the “new” items and features per con-
cept. More formally, a node is labeled with an item i if that node is the smallest concept

with i in its extent, and it is labeled with a feature f if it is the largest concept with f
in its intent.

For a thorough study of the foundations of concept analysis we refer the reader to

[GW].

. Combine Types and Concepts

In [DKb] concept analysis was used to find structure in a legacy system. The vari-

ables of a C system were considered items, the programs features, and the “vari-
able used in program” property as a relation. Figure . is an example of such a re-
lation, and Figure . show the corresponding lattice. This lattice can be seen as a
candidate object oriented design of the legacy system. The concepts are individual

classes and related concepts can be seen as subclasses or class associations.

The identification of variables in different programs was performed by comparing
variable names, and variable declarations. If two variables shared a particular substring

they were considered equal. This works well for systems that employ a coding standard
which forces similar names for similar variables but fails horribly for systems where
variable names are less structured. In this chapter this problem is solved by taking the
types (as described in Section .) of these variables, and relating them to programs in

various ways.

.. Data for Concept Analysis

Before describing the concept experiments performed, first the relations derived from
the legacy source will be explained. The four extracted relations are varUsage, typeE-

quiv, transSubtypeOf and formalParam. varUsage is the relation between a program and
the variables that are used in that program. typeEquiv is the relation between a type
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name (the name of a type equivalence class) and a variable that is of this type. transSub-

typeOf is the relation between a type and the transitive closure of all its supertypes, i.e.
between two types where the second is in the transitive closure of all the supertypes
of the first. formalParam is the relation between a program and the types of its formal

parameters. An overview of these relations is given in Figure ..

In the remainder of this section the set of all programs, variables, and types in a
system will be denoted P , V , and T , respectively.

.. Experiments Performed

Type Usage

The first experiment performed is exactly the experiment performed in [DKb], as
described earlier. The type usage per program is taken as the context relation, instead
of variable usage. This results in a lattice where the programs that use exactly the same

set of types will end up in the same concept, programs that use less types will end up
in a concept below, and programs that use more types will end up in a concept above
that concept.

In order to arrive at the type usage concept lattice the varUsage table is taken as

a starting point. For each variable, its type is selected from typeEquiv such that the
result is a set of relations {(p, t) ∈ P × T |(p, v) ∈ varUsage, (t, v) ∈ typeEquiv}. Then
the types are considered items, and the programs features and the concept analysis is
performed. For the example M system, the resulting concept lattice is shown

in Figure .. The list of items and features is not shown for (obvious) lack of space.

Filtering

Figure . may not be as insightful as we might hope. A way to decrease the complex-
ity of this picture is by filtering out data before performing the concept analysis. A
selection of relevant programs from all programs in a C system can be made as

described in [DK]. C systems typically contain a number of programs that im-
plement low-level utilities such as file I/O, error handling and memory management.
These programs can in general be left out of the analysis, particularly when we are only
interested in the general structure of the system.

Relation name Name of relation element

varUsage program variable

typeEquiv type variable

transSubtypeOf sub super

formalParam program type

Figure .: Derived and inferred relations.
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Filtering out insignificant variables is also possible. Typically, certain records in a
C system contain all data that has to do with customers (and therefor is probably
relevant) while other records may only be used as temporary storage.

Suppose a list of relevant programs is selected and only the data that originated
from a certain set of records is deemed interesting. The first step, filtering out the

uninteresting programs, is easy. All tuples from varUsage that have an irrelevant pro-
gram as their program element are simply ignored. Suppose Prel with Prel ⊆ P is the
set of relevant programs which is derived in some way. Then all types that are re-
lated to the interesting variables need to be determined. Suppose Vrel with Vrel ⊆ V

is the set of all relevant variables. From the relation typeEquiv all types that are re-
lated to a relevant variable are selected. If Trel with Trel ⊆ T is the set of all relevant
types: {t ∈ T |(t, v) ∈ typeEquiv, v ∈ Vrel} Then the type equivalent variables that
are used in the selected relevant programs are selected: {(v,p) ∈ Vrel × Prel|(v′, p) ∈

varUsage, (t, v ′) ∈ typeEquiv, t ∈ Trel}

The result of the experiments with filtered data are much more comprehensible
than those without filtering, basically because there are less concepts to try to under-
stand. Figure . shows the concept lattice for the same system as in Figure ., but
with irrelevant programs filtered out according to [DK]. The relevant data are the

fields of the two records describing the persistent data in the system.

The lattice in Figure . contains some unexpected combinations. Concept  for
instance, contains items that have to do with locations and addresses, but also a birth
date. Close inspections reveals that this is not a case of type pollution, but these vari-
ables are really used in both program (c) (from concept ) and program  (from

concept ). A possible explanation could be that these programs send birthday cards.

It is important to have some way to validate these lattices externally, to perfect the
filter set. For our example system, one program implements a utility routine through
which a lot of variables are passed, causing one type to contain a remarkable large
number of variables. When we filtered out that program, the resulting lattice was

much more intuitive.
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Figure .: Types as items, programs using given types as features.
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Parameter Types

Experiments have been performed on another concept analysis context; the context

that has programs as items and the types of their formal parameter as features. When
concept analysis is performed on this data set, all programs that share exactly the
same set of parameter-types end up in the same concept. If two programs share some
parameter-types, but not all, the shared parameter types will end up in the same con-

cept. These will then form an excellent basis for developing an object oriented view on
the system, as the shared types can be seen as the attributes of a class sharing programs
as methods.

In its simplest version the items and features for these concepts are computed by
just taking formalParam and ignoring the subtype relationship.

As was described in Section ., the relation between actual parameter types and
formal parameter types is inferred as a subtype relation. If the subtype relationship

is ignored, then variables can only be identified as having the same type in different
programs, when they are “passed” through a copybook. That is, if a variable is included
in two different programs from the same copybook, it is considered type equivalent in
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Figure .: Concepts involving relevant programs.
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the two programs. Obviously, this is not the intuition we have when looking at formal
parameters, where we would like to know how the types used in the calling program
propagate to the called program. Therefor, subtyping is considered as type equivalence
when looking at parameter types.

The context for parameter type usage per program while considering supertypes
as equivalent is derived as follows: {(p, v) ∈ P × V |(p, t) ∈ formalParam, (((t ′, t) ∈

transSubtypeOf∧ (t′, v) ∈ typeEquiv)∨ (t, v) ∈ typeEquiv)}.

As described in the previous section, data may be filtered on either relevant pro-
grams or relevant data elements. In that case the context is arrived at as follows:
{(p, v) ∈ Prel × Vrel|(p, t) ∈ formalParam, (((t′, t) ∈ transSubtypeOf ∧(t′, v) ∈ typeE-

quiv)∨ (t, v) ∈ typeEquiv)} for some externally determined value of Prel and Vrel.

An example of a concept lattice showing program as items and the types they use
as formal parameters as features (when supertypes are considered type equivalent)

filtered for the same set of relevant variables as Figure . is shown in Figure ..

In this lattice, concept  is remarkable, because it contains by far the most pro-
grams. This turns out to be caused by the fact that these programs all use “record” as
input parameter. Inspection of the source reveals that “record” is a rather large record,
and that only some fields of this record are actually used in the programs. It is subject

of future work to look at these types of parameters in more detail.
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Figure .: Programs as items, parameters as features.
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. Refinement of Concepts

When concept analysis is used for analyzing software systems, there will be a point
where a user might want to modify an automatically derived concept lattice. For ex-

ample, consider the applications of concept analysis to remodularization of legacy sys-
tems. A maintainer that performs such a task is likely to have knowledge of the system
that is being analyzed. Based on that knowledge, he or she might have certain ideas to
improve the modularization indicated by the derived lattice by combining or ignoring

certain parts of that lattice.

To facilitate the validation of such ideas, we have developed CR, a
tool which allows one to manipulate parts of a concept lattice while maintaining its

consistency. CR defines a set of generic structure modifying opera-
tions on concept lattices, so its use is not only restricted to the application domain
of remodularization or reverse engineering. Figure . shows the application of C-
R on the data of Figure ..

Figure .: Screendump of CR.
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.. Operations on Concept Lattices

We allow three kinds of operations on concept lattices. The first is to combine certain
items or certain features. When we consider the context of the concept analysis, these

operations amount to combining certain rows or columns in the table and recomput-
ing the lattice.

The second operation is to ignore certain items or features. When we consider the
analysis context, these operations amount to removing certain rows or columns and
recomputing the lattice.

The third operation is combining two concepts. This operation has the following
rationale: when we consider concepts as class candidates for an object-oriented (re-
)design of a system, the standard concept lattice gives us classes where all methods in

a class operate on all data in that class. This is a situation that rarely occurs in a real
world OO-design and would result a large number of small classes that have a lot of
dependencies with other classes. The combination of two concepts allows us to escape
from this situation.

On the table underlying the lattice the combination of two concepts can be com-
puted by adding all features of the first concept to the items of the second and vice

versa.

.. Relation With Source

When a concept lattice that was previously derived from a legacy system is manipu-

lated, the relation between that lattice and the code will be weakened:

• Whenever features, items or concepts are combined, the resulting lattice will

represent an abstraction of the source system.

• Whenever features or items are ignored, the resulting lattice will represent a part
of the source system.

The choice to allow such a weakening of this relation is motivated by the fact that

we would rather be able to understand only part of a system than not being able to
understand the complete system at all. However, in order for CR to
be useful in a real-world maintenance situation, we have to take special care to allow a

maintainer to relate the resulting lattice with the one derived directly from the legacy
code. This is done by maintaining a concise log of modifications.

. Implementation

We have developed a prototype toolset to perform concept analysis experiments. An
overview of this toolset is shown in Figure .. The toolset separates source code
analysis, computation and presentation. Such a three phase approach makes it easier
to adapt to different source languages, to insert specific filters, or to use other ways of

presenting the concepts found [DK, DM].
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In the first phase, a collection of facts is derived from the C sources. For that
purpose, we use a parser generated from the C grammar discussed in [BSVa].
The parser produces abstract syntax trees that are processed using a Java package which
implements the visitor design pattern. The fact extractor is a refinement of this vis-

itor which emits facts at every node of interest (for example, assignments, relational
expressions, etc.).

From these facts, we infer types for the variables that are used in the C system.
This step uses the C type inferencing tools presented in Chapter . The derived

and inferred facts are stored in a MySQL relational database [YRK].

In the next phase, a selection of the derived types and facts is made. Such a se-
lection is an SQL queries that results in a table describing items and their features. A

number of interesting selections were described in Section .. The results of these
selections are stored in a repository. Currently, this is just a file on disk.

In the final phase, the contents of the repository are fed into a concept analysis
tool, yielding a concept lattice. We make use of the concept analysis tool that was

developed by C. Lindig from the University of Braunschweig. The concept lattice can
be visualized using a tool that converts it to input for dot [GKNV], a system for
visualizing graphs. The lattices in Figures ., ., . and . were produced this way.

Furthermore, the lattice can be manipulated using CR. This tool

allows a user to select items, features or concepts and perform operations on that selec-
tion. These operations result in updates of the repository. We distinguish the follow-
ing manipulations and describe the actions that are carried out on the repository: ()
combining items or features is done by merging corresponding columns or rows in the

repository; () ignoring items or features is done by removing corresponding columns
or rows in the repository; () combining concepts is done by adding all features of the

 The tool “concepts” is available from http://www.cs.tu-bs.de/softech/people/lindig/.
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Figure .: Overview of the toolset.
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first concept to the items of the second and vice versa. The user interface of C-
R is shown in Figure .. On the left hand side a visualization of the concept
lattice is given. The items, features or concepts that need to be modified can be selected
in this lattice. The right hand side shows all available operations. CR

is implemented in Tcl/Tk [Ous] and Tcldot: an extension for Tcl/Tk that incorpo-
rates the directed graph facilities of dot into Tcl/Tk and provides a set of commands
to control those facilities.

. Related Work

Several methods have been described for modularizing legacy systems. A typical ap-
proach is to identify procedures and global variables in the legacy, and to group these

together based on attributes such as use of the same global variable, having the same
input parameter types, returning the same output type, etc. [CCM, LW, OT,
Sch]. A unifying framework discussing such subsystem classification techniques is
provided by Lakhotia [Lak].

Many of these approaches rely on features such as scope rules, return types, and pa-

rameter passing, available in languages like Pascal, C, or Fortran. Many data-intensive
business programs, however, are written in languages like C that do not have
these features. As a consequence, these class extraction approaches have not been ap-

plied successfully to C systems [CDDF]. Other class extraction techniques have
been developed specifically with languages like C in mind. They take specific
characteristics into account, such as the structure of data definitions, or the close con-
nection with databases [CDDF, FRS, NK]. The interested reader is referred to

[DKb] for more related work on object identification.

Concept analysis has been proposed as a technique for analyzing legacy systems.
Snelting [Sneb, Sne] provides an overview of various applications. Applications
in this context include reengineering of software configurations [Sne], deriving and
assessing the modular structure of legacy software [LS, SR], object identification

[DKb], and reengineering class hierarchies [ST].

The extract-query-view approach adopted in our implementation is also used by
several other program understanding and architecture extraction tools, such as Ciao
[CFKW], Rigi [WTMS], PBS [SCHC], and Dali [KC].

New in our work is the addition of the combination of concept analysis and type
inferencing to the suite of analysis techniques used by such tools. Our own work on

type inferencing started with Chapter , where we present the basic theory for C

type inferencing, and propose the use of subtyping to deal with pollution. In Chap-
ter , we cover the implementation using Tarski relational algebra, as well as an as-
sessment of the benefits of subtyping for dealing with pollution. Type-based analysis

of C, for the purpose of year  analysis, is presented by [EHM+, RFT]:
both provide a type inference algorithm that splits aggregate structures into smaller
units based on assignments between records that cross field boundaries. The inter-
ested reader is referred to Chapters  and  for more pointers to related work on type

inferencing.
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. Concluding Remarks

In this chapter we have shown that the combination of facts derived from legacy source

code, together with types inferenced from those facts, forms a solid base for perform-
ing concept analysis to discover structure in legacy systems. This extends and com-
bines our previous work on type inferencing for legacy systems and object identifi-
cation using concept analysis. We implemented a prototype toolset for performing

experiments. From these experiments, we can conclude that the combination of type
inference and concept analysis provides more precise results than our previous concept
analyses which did not involve types.

The combinations discussed in this chapter are the following concept analysis con-

texts:

. type usage per program

. types of parameters per program

The latter analysis appears to be particularly suitable as a starting point for an object
oriented redesign of a legacy system.

When performing concept analysis to gain understanding of a legacy system, it

proves very helpful if the reengineer is able to manipulate the calculated concepts to
match them with his knowledge of the system, or to remove parts he know to be irrele-
vant. We have implemented CR, a tool that allows a software engineer
to consistently perform this kind of modifications while maintaining a relation with

both the original calculated concepts, and the legacy source code.

.. Future Work

We would like to extend CR to propose a grouping of concepts to the
human engineer to consider when refining the lattice. To this end, we want to experi-
ment with applying cluster analysis algorithms to the concept lattice.

We have discussed two particular concept analysis contexts in this chapter. We

would like to see whether we could use the results of one of these concept analyses
to improve the results of the other. I.e. to take the concept found by looking at the
parameter types of programs and somehow use those to mark relevant and irrelevant
concepts from the variable usage analysis.
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Exploring Legacy Systems

Using Types

W e show how hypertext-based program understanding tools can achieve
new levels of abstraction by using inferred type information for cases

where the subject software system is written in a weakly typed language. We

propose TYPEEXPLORER, a tool for browsing COBOL legacy systems based on these
types.

The chapter addresses () how types, an invented abstraction, can be presented
meaningfully to software re-engineers; () the implementation techniques used
to construct TYPEEXPLORER; and () the use of TYPEEXPLORER for understand-

ing legacy systems, at the level of individual statements as well as at the level of
the software architecture which is illustrated by using TYPEEXPLORER to browse
an industrial COBOL system of , lines of code. The work presented in this
chapter was published earlier as [DM].

. Introduction

Software immigrants, employees that are added to an existing software project in order
to conduct maintenance or development, are faced with the difficult task of under-
standing an existing software system [SH]. Even the original developers of a system

generally have a hard time understanding their own code as time between development
and maintenance goes by. As a consequence, maintenance tasks become difficult, ex-
pensive, and error prone.

