
Renovation of Idiomatic Crosscutting
Concerns in Embedded Systems

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 17 maart 2008 om 10:00 uur

door

Magiel BRUNTINK

doctorandus informatica

geboren te Delfzijl

Dit proefschrift is goedgekeurd door de promotoren:
Prof. dr. A. van Deursen
Prof. dr. P. Klint

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. A. van Deursen, Technische Universiteit Delft, promotor
Prof. dr. P. Klint, Universiteit van Amsterdam en CWI, promotor
Prof. dr. M. Harman, King’s College, London
Prof. dr. ir. M. Akşit, Universiteit Twente
Prof. dr. ir. E. Brinksma, Universiteit Twente
Prof. dr. ir. I. Lagendijk, Technische Universiteit Delft
Prof. dr. ir. H. J. Sips, Technische Universiteit Delft

Dr. T. Tourwé heeft als begeleider in belangrijke mate aan de totstandkoming van het proef-
schrift bijgedragen.

The work in this thesis has been carried out at Centrum Wiskunde & Informatica (CWI) in
Amsterdam as part of the Ideals project, which has been executed under the responsibility of
the Embedded Systems Institute, and is partially supported by the Netherlands Ministry of
Economic Affairs under the SenterNovem TS program (grant TSIT3003). Magiel Bruntink
is a student of research school IPA (Institute for Programming Research and Algorithmics).

IPA Dissertation Series 2008-03

ISBN 90-6196-545-4

c© 2008 Magiel Bruntink

Cover image ‘Kame’ c© 1999 Akiyoshi Kitaoka, used with permission (original is black).

This work has been typeset using Leslie Lamport’s LATEX, in Times New Roman 11 pt.

Printed by Ponsen & Looijen b.v., Wageningen.

Preface

First a word about the cover. This is the second time I used one of Akiyoshi Kitaoka’s enticing
figures. It seems one can easily find connections between these optical illusions and software
engineering research. This particular figure is interesting because of its inherent repetition.
At first sight, the repetition seems perfect: it’s just the same wheel appearing over and over
again. Yet somehow the wheels do not seem to line up very well... It turns out there are slight
changes, a notch here and there, that make all the difference. The same is true for software,
and in particular for the software idioms that this thesis is about.

When Arie van Deursen invited me to write a PhD thesis with him, he told me that it
would involve the amount of effort I spend on my master’s thesis times eight. I can say now
that he was not exaggerating. Also, I have learned that it would have been impossible to
accomplish without being exposed to his natural enthusiasm and mild bravado. He was able
to be very critical and precise, yet at the same time inspiring me to rise up to his challenges.
Arie, I am very grateful for your trust in me, and the opportunity to work with you.

My work took place mostly in Paul Klint’s research group (SEN1) at the Centrum Wis-
kunde & Informatica (CWI) in Amsterdam. Paul, thanks for providing me with a great
amount of freedom to do my own research, while remaining interested in my work and kindly
agreeing to be my second promotor. Hereby I also thank the members of my defense com-
mittee: prof. dr. ir. M. Akşit, prof. dr. ir. E. Brinksma, prof. dr. M. Harman, prof. dr. ir. I.
Lagendijk, and prof. dr. ir. H. Sips.

The better part of my four years in SEN1 I worked together with Tom Tourwé. He and
Arie taught me how to do research and write papers. Tom also joined me on many trips to
conferences and weekly project meetings. Tom, thanks for being a great mentor and friend!
Many thanks also to the other members of SEN1, in particular Jan Heering, Jurgen Vinju,
Leon Moonen, Maja D’Hondt, Paul Klint, Taeke Kooiker, Tijs van der Storm, and Rob
Economopoulos. They made working at CWI such a pleasant experience, both inside and
outside of working hours.

Most of my research would have been impossible without the inspiring cooperation be-
tween ASML (Veldhoven) and Ideals, the research project in which I participated. There are
many people to thank for this succesful project, in particular the Embedded Systems Insti-
tute and of course ASML. Special thanks go out to ASML’s Remco van Engelen for being
such a great bridge between the research project and the company. His enthusiasm and skill
played an indispensable role. I also value the time spent with the project members from the
University of Twente (UT) and Technical University Eindhoven (TU/e), in particular Gürcan
Güleşir (UT) and Pascal Dürr (UT).

Finally, this thesis was only completed thanks to the support of my loving parents, Hiljan
and Roel, my family and friends, and Imke, my love. I could not have done it without all of
you.

Magiel Bruntink, January 2008.

iv Preface

Contents

Preface iii

Contents v

List of Acronyms xi

1 Introduction 1
1.1 Software Renovation Research . 1

1.1.1 Legacy Software Systems . 2
1.1.2 Reverse Engineering . 2
1.1.3 Program Transformation . 2

1.2 Idiomatic Crosscutting Concerns . 2
1.2.1 Crosscutting Concerns . 3
1.2.2 Idioms . 4
1.2.3 Idiomatic Implementation of Crosscutting Concerns 4
1.2.4 Aspect-Oriented Programming (AOP) 6

1.3 Industrial Context: ASML . 9
1.4 Research Questions . 10
1.5 Software and Technology . 14
1.6 Origins of Chapters and Acknowledgements 16

2 On the Use of Clone Detection for Identifying Crosscutting Concern Code 17
2.1 Introduction . 17
2.2 Related Work . 19

2.2.1 Clone Detection Techniques . 19
2.2.2 Aspect Mining . 20

2.3 Case Study . 21
2.3.1 Setup . 21
2.3.2 Subject System . 22

2.4 Experimental Setup . 23
2.4.1 Annotation . 23
2.4.2 Selected Clone Detectors . 24
2.4.3 Clone Detector Configuration . 24

vi CONTENTS

2.4.4 Abstracting Clone Detection Results 25
2.4.5 Measurements . 26
2.4.6 Calculating Clone Class Selections 28

2.5 Results . 29
2.5.1 Memory Error Handling . 31
2.5.2 NULL-value Checking . 32
2.5.3 Range Checking . 33
2.5.4 Error Handling . 33
2.5.5 Tracing . 36
2.5.6 Combining Clone Detectors . 37
2.5.7 Summary . 38

2.6 Discussion . 38
2.6.1 Limitations . 38
2.6.2 Oracle Reliability . 39
2.6.3