To reduce these problems, much research is being invested in the development
of tools to assist in program understanding. One line of research focuses on the
use of hypertext for program comprehension purposes [Bro, DKa, BSL, RV,

SCHC]. Within a hypertext, various layers of abstraction can be integrated, ranging
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from the system’s architecture to the individual statements in the source code. The
maintenance engineer can navigate easily between these, using both top-down and
bottom-up comprehension strategies, as well as the “opportunistic” combination of
these [MV, RV].

Such a hypertext can be seen as a (special form of) system documentation. Part of
it will be hand-written, especially those sections dealing with domain-specific issues or
the system’s requirements. However, documentation at the more technical level should
be generated whenever possible, in order to keep it up to date and consistent with the

sources at all times.
The fundamental problem with documentation generation (and in fact, the key

challenge of reverse engineering) is to arrive at non-trivial levels of abstraction, going
beyond just cross referencing information and source code browsing. Our research

aims at achieving such a level of abstraction by looking at the types that are used in a
software system.

For typed languages, such as Java, C, and Pascal, using types for program com-
prehension is relatively straightforward: types are explicit, and can help to determine

interfaces, function signatures, permitted values for certain variables, etc. Many of
the existing software systems, however, are written in older languages with very weak
type systems. In particular C, the language in which at least % of the world’s
software is written, does not offer the possibility of type definitions. The question

we ask ourselves is whether types nevertheless can help in understanding such C

systems.
The solution we propose is to infer types for C automatically, based on an

analysis of the use of variables as described in Chapter . This results in types for

variables, program parameters, database records, literal values, and so on, which can
be used to understand the relationships between programs, copybooks, databases,
screens, and so on.

In earlier work, we presented an algorithm and toolset for determining types in

C systems (presented in Chapters  and ). The current chapter addresses the
problems involved in integrating inferred types into hypertext-based program under-
standing tools. In particular, we will be concerned with the following three questions:

Presentation: Types are an abstraction not directly present in the (legacy) system —
types do not exist in the code, but must be inferred first. How do we present

this abstraction in such a way that it provides an understandable, meaningful
and useful view on a legacy system?

Implementation: How do we implement tools to obtain this presentation?

Use: What maintenance or program understanding questions can be answered using
such a presentation, not only at the individual module level, but also at the
architectural level?

We will explain how we dealt with these issues while constructing TE,
a tool for exploring C systems using types. In Section . we give an overview

of related work. Section . discusses the theory of type inferencing for C. The
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design of the hypertext structure used by TE is covered in Section .. The
techniques that were used for implementation are described in Section .. We dis-
cuss the usefulness of TE for various program understanding tasks and
describe its application in a , lines of code C case study in Section ..

Finally, we summarize our contributions, and list possibilities for future work in Sec-
tion . .

. Related Work

A growing body of literature on web-based program comprehension exists [Bro,
DKa, BSL, RV, SCHC, DCG+]. Of these, Brown discusses a tool that au-
tomatically creates links between program analysis data and hypertext documentation

[Bro]. CHIME is a generator of tools that automatically insert certain links in source
code elements [DCG+]. PAS is a system that can be used to incrementally add parti-
tioned annotations of software [RV]. Documentu derives documentation from C

sources based on special comment tags added by the programmer [BSL].

DG is a tool for generating hyperlinked visual and textual documentation

from C and batch job sources [DKa]. Distinguishing characteristics of D-
G include extraction based on island grammars rather than full parsing, emphasis
on industrial application, and integration of various abstraction layers, ranging from
source code up to system architecture. We will see later how the type information de-

rived by TE can be integrated with documentation that was generated by
DG.

Many architecture extraction tools (such as Rigi [WTMS], PBS [SCHC], Dali
[KC], and also DG and TE) adopt the extract-query-view ap-
proach, extracting facts from sources, querying a database filled with facts, and pre-

senting these facts in various ways, for example using hypertext. PBS, which has been
applied mostly to analyze C systems such as Linux, uses Tarski relational algebra for
querying, which is also used in the implementation of TE. Dali empha-
sizes the need for an open tool set, in which many different tools can be plugged in,

when necessary. New in our work is the addition of type inferencing to the suite of
analysis techniques used by such tools.

Closest in aims to the integration of type analysis and program understanding is
Lackwit [OJ], a tool for analyzing C programs using type inferencing. Lackwit al-
lows one to ask queries like “Which functions could directly access the representation

of component X of variable Y?” Other work based on type inferencing includes “phys-
ical type checking of C”, which is a stronger form of type checking for type casts in-
volving pointers to structures [CR], and the analysis of Fortran programs in order
to find new type signatures for subroutines [WP]. Type-based analysis of C,

for the purpose of year  analysis, is presented by [EHM+, RFT]: both provide
a type inference algorithm that splits aggregate structures into smaller units based on
assignments between records that cross field boundaries.

 Documentation generation services using DG are available via the Software Improvement Group,
http://www.software-improvers.com.
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Our own work on type inferencing started with Chapter , where we present the
basic theory for C type inferencing. In Chapter , we described an implemen-
tation using Tarski relational algebra. Moreover, we carried out a detailed assessment
of the benefits of using subtyping to deal with the problem of pollution (inferring too

many type equivalences). In this chapter, we do not extend the theory of type infer-
encing: instead we explain how inferred types can be presented using hyper-text, and
used to understand C systems at various levels of abstraction.

More references to related work can be found in [DKa] (documentation gener-
ation) and Chapters  and  (type inference for C).

. Type Inference for COBOL

C programs consist of a procedure division, containing the executable statements,
and a data division, containing declarations for all variables used.

From the perspective of types, C variable declarations suffer from a number of
problems. First of all, it is not possible to separate type definitions from variable dec-

larations. Consequently, when two variables for the same record structure are needed,
the full record construction needs to be repeated. This not only increases the chances
of inconsistencies, it also makes it harder to understand the program, as the main-
tainer has to check and compare all record fields in order to decide that two records

indeed have the same structure.

Furthermore, the absence of type definitions makes it difficult to group variables

that are intended to represent the same kind of entities. Clearly, all such variables will
share the same physical representation. Unfortunately, the converse does not hold:
One cannot conclude that whenever two variables share the same byte representation,
they must represent the same kind of entity.

Besides these problems regarding type definitions, C only has limited means to
indicate the allowed set of values for a variable (i.e., there are no ranges or enumeration
types). Moreover, C uses sections or paragraphs to represent procedures. Neither

sections nor paragraphs can have formal parameters, forcing the programmer to use
global variables for parameter passing.

In Chapter , we propose a method to infer types for C to remedy these prob-
lems. This method automatically infers types for C variables by analyzing the use
of these variables in the procedure division. The remainder of this section summarizes
the essentials of C type inferencing.

.. Primitive Types

We distinguish three primitive types: () elementary types such as numeric values or

strings; () arrays; and () records. Initially every declared variable gets a unique prim-
itive type. Since (qualified) variable names must be unique in a C program, they
can be used as labels within a type to ensure uniqueness. We qualify these names with

 In principle the COPY mechanism of C for file inclusion can be used to avoid code duplication
here, but in practice there are many cases in which this is not done.
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program or copybook names to obtain uniqueness at the system level. We use TA to
denote the primitive type of variable A.

.. Type Equivalence

From expressions occurring in statements, an equivalence relation between primitive

types is inferred. We distinguish three cases:

. Relational expressions such as v = u or v ≤ u result in an equivalence between

Tv and Tu.

. Arithmetic expressions such as v + u or v ∗ u result in an equivalence between
Tv and Tu.

. Array accesses to the same array, such as a[v] and a[u] result in an equivalence
between Tv and Tu.

We will generally speak of a type, meaning an equivalence class of primitive types. We
will give names to types based on the names of the variables that are of that type.
For example, the type of a variable with the name L100-DESCRIPTION will be called
DESCRIPTION-type.

.. Subtyping

From assignment statements a subtype relation between primitive types is inferred.
From the assignment v �

= u we conclude that Tu is subtype of Tv , i.e., v can hold

at least all the values u can hold.

.. Union types

From C redefine clauses, a union type relation between primitive types is inferred.
When an entry v in the data division redefines an entry u, we conclude that Tv and Tu
are part of the same union type.

.. System-Level Analysis

The type relations described before are derived at the program level. We also derive a
number of type relations at the system-wide level: () program parameters: the types of

the actual parameters of a program call (listed in the C USING clause) are subtypes
of the formal parameters (listed in the C LINKAGE section), () file/table access:
variables read from or written to the same file or table have equivalent types, and ()
copybooks: a variable which is declared in a copybook gets the same type in all the

programs that include this copybook.
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.. Literals

Our type inference algorithm can easily be extended with analysis of literals in a C

program. Whenever a literal value l is assigned to, or compared with a variable v, we
infer that l is a permitted value for the type of v. If additional analysis indicates that

variables in this type are only assigned values from this set of literals, we can infer that
the type in question is an enumeration type.

.. Aggregate Structure Identification

Whenever the types of two records are related to each other, types for the individual
fields should be propagated as well. In Chapter , we adopted a rule called substructure
completion, which infers such type relations for record fields whenever the two record
structures are identical (having the same number of fields, each of the same size). Since

then, both Eidorff et al. [EHM+] and Ramalingam et al. [RFT] have published an
algorithm which splits aggregate structures in smaller “atoms”, such that types can be
propagated through record fields even if the records do not have the same structure.

.. Pollution

We speak of type pollution when the types of two variables are inferred to be equivalent
but would have been given different types in case a typed language was used. Typical
situations in which pollution occurs include the use of a single variable for different

purposes in different program slices; the use of a global variable for parameter passing;
and the use of a PRINT-LINE string variable for collecting values from various variables.

Inference of subtypes for assignments, rather than just type equivalences was in-
troduced to avoid pollution. In Chapter , we describe a range of experimental data
showing the effectiveness of subtyping for dealing with pollution.

. Presenting Types in Hypertext

This section describes how types can be presented in a hypertext to support program
understanding. We cover the challenges that need to be addressed, as well as the solu-

tions we adopted in TE.

.. Challenges

Inventing a name for a type

Recall from Section . that a type is an equivalence class of primitive types, and that
each primitive type directly corresponds to a variable declaration. In TE,
we need to invent names for these equivalence classes. One way is to pick an arbitrary
element, and make that the name of the type.

An alternative is to try to distill meaningful names from the variable names in-

volved, by determining the words occurring in them. Such words can be found by
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splitting the variable names based on special characters (’-’, ’_’, etc.) or lexical proper-
ties (e.g., caseChange). The actual splitting should be a parameter of the analysis since
it is influenced by the coding style that is used in a system. Candidate names of a given
type can then be based on the frequency of words that occur in names of variable of

that type. Since we want these names to be as descriptive as possible, one also needs to
consider all combinations of words that occur in variable names. As an example, for
the A00-NAME-PART variable, we not only want to see the words NAME and PART, but also
the word NAME-PART.

Duality of subtyping

Our type inferencing algorithm uses subtyping to avoid pollution. In some cases,
though, there would be no pollution even if plain equivalences between types would be
used. One could even argue that using subtyping in those cases obscures understand-
ing since it creates additional levels of indirection between types that would otherwise

be considered equivalent. Thus, we are faced with the problem that for some types
subtyping is necessary to avoid pollution, whereas for others subtyping should actu-
ally have been type equivalence.

Our solution is to include an additional abstraction layer, the type cluster. A clus-

ter consists of all types that have an equivalence or subtype relation to each other
(effectively regarding the subtyping relation as an equivalence relation). In case the
TE user is not interested in the subtyping details of a particular type, he
can move up to the type cluster level.

Static/dynamic hypertext

We distinguish two versions of the hypertext. In the off-line (static) version all pages
are generated in advance. The advantage of this version is portability; the complete
documentation can be reproduced on a CD, taken anywhere, and browsed on almost
any computer system (only requiring a standard webbrowser). Disadvantages are the

static nature of the hypertext and the lack of dynamic querying.
In the on-line (dynamic) version the pages are generated on the fly based on queries

on a database attached to the links clicked on. When the users makes updates, for
example to improve the name of a type, such changes are propagated immediately.

Advantages of this approach are the ability to generate hypertext based on queries
by the user and the immediate response to changes. Disadvantages are the lack of
portability and relatively high technical requirements on the computer system that is
used for browsing.

What are good starting points for browsing?

To be flexible and generic enough to handle the multitude of program understanding
tasks, the resulting hypertext should support multiple starting points. Example start-
ing points are persistent data stores, program signatures, types matching a given name
pattern (with an effect similar to seeding in year  tools), or a specific variable di-

rectly in the source code. In the off-line version, the top-level index pages should easily





Exploring Legacy Systems Using Types Contents

lead to such starting points. In the on-line version, more flexibility is provided, as
queries can be used to arrive at the desired HTML page.

Annotations

For programs, it is possible in some cases to derive a textual description explaining
their behaviour based on the comment prologue [DKa]. Since types are abstractions
that are not directly present in one particular place in the source code, it is not possible

to find meaningful texts explaining types automatically. Therefore, we give maintain-
ers the ability to add (optional) annotations by hand. In practice, such a feature will be
used mostly for types that play a significant role in the system. Furthermore, there can
be a special annotation allowing a maintainer to improve the name given to a type. In

the on-line version, annotations can be added on the fly, and have immediate effect; in
the off-line mode annotations are incorporated after regeneration.

.. Information Available Per Type

The most important pages in TE are those that explain an inferred type,
so we will first discuss the contents of these pages. An overview of the various page
elements is shown in Figure ..

Pictures

The declared C pictures of primitive types provide information about the bytes

occupied and the intended use (number, character, ...). In most cases, all primitive

Element Available Information

annotation hand-written description of this type

structure the picture or record declaration(s) of variables

of type τ

values all literal values found for τ

type graph visualization of sub and supertypes of τ

usage links to source code lines where a variable or lit-

eral of τ is used

parents links to records with fields of type τ

programs links to programs that use τ

copybooks links to copybooks that use τ

words list of domain concepts extracted from names of

variables of type τ (based on heuristics)

type name suggestion for name of this type based on these

domain concepts

Figure .: Information presented for a type τ.
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types in an equivalence class will have the same picture. If the pictures are different,
this means that the C code using variables of this type relies on coercions, which
may indicate bad programming style or potential programming errors.

Records

If the primitive types of a type τ are all records, the most common case is that all
variables in this type are declared with the same number of fields, each of the same
length. In this case, our rule of substructure completion will infer equivalences be-
tween these field types, If they are of different shape, aggregate structure identification

[EHM+, RFT] can be used to find subfields that are small enough to unify the
various records in τ. Thus, although the primitive records in τ may be of different
shape, we infer one record type with the smallest necessary fields for τ, and list the
fields of τ in its page.

Literals

The inferred literals provide information about the sort of values that are permitted
for this type. Moreover, they show which literal values are actually used in the system
analyzed. Since a supertype τ can hold at least the values of all its subtypes, we also list
the literals in all subtypes of τ.

Usage

In addition to structural information about a type τ, we can provide data on its usage.
We include links to source code lines in which a variable of type τ is used, as well
to those lines in which a literal of type τ is used. Moreover, we include links to the

documentation of all programs and copybooks that use the type.

For types used as fields in other records, we include a link to each of the parent
records.

Type Graphs

An inferred type τ can be related to other types via subtype (or supertype) relation-

ships. As part of the documentation generated for a type τ, we display all sub- and
supertypes of τ in a type graph. An example type graph is shown in Figure .. This
figure comes from the actual type web derived for the case study described in Sec-
tion ..

The nodes in the graph are types: the text in a node is the name chosen for a type.
This name is obtained by picking one of its primitive types as representative. Clicking
on the nodes brings up the page for the type clicked on. The type τ itself is shown in
a (red) ellipse. In Figure . it has name har.feature. An arrow from τ to τ means

that τ is a subtype of τ.

 For presentation purposes, we have translated the variable names from Dutch into English in the figure.
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A number of observations can be made from this graph. First of all, the subtype
relationship on types closely corresponds to the assignment relationship between vari-
ables. Thus, one can read an arrow τ → τ also as: “variables of type τ are assigned
to variables of type τ.”

Second, within the graph, one can recognize groups of related types: in Figure .,

examples are the three kind types on the right, or the four payment types in the middle.

Third, the type selected, har.feature, happens to be a supertype of several other
types. Thus, har.feature can accept values of several different subtypes, dealing with
various sorts of numbers, such as country codes, title codes, etc. Such a type with several
different subtypes is typically the input parameter of a procedure or program, where

each incoming edge corresponds to the subtype of an actual parameter. If we would
not infer subtypes, but equivalences instead, all these types would become the same
(via har.feature).

Fourth, some types have dashed outgoing (or incoming) edges. This means that

these types have other supertypes (subtypes), which are, however, not sub or super-
types of the type selected, har.feature. An example is the left most salutation type.
Its outgoing edge to har.feature means that salutations are moved to features: its
dashed outgoing edge means that salutations are moved elsewhere as well.

Fifth, the type c.num only has outgoing edges. This typically means that

c.num is the output parameter of procedure or section. Furthermore, the fact that
c.num has no incoming edges means that there are no assignments from other types
into c.num. This can mean one of three things for variables of type c.num:

cfibra35.-
payment

cc502.-
num

rar013.-
paymnt-nw

cfibra35.-
payment-old

har006.-
feature

rar001.-
salutation

rar001.-
titlcd

ra31.-
countrycd

rar008.-
kind

ra31.-
countrycd

rar007.-
kind

cfibra03.-
kind

cc700.-
payment

Figure .: Example Type Graph



../CFIBRA35.FIBFKT-INCWYZ/pertype.html
../CC502.C502-NUM/pertype.html
../FAR00101.FAR00101-INCWZ/pertype.html
../CFIBRA35.FIBFKT-INCWYZ-OUD/pertype.html
../HAR006.HAR006-KENMERK/pertype.html
../CFIBRA01.FIBFKT-1-AANHEF/pertype.html
../CFIBRA01.FIBFKT-1-TITLKD/pertype.html
../RA31.W100-LANDKD/pertype.html
../RAR008.RAR008-AARD/pertype.html
../RA31.RAR001-LANDKD[]/pertype.html
../RAR007.RAR007-AARD/pertype.html
../CFIBRA03.FIBFKT-AARD/pertype.html
../CC700.C700-INCWYZ/pertype.html
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. They never get a value within the programs analyzed, but only in external li-
braries.

. They do get a value, but only from variables also of type c.num

. They do get a value, yet not as a scalar value, but viewed as an aggregate. This,
is in fact the case for c.num, which is filled as an array, digit by digit.

In short, type graphs can be used to show a number of interesting properties re-
garding types and variables. For the case studies conducted, most of the type graphs
are reasonably small and understandable. The dashed arrows are an important tool to

keep them small: If we would expand all dashed arrows transitively, the type graph for
har.feature would become several hundreds nodes larger.

.. Types in Programs and Copybooks

To present types in the context of programs and copybooks, we integrate them with
system documentation that is automatically derived from legacy sources using D-

G. This hypertext describes the system at various levels of detail. At the program
level we find copybooks that are included, flatfiles read or written, database tables that
are updated or selected, screens that are presented to the user, etc. Zooming in from
the program level, we arrive at the level of the individual sections, copybooks, and

ultimately the full source. Zooming out, we arrive at the subsystem level that groups
collections of batch (JCL) jobs, programs, copybooks, etc. corresponding to subsystem
decompositions as used by the maintenance team (usually visible in naming conven-
tions or directory structure) or as found by automatic clustering techniques. A more

detailed account can be found in [DKa].
One obvious (and straightforward) method of integration is to provide links from

variables and literals occurring in the source code to their inferred type pages.
Moreover, we derive signatures for modules that are called or can be called by oth-

ers. Such a signature documents the intended use of a module. It gives the types of the
formal parameters, which are derived from the variables declared in the C link-
age section. This not only provides information about the formal parameters: the type
graph of each of the formal parameters also contains subtypes for all actual parameters

used in the system analyzed.
Second, we obtain types for the records that are written to or read from persistent

data stores such as files or database tables. In particular in C systems, such records
are likely to hold business-related data. The types of these records indicate how such

business data is used within individual programs, or across the entire software system
analyzed.

Third, we can find type-dependencies between programs and copybooks. Clearly,
if a program uses a variable declared in a copybook, the program depends on that

copybook. A second possibility, which we encountered in our case study, is that a
copybook Cp containing a section (to be included in the procedure division), uses
variables declared in a separate copybook Cd (to be included in the data division).

 Since C sections cannot have parameters, global variables are the only way to pass data to sections.
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This leads to an inferred type dependency between the using copybook Cp and the
declaring copybook Cd. In our case study, the programmers had tried to document
such dependencies in comments in both copybooks — however, our analysis found
additional dependencies not documented at all.

Last but not least, we provide index files to types and programs, listing all words
found in types, type names, types used in signatures, types used in persistent data

stores, and so on. Moreover, we augment existing index files listing all programs,
tables, and so on with additional type information, such as the type signature which
concisely reveals the intended purpose of a program. These index files are included at
the top-level, but also at the subsystem, program, type cluster, and copybook level.

. Implementation

The architecture of the TE tool set is shown in Figure .. The dashed line
between documentation and querying indicates the dynamic queries available in the

on-line TE.

The toolset follows an extract-query-view approach, separating source code anal-

ysis, inferencing and presentation. This approach makes it easier to adapt to different
source languages or to other ways of presenting the types found. The TE

toolset incorporates the C type inferencing tools presented in Chapter .

In the first phase, a collection (database) of facts is derived from the C sources.
For that purpose, we use a parser generated from the C grammar discussed in
[BSVa]. The parser produces abstract syntax trees (ASTs) in a textual representation

called the AF format. These ASTs are then processed using a Java package which
implements the visitor design pattern. The fact extractor is a refinement of this visitor
which emits type facts at every node of interest (for example, assignments, relational
expressions, etc.).

In the second phase, the derived facts are combined and abstracted to infer a num-
ber of conclusions regarding type relations. One of the tools we use for inferring type

relations is , a calculator for Tarski relational algebra [Hol]. Relational algebra

Repository

Querying

Type
Inferencing

Hypertext
Generator

Documentation

Cobol
sources

Fact
extractor

Figure .: Overview of the TE tool set.
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provides operators for relational composition, for computing the transitive closure of
a relation, for computing the difference between two relations, and so on. We use
it, for example, to turn the derived type facts into the required equivalence relation.
Finally we store the derived and inferred facts in the MySQL relational database.

In the final phase, we query the database and generate hypertext documentation.
We use PHP to generate HTML code based on queries on the database. PHP is an

HTML-embedded scripting language that was developed to allow web developers to
write dynamically generated pages quickly. It contains support for a wide range of
databases, including MySQL. The on-line version of TE utilizes PHP as
a server-side scripting engine to generate HTML code dynamically. For the off-line

TE, PHP is used at “compile time” to generate static HTML pages.

The pages documenting types contain pictures of type graphs showing the sub-

and supertypes of a type. These type graphs are coupled to imagemaps that connect
URLs to nodes in the picture allowing the user to navigate through the documenta-
tion by clicking in the graph. These graphs are extracted from the database in a Java
program using the JDBC interface to MySQL. The layout and imagemaps for these

images are generated using the dot graph drawing package [GKNV].

. Using Type Explorer

TE helps a software engineer to take a typeful look at his legacy system. In
this section, we will discuss what sort of questions can be fruitfully answered by navi-
gating through a legacy system using TE. Clearly, TE reveals
so much information that many different questions can be answered using it. We will

focus on two extremes: first, we will see that types are the natural way to reveal struc-
ture at the detailed level of individual variables; next we will cover how TE

helps to get a high level overview of the overall system architecture. Since the latter is,
in our opinion, the most surprising application, we will spend most of our attention

to architectural understanding using types.

Our running example will be a real life C/ system called M of

approximately , lines of code. It consists of an on-line (interactive) part, as well
as a batch part, and it is in fact a subsystem of a larger ( MLOC) system. An example
screen shot from a session using TE is shown in Figure .. It shows the
main index, the page derived for copybook CY700, the page for type cc.c-srt-

adres, as well as the type graph for one of the other types used in CY700.

.. Supporting Maintenance Tasks

One possible way of using TE for M, is to support maintenance
tasks related to specific domain concepts or variables. A (fairly common) example
is to modify the representation of a group of variables (for example, expanding the

 MySQL is available from: http://www.mysql.org/.
 The PHP Hypertext Preprocessor is available from: http://www.php.net/.
 Mark Matthews MySQL JDBC drivers: http://www.worldserver.com/mm.mysql/.
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kind variables in Figure . from two to three digits). Since C has no facilities to
encapsulate such a representation using explicitly declared types, this usually involves
a painful search for all other variables affected by this modification, including those via
chains of assignments. TE helps the maintainer to operate at the higher

type level, which immediately provides all related variables.

.. Architectural Structures

TE can be used to analyze the the as-implemented software architecture
of a system. Bass et al. [BCK] define this as the system’s structure, which com-

prises software components, the externally visible properties of those components,
and the relationships among them. Bass et al. emphasize that there generally are mul-
tiple structures (called architectural structures), and that no one structure holds the
irrefutable claim to being the architecture. Example architectural structures manifest

themselves at the level of modules, processes, data flow, control flow, and so on. We
argue that the type structure of a system is an additional architectural structure, which
is important not only for systems constructed using strongly typed languages, but also

Figure .: The TE in action.





Contents Using Type Explorer

for legacy systems built using untyped languages such as Cobol. TE helps
to inspect this type structure.

Bass et al. [BCK] provide three reasons why software architecture is impor-
tant: () it helps in communication among stakeholders; () it makes design decisions
explicit; and () it provides a transferable abstraction of a system. TE helps
to achieve these goals for type structures as well. To illustrate this, we will navigate

through the M case study, and discuss some architectural issues of interest.

.. Exploring MORTGAGE’s Architecture

When exploring M, a natural starting point is the index listing all programs
together with their inferred signature. When doing this, one observation can be im-
mediately made: The type of the first formal parameter of all batch programs is the

same – the program-fields type. This raises the question why this is so, and what sort
of type this program-fields type is. Inspection shows us that it is a record-type, storing
the name of the program, the current status, the name of the files currently processed,
etc. Moreover, it holds data which is not necessary for the proper execution of the

program. Instead, the data is used to quickly find the program responsible for the
problems if one of the batch runs crashes.

This shared first parameter shown by TE thus immediately leads to
an architectural requirement, namely that the system should support fast repairs and
restarts at the proper position whenever one of the batch runs crashes in the middle of
the night.

TE also shows us that this convention is actually used. The program-

fields record contains one field (the subroutine field) holding the name of the program
currently being run. TE lists all literal values that are used for (i.e., as-
signed to variables of) the type subroutine, This list exactly corresponds to the list of
all batch programs, which is the result of the fact that each program correctly starts by

setting the subroutine field to the program’s name.

It is interesting to observe that M also clearly shows that just looking at

the names of formal parameters is not sufficient. To see why this is so, we take a look
at the on-line part of M (the part invoked from screens via ). The first
parameter of each on-line program is the same, namely DFHCOMMAREA. However, they
all have a different type! All DFHCOMMAREA variables are strings of different lengths.

The specific name DFHCOMMAREA is required by . The first thing each program does
is to assign that variable to a more structured record variable. It is the type of that
structured record variable that TE recognizes as the appropriate type for
the first parameter of the linkage sections, which it displays in the inferred signature.

TE also helps us to understand the meaning of the program param-
eters. For example, many programs in M have integer-valued numbers as

parameters (having picture string S(9) COMP-3). Often, these are in fact enumeration
types, in which case TE recognizes them as such. Several programs turn
out to have a parameter named function, with  to  permitted values. Based on this
function value, the program performs one of several functions. This leads us to two

design decisions: different (but related) functions are grouped into programs, and the
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mechanism used is a switch on an enumerated value, instead of the Cobol feature in
which one program can have multiple entry points.

Last but not least, TE shows how such function enumeration param-
eters are passed from one program to another. As an example, one of the M

programs contains a parameter for determining how a person’s name is formatted
(full first names, one initial only, with title, and so on), and another to format street
names (capitalized, street abbreviated, and so on). One of the top level programs has
 different parameters, corresponding to these formatting codes. The types inferred

exactly show how each of the codes (which are all integer numbers) correspond to the
parameters of the various formatting programs.

In short, TE can be used to discuss whether requirements such as crash
recovery are properly supported, how functionality is grouped in modules, and how

modules are dependent via types. Other architectural issues can be identified using
TE by studying the type relationships between copybooks, the use of data-
base record types across programs, and so on.

. Concluding Remarks

In this chapter, we have shown how hypertext-based program understanding tools can
be achieve higher levels of abstraction by using inferred type information for cases

where the underlying software system is written in a weakly typed language. We pro-
posed TE, a tool for browsing C legacy systems based on these types.
The main contributions of this chapter are in the following areas:

Presentation: Although types are an invented abstraction, not directly present in the
code, we showed how they can be made tangible by displaying a name for them,
associated domain concepts, literal values, and variable use in the source code.

Moreover, type graphs help to see types in context, and view their relation-
ships to other types. Last but not least, type information can be integrated with
pages documenting programs, databases and copybooks, extended them with
type links for program signatures, copybook dependencies, and record types for

persistent data stores.

Implementation: We have described an implementation based on the extract–query–

view paradigm, using Tarski relational algebra, SQL, and PHP to realize both an
on-line and off-line version of TE.

Use: We have shown how navigating through a legacy system using TE

provides useful information both at the detailed level of individual programs
and at the higher level of the overall architecture. We have applied TE-
 to an actual system, and used it to identify type-dependencies between
programs, understand design decisions, and to highlight requirements such as

support for crash recovery.

Our next step will be to distribute TE to industrial users. Undoubt-

edly, this will raise additional requirements and questions, on which we will report in
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the near future. One possible extension is to propagate types via batch jobs (JCL) as
well, thus arriving at better types for the datafiles processed.

Another area of future work is to use TE to support the migration of
C to the new C standard, which is an object-oriented extension of C-.

This new version of C does support types, and offers the possibility of using type
definitions. Our tools provide the technology to take advantage of this new possibility.

Acknowledgments

We would like to thank Jan Heering (CWI) for commenting on an earlier version of
this chapter.

 The first steps towards this migration are presented in the previous chapter (Chapter ) were we combine
inferred types with concept analysis to support object identification.
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C       
Java Quality Assurance by Detecting

Code Smells

S
oftware inspection is a known technique for improving software quality. It
involves carefully examining the code, the design, and the documentation of

software and checking these for aspects that are known to be potentially problem-
atic based on past experience.

Code smells are a metaphor that is used to describe the patterns that identify the
locations in a software system that could benefit from refactoring. In this chapter,
we investigate how the quality of code can be automatically assessed by checking

for the presence of code smells and how this approach can contribute to automatic
code inspection.

We describe the design and implementation of jCOSMO, a prototype code smell
browser that detects and visualizes code smells in JAVA source code and show how
this tool was applied in a case study. The work presented in this chapter was

published earlier as [EM].

. Introduction

Software inspection is a known technique for improving software quality. It was first

introduced in  by Fagan [Fag] and has since been reported on by numerous
others, for example [Rus, GG]. Software inspection involves carefully examining
the code, the design, and the documentation of software and checking these for aspects
that are known to be potentially problematic based on past experience.

It is generally accepted that the cost of repairing a bug is much lower when that bug
is found early in the development cycle. One of the advantages of software inspection is

that the software is analysed before it is tested. Thus, potential problems are identified
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in the beginning of the cycle so that they can be solved early, when it’s still cheap to fix
them.

Traditionally, software inspection is a formal process that involves labor-intensive
manual analysis techniques such as formal code reviews and structured walk-throughs.

Inspection is a systematic and disciplined process that is guided by well-defined rules.
These strict requirements often backfire, resulting in code inspections that are not
performed well or sometimes even not performed at all.

These problems are addressed by tools that automate the software inspection pro-

cess. We distinguish two approaches:

. Tools that automate the inspection process, making it easier to follow the guide-
lines and record the results.

. Tools that perform automatic code inspection, relieving the programmers of the

manual inspection burden.

We concentrate on the second type: tools that perform automatic inspection. Such
tools are interesting since automatic inspection and reporting on the code’s quality
and conformance to coding standards allows early (and repeated) detection of signs of

project deterioration. Early feedback enables early corrections, thereby lowering the
development costs and increasing the chances for success.

.. Code Smells

The existing tools that support automatic code inspection (for example, the well-

known C analyzer L [Joh]) tend to focus on improving code quality from a tech-
nical perspective. The fewer bugs (or defects) there are present in a piece of code, the
higher the quality of that code. From this perspective, code inspection boils down
to low-level bug-chasing and we see this reflected in the tools which typically look

for problems with pointer arithmetic, memory (de)allocation, null references, array
bounds errors, etc.

In this chapter, we will focus on a different aspect of code quality: Inspired by
the metaphor of “code smells” introduced in the refactoring book [Fow], we review

the code for problems that are generally associated with bad program design and bad
programming practices.

Beck and Fowler introduce the metaphor of “code smells” to describe the patterns in
code that indicate that refactoring can be applied. “Refactoring is the process of changing

a software system in such a way that it does not alter the external behavior of the code yet
improves its internal structure“. It improves the design of a software system after it was
written by tidying up code and reducing its complexity. The resulting software is easier
to understand and maintain.

Code smells can be used to answer the question of when and what to refactor.
The idea is not necessarily that no code smells are permitted, but rather that code

 Please note that we do not regard this type of quality to be more important or better than the former.
Both aspects should be considered when trying to improve overall software quality. We decided to focus
on the second type since it is currently much less supported than the first type.
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smells are hints which tell us that refactoring may be beneficial. Some examples of
code smells are: duplicated code, methods that are too long, classes that contain too
much functionality, classes that violate data hiding or encapsulation rules or classes
that delegate the majority of their functionality to other classes.

.. Coding Standards

Another important code quality aspect of large scale software development is confor-
mance to coding standards. Coding standards ensure that everyone in the company
can understand (and work with) each others’ code. If conformance is not achieved,

i.e. if the code is not written and organized according to the programming guide-
lines, it becomes much harder for a large team of programmers to develop, integrate,
and maintain a particular piece of software. This becomes even more important in
an environment where developers are geographically distributed, as is, for example,

commonly found in open source development projects.

Unfortunately, conformance to coding standards is not always easy to achieve in
practice. All developers involved in the project have to know and appreciate the guide-

lines enough to build software according to them. Experience shows that just pub-
lishing a set of programming guidelines is not enough. If developers do not really
understand (the ideas behind) a particular rule, feel restricted by it, or maybe just do
not believe that this rule can be useful, they are more likely to ignore that rule dur-

ing development. In other cases, the set of guidelines may be so large that it is easy
to overlook some of them during development. When the project comes under time
constraints, these effects are often even stronger.

Consequently, overall code quality can be improved by ensuring that the code con-

forms to the coding standards. This process is supported by automatic conformance
checking. By allowing for the definition of additional (project specific) smells, auto-
matic smell detection turns into a conformance checking process.

In this chapter, we investigate whether detection of code smells can contribute to
automatic software inspection. Section . discusses a general approach for build-
ing a software inspection tool that is based on detection of code smells. Section .
introduces the case study that was used to investigate the feasibility of the approach.

Section . describes the implementation of jC, the prototype code smell browser
that was developed in the case study. We conclude with an evaluation of the case study,
an overview of related work, and the discussion of future work and contributions in
Section ..

. Approach

There are a number of important questions that need to be answered before we can
automate detection of code smells in program code and use them for software inspec-
tion: What code smells are we going to detect? How are we going to detect these smells?

How are we going to present the results?
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The remainder of this section discusses these questions and the issues that sur-
round them in more detail. This results in a generic approach for building software
inspection tools that are based on code smell detection.

.. What smells are we going to detect?

In the refactoring book, Beck and Fowler present a list of code smells that they use

to look for refactoring potential [Fow]. These smells range from simple patterns
that everyone discourages, such as “code duplication” and “long methods”, to more
complex patterns that originate from object oriented design issues, such as “parallel
inheritance hierarchies” (if you extend or change one hierarchy you will need to do

the same with the other) and “message chains” (this smell is also known as the Law of
Demeter: a client should not navigate through the object structure, for example, as is
done in the call a.getThis().getThat().foo()).

Other examples of code smells are: “large class” especially w.r.t. classes with many
fields, “feature envy” for methods that access more methods and fields of another class
than of its own class, “switch statements” where inheritance should be used for special-

ization, “data class” for classes that do not contain functionality, only fields, “refused
bequest” for classes that leave many of the fields and methods they inherit unused, and
“data clumps” for clusters of data that are often seen together as class members or in
method signatures but are not grouped in a class.

We can make a few observations about this list that influence our design. First,
such a list of code smells can never be complete: there will always be domains and

projects where a different set of code smells should be applied. For example, in Chap-
ter , we present a number of smells that can occur in unit test code and describe the
corresponding refactorings to remove them.

Second, code smells are subjective: they are based on opinions and experiences.
Creators of a list include those patterns that they found to be useful indicators of po-

tentially problematic aspects of the code. However, not all smells may be supported by
concrete evidence and some of them may be inspired by aesthetic considerations. For
example, some developers strive to minimize the use of typecasts and consider type-
casts to be a smell, while others see absolutely no harm in typecasts and do not want

to regard them as smells.

Finally, code smells are not precise: “One thing we won’t try to do here is give pre-

cise criteria for when a refactoring is overdue. In our experience no set of metrics rivals
informed human intuition” [Fow, p.]. This is related to the subjectivity of code
smells. For each project, one needs to decide what the actual parameters are: for ex-
ample, which variable naming convention are used and what is the maximum size of

classes and methods that is allowed, etc.

From these observations, we can only conclude that one of the main design re-

quirements for a code smell inspection tool is that the smells should be configurable
by the user. As tool builders, we can predefine a number of smells but configurabil-
ity is needed to allow for: () definition of additional smells, () removal of smells
that should not be considered, and () more precise definition of a smell so that its

parameters can be tuned.
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.. How are we going to detect these smells?

Examination of the list of code smells shows that each of them is characterized by a
number of smell aspects that are visible in source code entities such as packages, classes,
methods, etc. A given code smell is detected when all its aspects are found in the code.

We distinguish two types of smell aspects: primitive smell aspects that can be ob-
served directly in the code, and derived smell aspects that are inferred from other as-

pects. An example of a primitive aspect is “method m contains a switch statement”,
an example of a derived aspect is “class C does not use any methods offered by its
superclasses”.

This distinction is used in the design of the smell detection process that is separated
into the following steps:

. Find all entities of interest in the code.

. Inspect them for primitive smell aspects.

. Store information about entities and primitive smell aspects in a repository.

. Infer derived smell aspects from the repository.

This process constructs so-called source models from the program text. These source
models are the abstraction of a system’s source code that is needed for smell detection.
The structure of these source models is described by a meta-model. Our meta-model

was designed with analysis of J programs in mind. It contains information re-
garding program entities such as packages, classes, interfaces, exceptions, methods,
constructors, static blocks, and fields. Furthermore, it describes the relations between
these entities such as composition, inheritance, interface implementation, thrown ex-

ceptions, inner classes, method calls, field accesses, and field assignments.

Our meta-model is very similar to those used by other J analysis tools such
as Shimba [SYM] and RevJava [Flo]. Furthermore, it has considerable overlap
with the Famix meta-model that was designed with generic OO reverse engineering
and refactoring in mind [Tic]. Although our current focus is on the J program-

ming language, we feel that this overlap indicates that it is possible to generalize our
approach to other object oriented languages.

So how do we find and inspect all entities of interest in the code? Since the code
smells are described in terms of program patterns and not in terms of behavior pat-

terns, dynamic (runtime) information is not needed for smell detection. Therefore,
source models can be extracted using static analysis of the program: First, a parser
reads the source code and produces a parse tree containing all structural information
contained in the code. Second, an analyzer reads these parse trees and traverses them

according to the program structure. During this traversal, the analyser visits all pro-
gram entities and stores their structure and relations in the repository. When primitive
smell aspects are observed, these are also stored in the repository.

Note that is is possible to extend our approach to include code smells that need
runtime information for their detection. For this, we need to add a separate extractor

that is used to augment the source models with the necessary dynamic information.
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In general, such a “dynamic” extractor will collect this information using source code
instrumentation. In the case of J analysis, an attractive alternative is monitoring
the runtime environment via its debugging interface.

.. How are we going to present the results?

The next question we have to ask ourselves is how the smells should be presented to
the user after they have been detected. There are several ways in which this can be
done. The intended use of the tool will have substantial influence on the the type of
presentation used. We distinguish three classes of users for the detection results:

a. Programmers that use detected smells during development or maintenance of a
system to improve the code.

b. Code inspectors (or reviewers) that use detected smells to assess the quality of

the code.

c. Tools that use the detected smells to perform further analysis or transformations

on the code, for example, software refactoring tools. Generally, these tools do
not need specific presentations, they just use the repository content for further
processing.

Note that we do not consider software integrators as a separate class but assume that

they switch between the inspector and developer roles.

Smell presentation for programmers should be integrated with the normal devel-
opment process. This can be done without much intrusion by treating smells similarly

to compilation errors and warnings. Depending on the IDE, smells will then be shown
in separate message panes or integrated with the class browser (as for example is done
with compiler errors in IBM’s VisualAge for Java and the new Eclipse platform). An-
other possibility is building a dedicated smell browser that can be used to explore the

repository (similar to the Windows Explorer interface). Since the main focus of this
chapter is software inspection, we will not investigate this approach any further.

Software inspectors have special presentation requirements for assessing the qual-
ity of (potentially large) software systems. They need to be able to get a quick overview
of the complete system, showing if the system contains bad smells, what parts are
affected, and where the concentration of smells is the highest.

We can support these requirements by generating graphical representations of the
software system, in particular by visualizing the source model using structured graphs.

The nodes in these graphs are the program entities of the source models (i.e., packages,
classes, methods, etc.) and the edges are the relations between program entities (i.e.,
composition, inheritance, method calls, etc.). Since these nodes and edges can be
distinguished based on their types, we can represent them using different colors and

selectively hide them in various views on the graph. Graph layout algorithms can be
applied in these views to improve their comprehensibility.

There are a number of options for the visualization of code smells in these graphs.

For example, one can vary node attributes such as color and size for the nodes that
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represent code entities that possess code smells. Furthermore, code smells can be visu-
alized using additional nodes that are connected to the entity in which they are present.
It is also possible to use code smells during the computation of the graph layout, for
example, by ordering them in such a way that nodes with the most smells come first

(i.e., in the upper left corner of the picture).

.. Modular Architecture

As we have seen, it is important that our code smell inspection tool is easily extendable
because new smells are likely to be added during its lifetime. In particular, it should be

possible for users to add their own code smells. We can support this in our design by
using a modular architecture that encapsulates the detection of primitive smell aspects
and inference of derived smell aspects in separate units. With such an architecture,
addition of new code smells is as simple as extending the set of detectors or inference

rules.

The presentation side of our tool should also be robust against addition of new
smells. This has two aspects: () addition of new smells should not break existing
visualizations, and () preferably, we want new smells to be included in the main views

without extra work.

An overview of the architecture is shown in Figure .. In this figure, the boxes
depict inputs and outputs, the ellipses depict processing. Double lined shapes are used

to indicate that this item can occur a number of times (for example, there exist sev-
eral extractors for the different primitive smell aspects but only one extractor for the
program structure).

. Case Study

To investigate the feasibility of the described approach, we have performed a case study
in which we developed a prototype software inspection tool that is based on code smell
detection and applied it on a J software system.

The system analysed, called CT, is a tool for developing  / dimensional

animations of facial expressions [RHN]. It was originally developed as a research
prototype at the CWI under the direction of Paul ten Hagen. The research group has
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Figure .: Architecture of code smell browser.
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formed a spinoff company and is in the process of reviewing their code intensively in
preparation for releasing it as a commercial product.

One of the principal software engineers involved in this task consulted with us
to see whether we could provide tool support for refactoring and quality assurance.

Based on our discussions and guided by the company’s coding standards, we have
added detection of some specific code smells to our prototype. The remainder of this
section discusses these additional smells in more detail.

.. Instanceof as Code Smell

In J, the instanceof operator is used to check that an object is an instance of a
given class or implements a certain interface. These are considered code smell aspects
because a concentration of instanceof operators in the same block of code may indi-
cate a place where the introduction of an inheritance hierarchy or the use of method

overloading might be a better solution.

We have found two typical patterns in which this occurs: The first is characterized
by a sequence of conditional statements that test an object for its type. When the type

is found, the object is cast to that type and a method is called. This can be refactored
by introducing a common interface that defines the method and lets the runtime en-
vironment call the appropriate method using dynamic method dispatch (also known
as late binding).

The second pattern is characterized by a method that takes a variable of the type
Object (the supertype of all J classes) as a parameter and has a body which con-
tains a sequence of conditional statements that perform different actions depending
on the object’s type. In this case the original method can be broken up into a series

of overloaded methods, each taking one of the types tested for before as a parameter.
This removes the instanceof statements, making the code more modular and easier to
understand.

.. Typecast as Code Smell

Another code smell that was added for the case study involves typecasts. Typecasts are
used to explicitly convert an object from one class type into another. Many people
consider typecasts to be problematic since it is possible to write illegal casting instruc-
tions in the source code which cannot be detected during compilation but result in

runtime errors.

One typical pattern where typecasts create this smell can be observed when objects
are stored in one of the container classes from the J API. Because these classes are
written as generic containers for objects of any type, items are automatically upcasted

to their generic supertype Object when they are put in a container. When the pro-
grammer retrieves items from a container, they have to be explicitly downcasted to
whatever type they used to be. However, since this type is not always known (and stor-
age methods accept all types of objects), it is possible to perform illegal casting which

results in a runtime error.
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This pattern can be remediated by creating a wrapper around the container that is
specific to the type that the container is going to hold. This way, casts are hidden in the
wrapper class, and static type checking makes sure that the correct type is put into the
container. In addition, the wrapper class can get a descriptive name that makes it clear

what objects are contained. This is especially useful if the container is passed around
in the program.

. Prototype Implementation

To illustrate the approach described in Section ., we have implemented jC, a
prototype code smell browser. This tool was created following the architecture de-

scribed in Figure .. It consists of two main phases: the code smell extraction and
the visualization. During extraction, the source code is parsed and a source model is
generated that describes program structure and code smells. This source model is read
during visualization to generate different views on the source code and its smells.

.. Extraction

The extraction of program structure and primitive smell aspects was implemented us-

ing the A+S Meta-Environment [BDH+], an environment for developing lan-
guage centered tooling that was developed at the CWI (Centre for Mathematics and
Computer Science) in the Netherlands under the direction of Paul Klint. This environ-
ment supports the generation of parsers, syntax directed editors and language process-

ing tools such as interpreters, type-checkers and source-to-source transformations. It
takes two types of input: () language syntax definitions written in the formalism S

[Vis] and () language processing definitions written in the term rewriting language
A [BHK].

The parser generator produces generalized LR (GLR) parsers. Generalized parsing

allows definition of the complete class of context-free grammars instead of restricting
it to a non-ambiguous subclass such as LL(k), LR(k) or LALR(), which is common
to most other parser generators [Tom]. This allows for a more natural definition
of the intended syntax because a grammar developer no longer needs to encode it in

a restricted subclass. Moreover, since the full class of context-free grammars is closed
under composition (unlike restricted subclasses), generalized parsing allows for better
modularity and syntax reuse. For more information on S, we refer to [Vis].

Programming in A is done in a functional fashion by means of term rewriting:
rules that describe how a given term can be translated into another term. These rewrite
rules can be defined using pattern matching on concrete syntax defined in the S

grammar. The patterns can contain variables that are bound during matching and can
be reused to build the reduct. The use of concrete syntax has the advantage that the
extractor writer does not have to learn a new language for processing terms.

For our prototype, we have instantiated the A+S Meta-Environment using an
S definition of the J grammar and a set of A modules that specify the process-

ing that is needed for extraction of program structure and primitive smell aspects. The
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extraction is performed in two steps: first, the J input is parsed using a parser gen-
erated from the S grammar. Then the parse trees are processed using term rewriting
traversals in A to derive the desired source model. This model describes the structure
and primitive smell aspects detected in the code. The source models are represented

in plain text in the three tuple notation that is known as RSF (Rigi Standard Format).
We have chosen to analyse J source code instead of J byte-code as is done

by most other tools that operate on J software. This choice has a number of advan-
tages:

• Source code analysis allows us to treat parts of software systems that do not
compile by themselves because of incompleteness. When the source code pars-

ing is based on island grammars, it is even possible to analyse source code that
contains syntax errors (see Chapter ).

• Extraction of program structure and primitive smell aspects from source code
can be expressed using pattern matching over the concrete syntax of the J

programming language. This makes it very easy for users to adapt and extend
the extractor in order to detect new code smells since they do not have to learn
a new language.

• Some coding standards cannot be checked on byte-code since the byte-code
contains less information than the original source code (i.e., regarding layout
and variable names).

In case only the byte-code for a system is available, it can still be analysed with our
tool by first feeding it through a decompiler. However, one can wonder why the code
quality of such a system needs to be assessed in the first place. . .

After extraction of program structure and primitive smell aspects, these facts are
combined and abstracted to infer a number of derived smell aspects regarding code
smells. These derived smell aspects are also stored in the repository. One of the tools
we use for inferring these derived aspects is  [Hol], a calculator for relational

algebra [Tar]. Relational algebra provides operators for relational composition, for
computing the transitive closure of a relation, for computing the difference between
two relations, and so on. We use it, for example, to compute the “refused bequest”
smell where child classes do not use the methods that were offered by their parents.

.. Visualization

The visualization was implemented using the Rigi software visualization tool that was
developed at the University of Victoria, Canada, under the direction of Hausi Müller
[TWSM]. The Rigi infrastructure is based on a general graph model. This graph
model is adapted to a specific domain by defining the entity types and relations of

interest in a domain model. Usually, graphs are created using a parser that extracts
facts from a software system and stores them in this graph model using Rigi Standard
Format (RSF). The graphs are visualized using a programmable graph editor.

Generally, Rigi graphs consist of the artifacts that software engineers use to un-

derstand a software system. Examples are software components such as subsystems,
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procedures, variables, and the dependencies between them, such as composition, calls,
and control- and data-flow. For our prototype, a new domain was added that describes
the structure of J software systems and their code smell aspects.

Unfortunately, it is not possible in Rigi to vary the color or size of a node to indicate

that it possesses a smell; all nodes of a given type have the same color and all nodes
have the same size. Therefore, we choose to present smells as additional nodes that are
connected to the code entities that possess them. Each smell has its own node type,
which has a distinct color in the graph. An advantage of this visualization is that it is

easy to see which parts of the system have the most smells, and would benefit most
from refactoring.

An alternative approach is to store code smell information as attributes of a node.

We did not use this method since these attributes have no visual representation in the
graph editor. Generally, they are used for querying the graph and their values can be
inspected in a separate window.

To present the results of smell detection, we have extended the Rigi user interface

with a separate jC toolbar from which the user can browse the detected smells
and invoke all dedicated jC functionality. This includes various visualizations
that provide customized views of extracted data and special filtering functions that can
be used to show or hide certain nodes, arcs or labels. Moreover it provides a special

“pruning” function that allows the user to select a particular subgraph and hide the
rest.

Figure .: Complete smell graph for a test system.





Java Quality Assurance by Detecting Code Smells Contents

The first view provided shows all the packages, classes, interfaces, methods and
constructors, and their attached smell nodes. This gives a basic overview of the system
and the distribution of the code smells. An example of this view is shown in Figure ..

This figure shows the complete smell detection graph for a small test system consisting

of  classes, and approximately  lines of code.
A disadvantage of the previous view is that it does not scale up well for large sys-

tems. Therefore, we provide an improved view where class members such as methods
and constructors are collapsed into their enclosing classes. Smell nodes are shown at-

tached to their containing class (if a method contains a smell, it is “inherited” by the
class that contains the method). By using a spring layout algorithm, it becomes clear
where the code smells are clustered in the system. An example of this view is shown
in Figure .. This figure shows the collapsed smell detection graph for CT

( classes, , LOC). The class nodes in this view are so-called composite nodes:
to view the smell distribution within a class, the user can double-click the class and a
new view is opened which shows that class with its members and their smells.

For clarity, we have decided to hide node labels in these views. They can be redis-

 Please note that this figure shows a greyscale screendump of a view that was developed for color displays.
The color version is available at: http://www.cwi.nl/projects/renovate/javaQA/wcre/curvedraw.gif.

 The color version is available at: http://www.cwi.nl/projects/renovate/javaQA/wcre/chartoon.gif.

Figure .: Collapsed smell graph for CT.
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played at any time via the jC user interface or by using a command. All typecast
smell nodes are labeled with the types they are casting to and from (when known).
This information is used by a number of filtering functions that hide certain typecasts
or show only casts to a certain type. Using these functions, which are also accessible

via the jC user interface, a user can quickly and easily see where each kind of
typecast is concentrated.

A third view orders the program entities based on code smells instead of program
structure. It uses the number of smells that were detected in an entity to determine
its place in the graph layout. The nodes in these graphs are ordered in a grid: all
packages are arranged on the top row, distributed along an x-axis according to the

average number of smells they contain. All classes are arranged on a single row below
that, distributed in the same way. Finally, all methods in the system are arranged on
the bottom row according to the number of smells they contain.

To prevent cluttering of the graph, this view hides the containment and inheritance
arcs. Furthermore, all smells are collapsed into their containing nodes. After selecting
a node in the view, the user can filter the graph using jC’s prune command.

Pruning leaves only the parents and children of the selected node. Thus, by pruning
after selecting a method node, one sees the class and package in which it is defined,
whereas pruning after selecting a class node shows all methods of that class and the
package in which it is defined, and pruning after selecting a package node shows all

classes and methods in that package.

. Concluding Remarks

.. Evaluation

The CT system consists of , LOC (without comments or empty lines)
and  classes. The extraction step takes about  sec. on a computer with an AMD
Athlon processor (. Ghz) and  Mb main memory running linux ..-. The

extracted source model contains , facts.

Because of the number of classes and methods involved, the most useful view for

examining CT is the one that collapses all members into their classes while
leaving the smell nodes attached to the class. This view is shown in Figure .. Many
code smells were indicated (shown as dark nodes in the figure).

Using node filtering, we have examined the distribution of each separate smell
without disturbing the layout of the graph. This immediately revealed that all but two
of the instanceof nodes were clustered in one class. Opening this class node revealed

that within the class the instanceofs were fairly evenly distributed between the meth-
ods. This suggested that they were not linked to a switch statement, but that this might
be code that could benefit from the introduction of overloaded methods. Inspection
of the source code showed that such a refactoring could be performed.

It was also clear that most of the switch statements were in the same package. This
might be a hint that some of these statements may be switching on the same type and

could be eliminated by the introduction of an inheritance hierarchy.
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Furthermore, the majority of code smells originated from the use of typecasts.
Using the predefined filtering functions, new views were created that show only the
typecast to one particular type at a time. These views showed that there were clusters of
identical typecasts in particular areas of the system which suggests that a small amount

of refactoring could remove a large number of these smells.

Feedback from the CT maintainer was generally positive. He felt that the

jC views were useful for conformance checking and refactoring support. Addi-
tionally, they provided useful information for (re)documenting the system to other
developers and management. He was very interested in being able to repeat detection
after major revisions, so that conformance to coding standards and changes in the

software quality could be monitored.

His only concerns had to do with possible difficulties when installing the tool and
learning the interface. To address these issues, we added the jC toolbar as de-

scribed earlier, as well as a support web page with instructions for downloading, in-
stalling and running the tool and links to available documentation. To make instal-
lation even easier, we are working on a single packaged distribution of jC that

installs all the necessary components.

.. Related Work

Automatic Code Inspection

There are a number of tools that perform some sort of automatic code inspection.

The most well-known include the C analyzer L [Joh] and its J variant JL

[AB] that check for type violations, portability problems and other anomalies such
as flawed pointer arithmetic, memory (de)allocation, null references, array bounds
errors, etc. IllumaSM (formerly known as InstantQA) is a defect analysis service pro-

vided by Reasoning that identifies the location of potential crash-causing and data-
corrupting errors. Besides providing a detailed description of each defect found, they
report on defect metrics by measuring the software’s defect density (the average num-
ber of defects found per thousand lines of source code) and its relation to standard

industry norms.

Generally, these tools focus on improving code quality from a technical perspec-
tive. The fewer bugs (or defects) there are present in a piece of code, the higher the

quality of that code. This differs from our approach which focuses more on code qual-
ity as seen from a program design and programming practice perspective.

More closely related to our approach is RevJava, a J analysis tool developed at
the Software Engineering Research Centre in the Netherlands [Flo]. RevJava per-
forms design review and architectural conformance checking. It reads J byte-code
from which facts are derived and metrics are collected. This information is used to

apply critics to the system that check whether particular design rules were violated. A
large number () of these critics are predefined and users can add their own. Report-
ing is done by means of a class browser that shows the rule violations for each class,
method, etc, or using a browser that starts from the critics and shows all entities that

violate that critic. There is no support for visualization of rule violations which makes
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RevJava less suitable for getting an overview of large software systems.

Software Metrics

Another approach to assessing the quality of software systems is based on software
metrics. Typically, these metrics are computed over facts that were extracted from
the system’s source code, which is similar to our analysis. Chidamber and Kemerer de-

scribe a suite of software metrics for object oriented systems [CK]. Systä et al. report
on using this suite for J quality analysis in their tool Shimba [SYM]. As in our
approach, Shimba represents programs as graphs where the nodes are program enti-
ties. The computed metrics are stored as attributes of a node which can be inspected

in a separate window and used for querying. The metrics are not used to determine
the color or layout of nodes in the graph.

CodeCrawler is a program understanding tool that combines software metrics and
graphs [DDL]. Again, nodes represent program entities, however CodeCrawler’s

distinguishing feature is that it reports on the metrics of that entity by varying the size,
color and position of the nodes in the graph.

There are also a number of commercial tools that use software metrics to com-
pute the complexity and quality of software systems and present results using colored

structure charts, scatterplots, metric charts and Kiviat diagrams. These tools include,
amongst others, the McCabe QA and McCabe Reengineer tools by McCabe & Asso-
ciates, and the Hindsight tool by IntegriSoft.

AntiPatterns

Antipatterns are an extension of the design pattern idea: where design patterns de-

scribe good solutions to frequently occurring problems, antipatterns are patterns that
describe frequently observed bad solutions for a given problem. Antipatterns explain
why that solution looks attractive, why it turns out to be bad, and what positive pat-
terns are applicable instead.

Brown et al. describe a number of antipatterns that can be found in software de-
velopment, software architecture and (software) project management [BMIM]. The
software development antipatterns are very similar to code smells in that they describe
commonly seen patterns in code that could benefit from refactoring. However, an-

tipatterns are generally at a somewhat higher level, referring to source code entities at
the class level or higher.

Examples of development antipatterns include “the blob” for large classes that mo-
nopolize processing, “golden hammer” for the misapplication of a familiar solution for

every possible problem, “poltergeists” for classes with limited responsibility and life-
time, and “cut and paste programming” for duplicate or near-duplicate code.

Refactoring tools

Finally, the work described in this chapter is related to the growing body of work on
tools that support the (automatic) refactoring of software systems. The original refac-

toring tool is the Smalltalk Refactoring Browser that was developed by John Brant
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and Don Roberts [RBJ]. Recently, several other commercial and open-source tools
started to offer refactoring support. These include development environments such
as the Eclipse platform, Borland’s JBuilder and IDEA by IntelliJ and refactoring tools
such as jFactor by Instantiations, ReTool by Chive, and XRefactory that act as add-ons

to popular programming environments.

All these tools have in common that they focus on the actual code transformation
and do not analyse when a certain refactoring can (or should) be applied. The smell
detection described in this chapter could be used to add such an analysis to a program-

ming environment allowing for an “intelligent” refactoring assistant that signals when
a given refactoring can be applied.

.. Future Work

Beck and Fowler describe a number of smells that we can characterize as “maintenance
smells”. What we mean by this is that these smells are not obvious from the code
itself but that they manifest themselves during maintenance of the code. These smells

include:

• Divergent Change: when different parts of a class are changed in different situ-
ations.

• Shotgun Surgery: a smell that occurs when making changes requires changing
many different classes.

• Parallel Inheritance Hierarchies: This is the case when making a new subclass in
one place also makes it necessary to add a new subclass in another place.

Automatic detection of these smells cannot be done by analysing the program code as

was described earlier; one has to analyse the changes that are made to the program to
find out whether the program suffers from these smells. An interesting topic of future
research is to investigate if the data in a configuration management system (esp. ver-
sion managers such as ) could be used to check for these smells. Such an approach

seems feasible since analysis of this type of data has already been done, for example, in
the context of software evolution research [BKPS, EGK+].

.. Contributions

We have discussed the design considerations of a software inspection tool that is based
on code smell detection. We have shown how code smells can be broken up into as-
pects that can be automatically detected. Furthermore, we have described how the

code smell concept may be expanded to include coding standard conformance. We
have investigated the feasibility of the described approach using a case study in which
a prototype tool was developed and applied on a software system.

For the development of our prototype, jC, we have implemented an extend-

able J code smell detector which can be reused in other tools. We have extended
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Rigi with an additional user interface that allows code smell browsing and visualiza-
tion and developed several strategies for visually representing code smells within their
program context.

Since the smell detection is fully automated, it can be tied into the development cy-

cle providing continuous quality assessment and conformance checking. The graph-
ical overviews immediately show the maintainers if the system contains bad smells,
what parts are affected, and where the concentration of smells is the highest. Further-
more, since the analysis does not require the complete application, subsystems can be

inspected before integration. This allows for incremental checking of large software
systems which is especially interesting for distributed development.

Availability

The jC tool is available under the  public license and a distribution can be
downloaded from: http://www.cwi.nl/projects/renovate/javaQA/.
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C       
Refactoring Test Code

T
wo key aspects of extreme programming (XP) are unit testing and merci-
less refactoring. Given the fact that the ideal test code / production code

ratio approaches :, it is not surprising that unit tests are being refactored. We
found that refactoring test code is different from refactoring production code in
two ways: () a distinct set of bad smells is involved, and () improving test code
involves additional test-specific refactorings. To share our experiences with other

XP practitioners, we describe a set of bad smells that indicate trouble in test code,
and a collection of test refactorings to remove these smells. The work presented in
this chapter was published earlier as [DMBK].

. Introduction

“If there is a technique at the heart of extreme programming (XP), it is unit testing”

[Bec]. As part of their programming activity, XP developers write and maintain
(white-box) unit tests continually. These tests are automated, written in the same
programming language as the production code, considered an explicit part of the code,
and put under revision control.

The XP process encourages writing a test class for every class in the system. Meth-
ods in these test classes are used to verify complicated functionality and unusual cir-

cumstances. Moreover, they are used to document code by explicitly indicating what
the expected results of a method should be for typical cases. Last but not least, tests
are added upon receiving a bug report to check for the bug and to check the bug fix
[Bec].

A typical test for a particular method includes four components: () code to set
up the fixture (the data used for testing), () the call of the method, () a comparison
of the actual results with the expected values, and () code to tear down the fixture.

Writing tests is usually supported by frameworks such as JUnit [BG].
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The test code / production code ratio may vary from project to project, but is
ideally considered to approach a ratio of :. In our project we currently have a :
ratio, although others have reported a lower ratio. One of the cornerstones of XP is
that having many tests available helps the developers to overcome their fear for change:

the tests will provide immediate feedback if the system gets broken at a critical place.
The down-side of having many tests, however, is that changes in functionality will
typically involve changes in the test code as well. The more test code we get, the more
important it becomes that this test code is as easily modifiable as the production code.

The key XP practice to keep code flexible is “refactor mercilessly”: transforming
the code in order to bring it in the simplest possible state. To support this, a catalog
of “code smells” and a wide range of refactorings is available, varying from simple

modifications up to ways to introduce design patterns systematically in existing code
[Fow].

When trying to apply refactorings to the test code of our project we discovered
that refactoring test code is different from refactoring production code. Test code has

a distinct set of smells, dealing with the ways in which test cases are organized, how
they are implemented, and how they interact with each other. Moreover, improving
test code involves a mixture of refactorings from [Fow] specialized to test code im-

provements, as well as a set of additional refactorings, involving the modification of
test classes, ways of grouping test cases, and so on.

The goal of this chapter is to share our experience in improving our test code with
other XP practitioners. To that end, we describe a set of test smells indicating trouble

in test code, and a collection of test refactorings explaining how to overcome some of
these problems through a simple program modification.

This chapter assumes some familiarity with the xUnit framework [BG] and

refactorings as described by Fowler [Fow]. We will refer to refactorings described
in Fowler’s book using the format Name (F:page#) and to our test specific refactorings
described in section . using the format Name (#).

. Test Code Smells

This section gives a overview of bad code smells that are specific for test code.

Smell : Mystery Guest

When a test uses external resources, such as a file containing test data, the test is no
longer self contained. Consequently, there is not enough information to understand
the tested functionality, making it hard to use that test as documentation.

Moreover, using external resources introduces hidden dependencies: if some force
changes or deletes such a resource, tests start failing. Chances for this increase when
more tests use the same resource.

 This project started a year ago and involves the development of a product called DG [DKM].
Development is done by a small team of five people using XP techniques. Code is written in Java and we
use the JUnit framework for unit testing.
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The use of external resources can be eliminated using the refactoring Inline Re-
source (). If external resources are needed, you can apply Setup External Resource ()
to remove hidden dependencies.

Smell : Resource Optimism

Test code that makes optimistic assumptions about the existence (or absence) and state
of external resources (such as particular directories or database tables) can cause non-

deterministic behavior in test outcomes. The situation in which tests run fine at one
time and fail miserably another time is not a situation you want to find yourself in.
Use Setup External Resource () to allocate and/or initialize all resources that are used.

Smell : Test Run War

Such wars arise when the tests run fine as long as you are the only one testing but fail
when more programmers run them. This is most likely caused by resource interfer-

ence: some tests in your suite allocate resources, such as temporary files, that are also
used by others. Apply Make Resource Unique () to overcome interference.

Smell : General Fixture

In the JUnit framework a programmer can write a setUp method that will be executed
before each test method to create a fixture for the tests to run in.

Things start to smell when the setUp fixture is too general and different tests access
only part of the fixture. Such setUps are harder to read and understand and may make
tests run more slowly (because they do unnecessary work). The danger of having tests
that take too much time to complete is that testing starts interfering with the rest of

the programming process and programmers eventually may not run the tests at all.

The solution is to use setUp only for that part of the fixture that is shared by all
tests using Fowler’s Extract Method (F:) and put the rest of the fixture in the method
that uses it using Inline Method (F:). If, for example, two different groups of tests

require different fixtures, consider setting these up in separate methods that are ex-
plicitly invoked for each test, or spin off two separate test classes using Extract Class
(F:).

Smell : Eager Test

When a test method checks several methods of the object to be tested, it is hard to read
and understand, and therefore more difficult to use as documentation. Moreover, it

makes tests more dependent on each other and harder to maintain.

The solution is simple: separate the test code into test methods that test only one
method using Fowler’s Extract Method (F:), using a meaningful name highlighting
the purpose of the test. Note that splitting into smaller methods can slow down the

tests because of increased setup and teardown overhead.


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Smell : Lazy Test

This occurs when several test methods check the same method using the same fixture
(but for example check the values of different instance variables). Such tests often only
have meaning when we consider them together, so they are easier to use when joined
using Inline Method (F:).

Smell : Assertion Roulette

“Guess what’s wrong?” This smell comes from having a number of assertions in a test
method that have no explanation. If one of the assertions fails, you do not know which

one it is. Use Add Assertion Explanation () to remove this smell.

Smell : Indirect Testing

A test class is supposed to test its counterpart in the production code. It starts to
smell when a test class contains methods that actually perform tests on other objects
(for example because there are references to them in the class that is to be tested).
Such indirection can be moved to the appropriate test class by applying Extract Method

(F:) followed by Move Method (F:) on that part of the test. The fact that this smell
arises also indicates that there might be problems with data hiding in the production
code.

Note that opinions differ on indirect testing. Some people do not consider it a
smell but a way to guard tests against changes in the “lower” classes. We feel that there

are more losses than gains to this approach: it is much harder to test anything that
can break in an object from a higher level. Moreover, understanding and debugging
indirect tests is much harder.

Smell : For Testers Only

When a production class contains methods that are only used by test methods, these
methods either are not needed and can be removed or are only needed to set up a
fixture for testing. Depending on the functionality of those methods, you may not

want them in production code where others can use them. If this is the case, apply
Extract Subclass (F:) to move these methods from the class to a (new) subclass in
the test code, and use that subclass to perform the tests on. You will often find that
these methods have names or comments stressing that they should only be used for

testing.

Fear of this smell may lead to another undesirable situation: a class without a
corresponding test class. This happens when a developer does not know how to test
the class without adding methods that are specifically needed for the test and does not
want to pollute the production class with test code. Creating a separate subclass helps

to deal with this problem.
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Smell : Sensitive Equality

It is fast and easy to write equality checks using the toString method. A typical way
is to compute an actual result and map it to a string, which is then compared to a
string literal representing the expected value. Such tests, however may depend on
many irrelevant details, such as commas, quotes, and spaces. Whenever the toString

method for an object is changed, tests start failing. The solution is to replace toString
equality checks by real equality checks using Introduce Equality Method ().

Smell : Test Code Duplication

Test code may contain undesirable duplication. In particular the parts that set up test

fixtures are susceptible to this problem. Solutions are similar to those for normal code
duplication as described by Fowler [Fow, p. ]. The most common case for test
code is duplication of code in the same test class. This can be removed using Extract
Method (F:). For duplication across test classes, it may be helpful to mirror the

class hierarchy of the production code into the test class hierarchy. A word of caution
however: moving duplicated code from two separate classes to a common class can
introduce (unwanted) dependencies between tests.

A special case of code duplication is test implication: test A and B cover the same

production code, and A fails if and only if B fails. A typical example occurs when
the production code gets refactored: before this refactoring, A and B covered different
code, but afterwards they deal with the same code and it is not necessary anymore to
maintain both tests.

. Refactorings

Bad smells seem to arise more often in production code than in test code. The main
reason for this is that production code is adapted and refactored more frequently, al-
lowing these smells to escape.

One should not, however, underestimate the importance of having fresh test code.
Especially when new programmers are added to the team or when complex refactor-
ings need to be performed, clear test code is invaluable. To maintain this freshness, test
code also needs to be refactored.

We define test refactorings as changes (transformations) of test code that: () do not
add or remove test cases, and () make test code more readable, understandable, and
maintainable.

The production code can be used as a (simple) test case for the refactoring: If a test
for a piece of code succeeds before the test refactoring, it should also succeed after the

refactoring (and no, replacing all test code by assert(true) is not considered a valid
refactoring). This obviously also means that you should not modify production code
while refactoring test code (similar to not changing tests when refactoring production

code).

While working on our test code, we encountered the following refactorings:


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Refactoring : Inline Resource

To remove the dependency between a test method and some external resource, we
incorporate that resource into the test code. This is done by setting up a fixture in

the test code that holds the same contents as the resource. This fixture is then used
instead of the resource to run the test. A simple example of this refactoring is putting
the contents of a file that is used into some string in the test code.

If the contents of the resource are large, chances are high that you are also suffering

from Eager Test () smell. Consider conducting Extract Method (F:) or Reduce Data
() refactorings.

Refactoring : Setup External Resource

If it is necessary for a test to rely on external resources, such as directories, databases,

or files, make sure the test that uses them explicitly creates or allocates these resources
before testing, and releases them when done (take precautions to ensure the resource
is also released when tests fail).

Refactoring : Make Resource Unique

A lot of problems originate from the use of overlapping resource names, either between
different tests runs done by the same user or between simultaneous test runs done by
different users. Such problems can easily be prevented (or repaired) by using unique

identifiers for all resources that are allocated, for example by including a timestamp.
When you also include the name of the test responsible for allocating the resource in
this identifier, you will have less problems finding tests that do not properly release
their resources.

Refactoring : Reduce Data

Minimize the data that is setup in fixtures to the bare essentials. This offers two ad-
vantages: () it makes them more suitable as documentation, and () your tests will be
less sensitive to changes.

Refactoring : Add Assertion Explanation

Assertions in the JUnit framework have an optional first argument to give an explana-
tory message to the user when the assertion fails. Testing becomes much easier when
you use this message to distinguish between different assertions that occur in the same

test. Maybe this argument should not have been optional. . .

Refactoring : Introduce Equality Method

If an object structure needs to be checked for equality in tests, add an implementation
for the “equals” method for the object’s class. You then can rewrite the tests that use

string equality to use this method. If an expected test value is represented only as a
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string, explicitly construct an object containing the expected value, and use the new
equals method to compare it to the actually computed object.

. Related Work

Fowler [Fow] presents a large set of bad smells and the refactorings that can be
used to remove them. The difference between his work and ours is that we focus on
smells and refactorings that are typical for test code whereas his book focuses more on

production code. The role of unit tests in [Fow] is also geared more toward proving
that a refactoring didn’t break anything than to being used as documentation of the
production code.

Instead of focusing on cleaning test code that already has bad smells, Schneider

[Sch] describes how to prevent these smells right from the start by discussing a
number of best practices for writing tests with JUnit.

The introduction of Mock Objects [MFC] is another possibility for refactoring
more complex tests. With this technique, one replaces parts of the production code

with dummy implementations that both emulate real functionality and enforce asser-
tions about the behavior of the code. This allows the tester to focus on the concrete
code that has to be tested without having to deal with all surrounding code and the
side effects that it may cause.

The C Wiki contains some discussion on the decay of unit test quality and prac-
tice as time proceeds, and on the maintenance of broken unit tests. Opinions vary
between repairing broken unit tests, deleting them completely, and moving them to
another class in order to make them less exposed to changes (which may lead to our

Indirect Testing () smell).

. Conclusions

In this chapter, we have looked at test code from the perspective of refactoring. While

working on our XP project, we observed that the quality of the test code was not as high
as the production code. Test code was not refactored as mercilessly as our production
code, following Fowler’s advice that it is okay to copy and edit test code, trusting our

ability to refactor out truly common items later [Fow, p. ]. When at a later stage
we started to refactor test code more intensively, we discovered that test code has its
own set of problems (which we translated into smells) as well as its own repertoire of
solutions (which we formulated as test refactorings).

The contributions of this chapter are the following:

• We have collected a series of test smells that help developers to identify weak
spots in their test code;

 http://c.com/cgi/wiki?TwoYearItch
 http://c.com/cgi/wiki?RefactorBrokenUnitTests
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• We have composed a set of specific test refactorings enabling developers to make
improvements to their test code in a systematic way.

• For each smell we have given a solution, using either a potentially specialized
variant of an existing refactoring from [Fow] or one of the dedicated test
refactorings.

The purpose of this chapter is to share our experience in refactoring test code of our
ongoing XP project with other XP practitioners. We believe that the resulting smells
and refactorings provide a valuable starting point for a larger collection based on a
broader set of projects. Therefore, we would like to invite readers interested in further

discussion on this topic to the C Wiki.

An open question is how test code refactoring interacts with the other XP practices.
For example, the presence of test code smells may indicate that your production code
has some bad smells. So trying to refactor test code may indirectly lead to improve-

ments in production code. Furthermore, refactoring test code may reveal missing test
cases. Adding those to your framework will lead to a more completer test coverage
of the production code. Another question is at what moments in the XP process test
refactorings should be applied. In short, the precise interplay between test refactoring

and the XP practices is a subject of further research.

 http://c.com/cgi/wiki?RefactoringTestCode
 In the next chapter (Chapter ) we will revisit the video store example from Fowler’s refactoring book

[Fow] and look in more detail into these issues.
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The Video Store Revisited

— Thoughts On Refactoring
and Testing

T
esting and refactoring are core activities in extreme programming (XP). In

principle, they are separate activities where the tests are used to verify that
refactorings do not change behavior of the system. In practice however, they can
become intertwined when refactorings invalidate tests. This chapter explores the
precise relationship between the two. First, we identify which of the published

refactorings affect the test code. Second, we observe that if test-first design is a
way to arrive at well-designed code, “test-first refactoring” is a way to arrive at
a better design for existing code. Third, some refactorings improve testability, and
should therefore be followed by improvements of the test code. To emphasize this,

we propose the notion of “refactoring session” which includes changes to the
code followed by changes to the tests. To guide the developer in the steps to take,
we propose to extend the description of the mechanics of individual refactorings
with consequences for the corresponding test code. The work presented in this

chapter was published earlier as [DM].

. Introduction

Two key activities in extreme programming (XP) are testing and refactoring. In this
chapter, we explore the relationship between these two.

In XP, tests are fully automated, self-checking the validity of their outcome. Besides
for checking correct behavior, tests are intended for documentation purposes. A test
case is a simple scenario with a known outcome, and can be used to understand the
code being tested. Since the tests are required to be run upon every change, their

documentation value is guaranteed to remain up to date [Deu]. Code development
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in XP is done through test-first design: Structuring the test cases guides the design of
the production code.

Extreme programmers improve the design of the system through frequent refac-
toring. Refactorings improve the internal structure of the code without changing its

external behavior. This is done by removing duplication, simplification, making code
easier to understand, and adding flexibility. “Without refactoring, the design of soft-
ware will decay. Regular refactoring helps code retain its shape.” [Fow, p.].

One of the dangers of refactoring is that a programmer unintentionally changes
the system’s behavior. Ideally, it can be verified that this did not happen by checking
that all the tests pass after refactoring. In practice however, there are refactorings that
will invalidate tests (e.g., when a method is moved to another class and the test still

expects it in the original class).

In this chapter, we explore the relationship between unit testing and refactoring.
In Section ., we provide a classification of the refactorings described by Fowler
[Fow], identifying exactly which of the refactorings affect class interfaces, and which

therefore require changes in the test code as well. In Section . we take the video
store example from [Fow], and assess the implications of each refactoring on the
test code. In Section ., we propose test-driven refactoring, which analyzes the test
code in order to arrive at code level refactorings. In Section ., we discuss the rela-

tionship between code-level refactorings and test-level refactorings. In Section . we
integrate these results via the notion of a refactoring session which is a coherent set of
steps resulting in refactoring of both the code and the tests. In Section . we present
a summary and draw our conclusions.

. Types of Refactoring

Refactoring a system should not change its observable behavior. Ideally, this is verified

by ensuring that all the tests pass before and after a refactoring [Bec, Fow].

In practice, it turns out that such verification is not always possible: some refactor-
ings restructure the code in such a way that not all the tests will pass after the refactor-

ing. For example, refactoring can move a method to a new class while some tests still
expect it in the original class (in that case, the code will probably not even compile).
Nevertheless, we do not want to change the tests together with a refactoring since that
will make them less trustworthy for validating correct behavior afterwards.

In the remainder of this section, we will look in more detail at the refactorings
described by Fowler [Fow] to analyse in which cases problems might arise because
the original tests cannot be used after refactoring.

.. Taxonomy

If we start with the assumption that refactoring does not change the behavior of the
system, then there is only one reason why a refactoring can break a test: because the
refactoring changes the interface that the test expects. Note that the interface extends to

all visible aspects of a class (fields, methods, and exceptions). This implies that one has
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to be careful with tests that directly inspect the fields of a class since these will more
easily change during a refactoring.

So, initially, we distinguish two types of refactoring: refactorings that do not
change any interface of the classes in the system and refactorings that do change an

interface. The first type of refactorings have no consequences for the tests: Since the
interfaces are kept the same, tests that succeeded before refactoring will also succeed
after refactoring (if the refactoring indeed preserves the tested behavior).

The second type of refactorings can have consequences for the tests since there
might be tests that expect the old interface. Again, we can distinguish two situations:

Incompatible: the refactoring destroys the original interface. In this case, tests that rely
on the old interface will fail, and in most cases, the code will not even compile. We’ll
have to take measures to re-enable these broken tests.

Backwards Compatible: the refactoring extends the original interface. In this case the

tests keep running via the original interface and will pass if the refactoring preserves
tested behavior. Depending on the refactoring, we might need to add more tests cov-
ering the extensions.

A number of incompatible refactorings that normally would destroy the original
interface can be made into backwards compatible refactorings. This is done by extend-

ing the refactoring so it will retain the old interface, for example, using the Adapter
pattern or simply via delegation. As a side-effect, the new interface will already partly
be tested. Note that this is common practice when refactoring a published interface to
prevent breaking of dependent systems. A disadvantage is that a larger interface has

to be maintained but when delegation or wrapping was used, that should not be too
much work. Furthermore, language features like deprecation can be used to signal that
this part of the interface is outdated.

.. Classification

We have analyzed the refactorings in [Fow] and divided them into the following
classes:

A. Composite: The four big refactorings Convert Procedural Design to Objects, Sep-

arate Domain from Presentation, Tease Apart Inheritance, and Extract Hierarchy
will change the original interface, but we will not consider them in more detail
since they are performed as series of smaller refactorings.

B. Compatible: Refactorings that do not change the original interface. Refactorings
in this class are listed in Figure ..

C. Backwards Compatible: Refactorings that change the original interface and are
inherently backwards compatible since they extend the interface. Refactorings
in this class are listed in Figure ..

 In fact, directly inspection of fields of a class, is a test smell that could better be removed on forehand as
discussed in Chapter .





The Video Store Revisited Contents

Replace Conditional with Polymorphism Split Temporary Variable

Replace Inheritance with Delegation Decompose Conditional

Replace Method with Method Object Preserve Whole Object

Remove Assignments to Parameters Introduce Null Object

Replace Delegation with Inheritance Substitute Algorithm

Replace Data Value with Object Remove Control Flag

Replace Exception with Test Introduce Assertion

Introduce Explaining Variable Extract Class

Change Reference to Value Inline Temp

Change Bidirectional Association to Unidirectional

Replace Nested Conditional with Guard Clauses

Replace Magic Number with Symbolic Constant

Consolidate Duplicate Conditional Fragments

Figure .: Compatible refactorings (type B).

Replace Delegation with Inheritance Self Encapsulate Field

Replace Inheritance with Delegation Push Down Method

Consolidate Conditional Expression Extract Superclass

Replace Record with Data Class Push Down Field

Introduce Foreign Method Extract Interface

Replace Temp with Query Pull Up Method

Pull Up Constructor Body Extract Method

Duplicate Observed Data Pull Up Field

Form Template Method

Figure .: Backwards compatible refactorings (type C).

Change Unidirectional Association to Bidirectional Remove Middle Man

Replace Parameter with Explicit Methods Remove Parameter

Replace Parameter with Method Rename Method

Separate Query from Modifier Add Parameter

Introduce Parameter Object Move Method

Parameterize Method

Figure .: Refactorings that can be made backwards compatible (type D).
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Replace Constructor with Factory Method Encapsulate Collection

Replace Type Code with State/Strategy Encapsulate Downcast

Replace Type Code with Subclasses Collapse Hierarchy

Replace Error Code with Exception Encapsulate Field

Replace Type Code with Class Extract Subclass

Replace Subclass with Fields Hide Delegate

Change Value to Reference Inline Method

Introduce Local Extension Hide Method

Replace Array with Object Inline Class

Remove Setting Method Move Field

Figure .: Incompatible refactorings (type E).

D. Make Backwards Compatible: Refactorings that change the original interface and
can be made backwards compatible by adapting the new interface to old inter-

face. Refactorings in this class are listed in Figure ..

E. Incompatible: Refactorings that change the original interface and are not back-
wards compatible (for example, because they change the types of classes that are
involved). Refactorings in this class are listed in Figure ..

Note that the refactorings Replace Inheritance with Delegation and Replace Delegation
with Inheritance appear both in the Compatible and Backwards Compatible category
since they can be of either class, depending on the actual case.

. Revisiting the Video Store

In this section, we study the relationship between testing and refactoring using a well-
known example of refactoring. We revisit the video store code used by Fowler [Fow,
Chapter ], extending it with an analysis of what should be going on in the accompa-

nying video store test code.
The video store class structure before refactoring is shown in Figure .. It consists

of a Customer, who is associated with a series of Rentals, each consisting of a Movie and
an integer indicating the number of days the movie was rented. The key functionality

Movie

  priceCode: int

Rental

  daysRented: int

Customer

  void statement()

* *

Figure .: Classes before refactoring.
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is in the Customer’s statement method printing a customer’s total rental cost. Before
refactoring, this statement is printed by a single long method. After refactoring, the
statement functionality is moved into appropriate classes, resulting in the structure of
Figure . taken from [Fow, p.].

Fowler emphasizes the need to conduct refactorings as a sequence of small steps. At
each step, you must run the tests in order to verify that nothing essential has changed.
His testing approach is the following: “I create a few customers, give each customer a
few rentals of various kinds of films, and generate the statement strings. I then do a

string comparison between the new string and some reference strings that I have hand
checked”. Although Fowler doesn’t list his test classes, this typically should look like
the code in Figure ..

Studying this string-based testing method, we can make the following observa-

tions:

• The setup is complicated, involving the creation of many different objects.

• The documentation value of the test is limited: it is hard to relate the computa-
tion of the charge of . for movie m to the way in which charges are computed

for the actual movies rented (in this case a childrens and a regular movie, each
with their own price computation).

• The tests are brittle. All test cases include a full statement string. When the
format changes in just a very small way, all existing tests (!) must be adjusted,
an error prone activity we would like to avoid.

Movie

  title: String

  double getCharge(days: int)
  int getPoints(days: int)

Price

  double getCharge(days: int)
  int getPoints(days: int)

NewReleasePrice

  double getCharge(days :int)
  int getPoints(days: int)

NewReleasePrice

  double getCharge(days :int)
  int getPoints(days: int)

NewReleasePrice

  double getCharge(days :int)
  int getPoints(days: int)

Rental

  daysRented: int

  double getCharge()
  int getPoints()

*

Customer

  name: String

  void statement()
  void htmlStatement()
  double totCharge()
  int totPoints()

*

Figure .: Class structure after refactoring.
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In short, the poor structure of the long method necessarily leads to an equally
poor structure of the test cases. From a testing perspective, we would like to be able
to separate computations from report writing. The long statement method prohibits
this: it needs to be refactored in order to be able to improve the testability of the code.

This way of reasoning naturally leads to the application of the Extract Method refac-

toring to the statement method. Fowler comes to the same conclusion, based on the
need to write a new method printing a statement in HTML format. Methods to extract
include getCharge for computing the charge of a rental, and getPoints for computing
the “frequent renter points”.

Extract Method is of type B, the compatible refactorings, so we can use our existing

tests to check the refactoring. However, we have created new methods, for which we
might like to add tests that document and verify their specific behavior. To write them,
we can reuse the setup of movies, rentals, and customers used for testing the statement
method. What we end up with is a number of smaller test cases specifically addressing

either the charge or rental point computations.

Since the correspondence between test code and actual code is now much clearer

Movie m1 = new Movie("m1", Movie.CHILDRENS);

Movie m2 = new Movie("m2", Movie.REGULAR);

Movie m3 = new Movie("m3", Movie.NEW_RELEASE);

Rental r1 = new Rental(m1, 5);

Rental r2 = new Rental(m2, 7);

Rental r3 = new Rental(m3, 1);

Customer c1 = new Customer("c1");

Customer c2 = new Customer("c2");

public void setUp() {

c1.addRental(r1);

c1.addRental(r2);

c2.addRental(r3);

}

public void testStatement1() {

String expected =

"Rental Record for c1\n" +

"\tm1\t4.5\

"\tm2\t9.5\n" +

"Amount owed is 14.0\n" +

"You earned 2 frequent renter points";

assertEquals(expected, c1.statement());

}

Figure .: Initial sample test code.
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and better focused, we can apply white box testing, and use our knowledge of the struc-
ture of the code to determine the test cases needed. Thus, we see that the getCharge
method to be tested distinguishes between  cases, and we make sure our tests cover
these cases.

This has solved some of the problems. The tests are better understandable, more
complete, much shorter, and less brittle. Unfortunately, we still have the complicated
setup method. What we see is that the setup mostly involves rentals and movies, while
the tests themselves are in the customer testing class. This is because the extracted

method is in the wrong class: applying Move Method to Rental simplifies the set up for
new test cases. Again we use our analysis of the test code to find refactorings in the
production code.

The Move Method is of type D, refactorings that can be made backwards compat-

ible by adding a wrapper method to retain the old interface. We add this wrapper so
we can check the refactoring with our original tests. However, since the documenta-
tion of the method is in the test, and this documentation should be as close as possible
to the method documented, we want to move the tests to the method’s new location.

Since there is no test class for Rental yet, we create it, and move the test methods for
getCharge to it. Depending on whether the method was part of a published interface,
we might want to keep the wrapper (for some time), or remove it together with the
original test.

Fowler discusses several other refactorings, moving the charge and point calcula-
tions further down to the Movie class, replacing conditional logic by polymorphism
in order to make it easier to add new movie types, and introducing the state design
pattern in order to be able to change movie type during the life time of a movie.

When considering the impact on test cases of these remaining video store refactor-
ings, we start to recognize a pattern:

• Studying the test code and the smells contained in it may help to identify refac-
torings to be applied at the production code;

• Many refactorings involve a change to the structure of the unit tests of well:

in order to maintain the documenting value of these unit tests, they should be
changed to reflect the structure of the code being tested.

In the next two sections, we take a closer look at these issues.

. Test-Driven Refactoring

In test-driven refactoring, we try to use the existing test cases in order to determine the
code-level refactorings. Thus, we study test code in order to find improvements to the
production code.

This calls for a set of code smells that helps to find such refactorings. A first category
is the set of existing code smells discussed in Fowler’s book [Fow]. Several of them,
such as long method, duplicated code, long parameter list, and so on, apply to test
code as well as they do to production code. In many cases solving them involves not

just a change on the test code, but first of all a refactoring of the production code.
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A second category of smells is the collection of test smells discussed in our earlier
chapter on refactoring test cases (Chapter ). In fact, in our movie example we encoun-
tered several of them already. Our uneasy feeling with the test case of Figure . is
captured by the Sensitive Equality smell (Smell  of Chapter ): comparing computed

values to a string literal representing the expected value. Such tests depend on many
irrelevant details, such as commas, quotes, tabs, and so on. This is exactly the reason
the customer tests of Figure . become brittle.

Another test smell we encountered is called Indirect Testing (Smell  of Chapter ):
a test class contains methods that actually perform tests on other objects. Indirect

tests make it harder to understand the relationship between test and production code.
While moving the getCharge and getPoints methods in the class hierarchy (using Move
Method), we also moved the corresponding test cases, in order to avoid Indirect Testing.

The test-driven perspective may lead to the formulation of additional test smells.
For example, we observed that setting up the fixture for the CustomerTest was compli-

cated. This indicates that the tests could be in the wrong class, or that the underlying
business logic is not well isolated. Another smell could be that there are many test
cases for a single method, indicating that the method is too complex.

Test-driven refactoring is a natural consequence of test-first design. Test-first de-
sign is a way to get a good design by thinking about test cases first when adding func-

tionality. Test-driven refactoring is a way to improve your design by rethinking the
way you structured your tests.

In fact, Beck’s recent article on test-first design [Bec] contains an interesting ex-
ample that can be transferred to the refactoring domain. it involves testing the con-
struction of a mortality table. His first attempt requires a complicated setup, involving

separate “person” objects. He then rejects this solution as being overly complex for
testing purposes, and proposes the construction of a mortality table with just an age
as input. His example illustrates how test case construction guides design when build-
ing new code; Likewise, test case refactoring guides the improvement of design during

refactoring.

. Refactoring Test Code

In our study of the video store example, we saw that many refactorings on the code

level can be completed by applying a corresponding refactoring on the test case level.
For example, to avoid Indirect Testing, the refactoring Move Method should be followed
by “Move Test”. Likewise, in many cases Extract Method should be followed by “Extract
Test”. To retain the documentation value of the unit tests, their structure should be in

sync with the structure of the source code.

In our opinion, it makes sense to extend the existing descriptions of refactorings
with suggestions on what to do with the corresponding unit tests, for example in the
“mechanics” part.

The topic of refactoring test code is discussed extensively in the previous chapter
(Chapter ). An issue of concern when changing test code is that we may “loose”

test cases. When refactoring production code, the availability of tests safeguards us
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from accidentally loosing code, but this is not the case when modifying tests. One
solution could be to apply mutation testing using a tool such as Jester [Moob]. Jester
automatically makes changes to conditions and literals in Java source code. If the code
is well-tested, such changes should lead to failing tests. Running Jester before and after

test case refactorings should help to ensure that the changes did not harm the tests.

. Refactoring Sessions

The meaningful unit of refactoring is a sequence of steps involving changes to both the

code base and the test base. We propose the notion of a refactoring session to capture
such a sequence. It consists of the following steps:

. Detect smells in the code or test code that need to be fixed. In test-driven refac-
toring, the test set is the starting point for finding such smells.

. Identify candidate refactorings addressing the smell.

. Ensure that all existing tests run.

. Apply the selected refactoring to the code. Provide a backwards compatible in-
terface if the refactoring falls in category D. Only change the associated test
classes when the refactoring falls in category E.

. Ensure that all existing tests run. Consider applying mutation testing to assess
the coverage of the test cases.

. Apply the testing counterpart of the selected refactoring.

. Ensure that the modified tests still run. Check that the coverage has not changed.

. Extend the test cases now that the underlying code has become easier to test.

. Ensure the new tests run.

The integrity of the code is ensured since () all tests are run between each step; ()

each step changes either code or tests, but never both at the same time (unless this is
impossible).

. Conclusions

In this chapter we have taken a close look at the interplay between testing and refac-
toring. We consider the following as our most important contributions:

• We have analyzed which of the documented refactorings necessarily affect the
test code. It turns out that the majority of the refactorings are in category D
(requiring explicit actions to keep the interface compatible) and E (necessarily

requiring a change to the test code).
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• We have studied Fowler’s video store example from the point of view of unit tests
included for documentation purposes. We have shown the test case implications
of each refactoring conducted.

• We have proposed the notion of test-driven refactoring, which uses the existing
test cases as the starting point for finding suitable code level refactorings.

• We have argued for the need to extend the descriptions of refactorings with a
section on their implications on the corresponding test code. If the test are
to maintain their documentation value, they should be kept in sync with the
structure of the code.

• We have proposed the notion of a refactoring session, capturing a coherent series

of separate steps involving changes to both the production code and the test
code.
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C       
Conclusions

T
he main contributions of this thesis include (i) an investigation of the anal-
ogy between software exploration and urban exploration which results in

the concept of legibility of a software system, (ii) island grammars that can be

used for robust and goal directed parsing of software artifacts, (iii) a type infer-
encing technique to abstract from COBOL code, and (iv) the detection and use of
code smells to assess and improve the quality of software.

In the introduction to this thesis, we posed a number of questions concerning the
creation of tools that support exploration of software systems and the applica-

tion of such tools to particular maintenance tasks. Below, we will reflect on these
questions, describe how the various chapters contribute to answering each ques-
tion and draw some conclusions.

. Effective Extraction

Question : How can we effectively extract information from a software system’s
artifacts that can be used in a software exploration tool?

One of the first steps in a software exploration tool is source model extraction: the
automated extraction of information from software artifacts. In the first part of this
thesis, we argue that this step is hindered by the typical irregularities that occur in
these artifacts (such as, syntactic errors, incomplete source code, language dialects and

embedded languages) which make it hard (or even impossible) to parse the code using
common parser based approaches. In Chapter , we present a solution to these issues
in the form of island grammars, a special kind of grammars that can be used to gen-
erate robust parsers that combine the accuracy of syntactical analysis with the speed,

flexibility and tolerance usually only found in lexical analysis.
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In addition, we describe M, a generator for source model extractors based
on island grammars that provides its user with generated traversals that ease the map-
ping from parse results to source models. The combination of island grammars with
generated traversals blends two forms of attractive default behavior: (i) island gram-

mars allow us to limit ourselves to that part of the grammar necessary to describe the
problem at hand, and (ii) generated traversals allow us to treat only those cases for
which we need specific behavior. Consequently, extractor specifications are small and
easy to write, modify and combine. The resulting flexibility contributes to software

exploration because it enables task specific improvements of a system’s legibility.

. Creating New Knowledge

Question : How can we combine and abstract facts about a software system to

create new knowledge?

In the second part of this thesis, we focus on inferred types as an abstraction that groups
the variables that occur in a software system. Types form a good starting point for soft-

ware exploration but, unfortunately, not all software systems that require exploration
were written in languages with an adequate type system. Furthermore, developers of-
ten use the built-in types of a language to represent variables of different “logical” types
which renders them unusable as abstractions since they group variables that should be

in different groups.

To resolve these issues, Chapter  proposes a method to infer types for the variables
in a C system. Our method groups variables in types by considering the way in

which they are actually used in the system. We present the formal type system and in-
ference rules for this approach, show their effect on various real life C fragments,
and describe the implementation of these ideas in a prototype tool.

A potential problem with this method is type pollution: the phenomenon that in-

ferred types become too large and contain variables that intuitively should not belong
to the same type. In Chapter , we analyse this problem and present an improved ver-
sion of our type inference algorithm that uses subtyping. Furthermore, we provide
empirical evidence that subtyping is an effective way for dealing with pollution.

Chapter  combines type inferencing with mathematical concept analysis to create
a new level of abstractions that group the procedures in a legacy system together with
the data types they operate on. These abstractions are very similar to abstract data
types and can be used as starting points for software exploration and for an object

oriented re-design of the system.
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. Supporting Maintenance

Question : How can we use the information obtained in the first two questions
to support maintenance?

In this thesis we describe a number of case studies that investigate the use of software
exploration techniques to support particular maintenance tasks. The issues that were

studied focus on useful methods for presenting analysis results of the user and deal
with the differences between the conceptual view in the programmer’s mind and the
technical view used by the machine.

Chapter  describes two small case studies that illustrate how island grammars can
be used to compute the cyclomatic complexity of C programs and to document
component coupling in systems written in a th generation language.

In Chapter  we present a large study that shows how island grammars can be
used for goal directed parsing, in this case lightweight impact analysis for estimating
and planning software maintenance projects. We give a detailed description of the

process of translating an impact analysis problem into an island grammar and discuss
the advantages that this approach has over other techniques. We present a generative
framework that allows a maintainer to create lightweight and problem-directed impact
analyzers and demonstrate our technique using a real-world case study where island

grammars are used to find account numbers in the software portfolio of a large bank.

Chapter  considers the gap between conceptual and technical views of a software
system that may appear when we combine concept analysis with type inferencing to

find abstractions in a legacy system. To address this issues, we present CR-
, a tool that allows a software engineer to bridge this gap by manipulating an
additional view on the calculated concepts while maintaining the relation with both
the original concepts and the legacy source code.

Finally, in Chapter  we investigate how an invented abstraction as inferred types
can be presented meaningfully to software engineers. We describe the construction of

TE: a tool that supports exploration of C software systems based on
inferred types and illustrate its use on an industrial C legacy system of ,

lines of code.

. Software Quality Assurance

Question : How can we use software exploration tools to investigate and im-
prove the quality of a software system?

In the last part of this thesis we explore the quality aspects of a software system from
a refactoring and testing perspective. In Chapter , we present an approach for the

automatic detection and visualization of code smells in J code. These results were
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used to support automatic code inspections where detected smells guide the inspec-
tion process. The graphical overviews immediately show the maintainers if the system
contains bad smells, what parts are affected, and where the concentration of smells is
the highest. Another promising application for smell detection is in refactoring tools.

Currently, such tools only assist the developer with performing the actual transforma-
tion steps that are needed for a given refactoring. Combined with our smell detection,
it would be possible to build more intelligent refactoring tools which actively suggest
that a certain refactoring can be applied at a given point.

Chapter  argues that refactoring test code is different from refactoring production
code. We present a set of bad smells that indicate trouble in test code and a collection of
test specific refactorings to remove these smells. In Chapter , we explore the relation
between testing and refactoring and investigate how they become intertwined when

refactorings invalidate tests (e.g. by removing a method that is expected by a test). We
describe the conditions under which such invalidation can occur and survey which of
the refactorings from [Fow] affect the test code. Finally, we present the notion of
“test-first refactoring”: a method for improving the quality of software that uses smells

in the test code as landmarks to explore where production code may be improved.
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Summary in Dutch / Samenvatting

explorer /ıkspl c:r er/. Ontdekkingsreiziger, onderzoeker.

Van Dale Groot woordenboek Engels–Nederlands

ontdekkingsreiziger Iemand die onbekende gebieden zoekt en onderzoekt.

Kramers nieuw woordenboek Nederlands

D
it proefschrift gaat over ontdekkingsreizen in softwaresystemen, of beter gezegd,
over de verkenning van onbekende gebieden in softwaresystemen. Dit roept

meteeen een tweetal vragen op: () waardoor zijn er onbekende gebieden in software-

systemen, en () waarvoor is verkenning van die onbekende gebieden noodzakelijk.
Het antwoord op beide vragen is software-evolutie: ieder softwaresysteem dat ge-

durende langere tijd in gebruik is zal tijdens die periode een aantal malen aangepast
en uitgebreid moeten worden om operationeel te blijven. Deze modificaties kunnen

variëren van technische aanpassingen vanwege de overgang naar een nieuw besturings-
systeem tot functionele aanpassingen als gevolg van nieuwe of veranderde wensen van
de gebruikers. Dit proces waarbij de toestand van een softwaresysteem in overeen-
stemming gebracht wordt met de veranderende omstandigheden en wensen noemen

we software-evolutie (of software-onderhoud).

Het is een bekend gegeven dat als gevolg van software-evolutie de complexiteit van
het softwaresysteem zal toenemen en de kennis over het systeem zal afnemen, tenzij
er specifieke maatregelen genomen worden om dit tegen te gaan. De reden voor dit

verval is dat door de opeenstapeling van veranderingen de originele structuur van het
systeem verstoord raakt. Stukje bij beetje zal de relatie tussen het systeem en de ont-
werpdocumentatie verdwijnen waardoor het systeem steeds moeilijker te onderhou-
den is. Als gevolg van deze kwaliteistsvermindering van informatie zullen opvolgende

veranderingen een nog desastreuzer effect op de structuur en onderhoudbaarheid van
het systeem hebben.

In dit proefschrift bestuderen we verschillende technieken en gereedschappen
(tools) die software-ontwikkelaars kunnen helpen bij het software-evolutieproces. De
nadruk ligt hierbij op het ondersteunen van de mentale beeldvorming over een soft-

waresysteem (ook wel aangeduid als program comprehension of program understan-
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ding). Voorbeelden hiervan zijn het begrip van de werking van een systeem en het
inzicht in de structuur van het systeem en in de samenhang tussen de individuele on-
derdelen (software-architectuur).

Verkenning van Softwaresystemen

In Hoofdstuk  onderzoeken we de analogie tussen het verkennen van software en het

verkennen van steden en gebouwen. Als mensen een hen onbekende stad of gebouw
bezoeken gebruiken ze een aantal basale verkenningstechnieken om zich een mentaal
beeld (mental model) van de structuur van de stad of het gebouw te vormen. Ze cre-
eren als het ware een soort landkaart of plattegrond in hun hoofd die hen helpt bij het

vinden van de juiste weg en het bezoeken van speciale plekken. Geïnspireerd door cog-
nitieve studies naar de mentale beeldvorming over steden en gebouwen, en de manier
waarop stedenbouwkundigen en architecten deze kennis gebruiken om de inzichtelijk-
heid van een stad of gebouw te vergroten, gaan we op zoek naar de tegenhangers op

softwaregebied. We definiëren het begrip inzichtelijkheid van een softwaresysteem (legi-
bility of a software system) als het gemak waarmee de verschillende delen van een software-
systeem herkend en in een coherente structuur geordend kunnen worden en beschrijven
de vijf bouwstenen die gebruikt worden voor beeldvorming over een softwaresysteem:

bakens (landmarks) kunnen als herkennings- en referentiepunten gebruikt worden en
geven een gevoel van positie en richting. Voorbeelden zijn specifieke datatypes

(bijvoorbeeld data, rekeningnummers, bedragen) of broncode die aan bepaalde
karakteristieken voldoet.

knooppunten (nodes) zijn de structurele entiteiten in het systeem, zoals programma’s,
modules, functies, datatypes, klassen, methoden, variabelen, enz.

paden (paths) vormen relaties tussen twee knooppunten die gevolgd kunnen wor-
den om door het systeem te navigeren. Bijvoorbeeld: programma- of functie-

aanroepen, overerving, enz.

wijken (districts) groeperen de knooppunten op basis van gemeenschappelijke eigen-
schappen. Voorbeelden zijn de componenten in een software-architectuur, de
variabelen van hetzelfde datatype, enz.

grenzen (edges) geven de overgang van de ene naar de andere wijk aan en bemoeilijken

navigatie. Voorbeelden zijn de grenzen tussen de programma- en systeembibli-
otheken en de applicatiecode of de grens tussen client- en servercode.

De aanwezigheid en herkenbaarheid van bovenstaande elementen is bepalend voor de

inzichtelijkheid van een softwaresysteem. Het onderzoek dat beschreven is in de rest
van het proefschrift richt zich dan ook op het detecteren en beter zichtbaar maken van
deze elementen in een softwaresysteem.

Eilandgrammatica’s

In het Island Grammars deel van dit proefschrift onderzoeken we het afleiden van mo-

dellen uit de broncode van softwaresystemen en het gebruik van die modellen voor het
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analyseren van de gevolgen van bepaalde veranderingen (impact analysis). Een van de
grootste uitdagingen bij het afleiden van modellen uit broncodes is het omgaan met
de onregelmatigheden die typerend zijn voor het reverse engineering gebied. Voor-
beelden van deze onregelmatigheden zijn syntactische fouten, incomplete broncode,

verschillende dialecten van programmeertalen en programmeertalen die ingebed zijn
in andere programmeertalen. In Hoofdstuk  presenteren we een oplossing voor dit
probleem in de vorm van eilandgrammatica’s die gebruikt kunnen worden voor de ge-
neratie van robuuste parsers die de gedetailleerdheid en accuraatheid van syntactische

analyse combineren met de flexibiliteit en ontwikkelsnelheid van lexicale oplossingen.
In Hoofdstuk  motiveren we waarom een lichtgewicht vorm van impactanalyse een
vereiste is voor de planning en inschatting van projecten voor software-onderhoud.
We presenteren een techniek voor de generatie van gereedschappen voor lichtgewicht

impactanalyse uit eilandgrammatica’s en demonstreren onze techniek aan de hand van
een praktijkvoorbeeld. In dit voorbeeld bepalen we de gevolgen van de wens om alle -
cijferige bankrekeningnummers op te rekken naar -cijferige nummers in de software
van een grote Nederlandse bank.

Type-inferentie

In het Type Inference deel van dit proefschrift kijken we naar zogenaamde impliciete of
afgeleide datatypes (inferred types) als een abstractie om de variabelen in een software-

systeem te groeperen. Datatypes zijn een gebruikelijke abstractie in programmeertalen
en ze vormen een goed vertrekpunt voor de verkenning van softwaresystemen en taken
op het gebied van reverse engineering. Helaas zijn de softwaresystemen die deze activi-
teiten het hardst nodig hebben vaak geschreven in programmeertalen zonder adequaat

type-systeem (bijvoorbeeld C). Verder komt het in getypeerde programmeerta-
len (zoals C) vaak voor dat de ontwikkelaars gebruik maken van hetzelfde ingebouwde
datatype (bijvoorbeeld char, int of float) voor de representatie van verschillende lo-
gische datatypes (bijvoorbeeld aantal en leeftijd). Als gevolg daarvan kunnen de da-

tatypes niet meer gebruikt worden als abstractie omdat ze variabelen groeperen die
eigenlijk in verschillende klassen ingedeeld zouden moeten worden. Om deze kwestie
op te lossen presenteren we in Hoofdstuk  een methode voor het automatisch afleiden
van datatypes voor variabelen. Deze methode groepeert de variabelen in een systeem

op basis van de manier waarop deze variabelen daadwerkelijk gebruikt worden in dat
systeem. Bijvoorbeeld, alle variabelen die met elkaar vergeleken worden krijgen het-
zelfde datatype. We geven het formele typesysteem en de afleidingsregels voor deze
aanpak en beschrijven hoe deze ideeën geïmplementeerd zijn in een prototype gereed-

schap voor de analyse van softwaresystemen die geschreven zijn in C.

We vervolgen onze studie in Hoofdstuk  met de analyse van type-vervuiling (type
pollution), het fenomeen dat afgeleide datatypes te groot worden en variabelen bevat-

ten die intuïtief niet in dit datatype thuishoren. We presenteren een verbeterde aflei-
dingsmethode die gebruik maakt van subtypering en laten zien dat dit een effectieve
manier is om de type-vervuiling aan te pakken. In Hoofdstuk  combineren we afge-
leide datatypes met conceptanalyse om de procedures in een softwaresysteem te groe-

peren met de datatypes die ze gebruiken. Het resultaat zijn abstracties die erg lijken
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op zogenaamde abstracte datatypes. Deze abstracties kunnen gebruikt worden voor
verkenning van softwaresystemen en kunnen als basis dienen voor een object-geori-
enteerd herontwerp van het systeem. In Hoofdstuk  onderzoeken we hoe een kunst-
matige abstractie, zoals datatypes die op zichzelf geen onderdeel uitmaken van C,

op een bruikbare manier gepresenteerd kan worden aan C onderhoudsprogram-
meurs. We beschrijven de constructie van TE: een gereedschap voor het
verkennen van C softwaresystemen op basis van afgeleide datatypes. Verder laten
we zien hoe dit gereedschap gebruikt kan worden voor de verkenning van een indus-

trieel C legacy systeem dat bestaat uit . regels broncode.

Refactoring & Testen

In het laatste deel van dit proefschrift onderzoeken we de kwaliteitsaspecten van een

softwaresysteem, bezien vanuit een refactoring- en testperspectief. Refactoring (let-
terlijk herfactoriseren) is het herschrijven van een stuk programmatekst, zodanig dat
het extern waarneembare (functionele) gedrag van die broncode gelijk blijft maar de

interne structuur verbetert waardoor de werking eenvoudiger te begrijpen is.

In Hoofdstuk , presenteren we een methode voor de automatische detectie en vi-
sualisatie van zogenaamde luchtjes (code smells) die aan J broncode kleven. Deze
luchtjes zijn een metafoor voor die aspecten van een programmatekst die weliswaar

niet zonder meer fout zijn (de betreffende programmatuur kan zonder problemen
vertaald en uitgevoerd worden), maar wel de begrijpelijkheid en onderhoudbaarheid
van het systeem sterk verminderen. Deze aspecten zijn typisch gerelateerd aan slecht
programma-ontwerp en slordig programmeren. Voorbeelden van luchtjes die aan

broncode kunnen kleven zijn codeduplicatie (als eenzelfde stuk broncode letterlijk op
verschillende plaatsen in het programma herhaald wordt), methoden die te lang zijn,
klassen die te veel functionaliteit bevatten, klassen die encapsulatieprincipes overtre-
den, enz. De resultaten van deze detectie kunnen op twee manieren gebruikt worden:

() ter ondersteuning van automatische kwaliteitsinspectie van de broncode van een
systeem waarbij de luchtjes gebruikt worden om het inspectieproces te leiden, en ()
voor het creëren van intelligente gereedschappen voor refactoring die niet alleen op
aanvraag een stuk broncode op een gegeven manier herschrijven (hetgeen momen-

teel state-of-the-art is) maar die ook suggereren welk fragment van het programma op
welke manier herschreven kan worden om het te verbeteren.

Ontwikkelaars gebruiken zogenaamde deeltests (unit tests) om het extern waar-
neembare gedrag bij refactoring te bewaken. Het idee is dat als een test voor en

na refactoring correct werkt, de refactoring geen nadelige gevolgen heeft gehad. De
broncode van de deeltests (de “testcode”) wordt door de ontwikkelaars geschreven en
onderhouden, in dezelfde programmeertaal als het echte programma (de “productie-
code”). Naarmate het aantal tests bij een systeem groeit zal de behoefte aan onderhoud

en refactoring van die testcode ook toenemen. In Hoofdstuk  beargumenteren we dat
refactoring van testcode anders is dan refactoring van productiecode. We presenteren
een verzameling specifieke luchtjes die aan testcode kunnen kleven en beschrijven hoe
deze ook weer verwijderd kunnen worden. In Hoofdstuk  onderzoeken we de relatie

tussen testen en refactoring en bekijken hoe ze in elkaar verstrikt kunnen raken wan-


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neer door refactoring de testcode niet meer correct werkt (bijvoorbeeld doordat een
methode naar een andere klasse verplaatst is terwijl de testcode nog naar de oorspron-
kelijke klasse verwijst). We beschrijven de voorwaarden waaronder zulke problemen
op kunnen treden en geven een overzicht bij welke van de standaard refactorings uit

[Fow] dit gebeurt. Tot slot introduceren we het begrip test-first refactoring, een me-
thode voor het verbeteren van de kwaliteit van een softwaresysteem waarbij luchtjes
die aan de testcode kleven als bakens gebruikt worden voor het verkennen van de pro-
ductiecode. Het achterliggende idee hiervan is dat kwalitatief goede broncode ook

goed te testen is en dat suboptimale (“onwelriekende”) testcode een indicatie geeft van
plaatsen waar de productiecode verbeterd kan worden.


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Software evolution is required to keep a software 
system in sync with the ever-changing needs of the 
system’s users and environment.  An unfortunate 
side-effect of evolution is that it often causes the 
knowledge about a system to degrade, which in 
turn impedes further evolution.

In this book, we investigate techniques and 
tools that help remedy this situation by supporting 
the exploration of a software system and improving 
its legibility.  We examine the analogy with urban 
exploration and present innovative techniques for 
the extraction, abstraction, and presentation of 
information needed for understanding software.
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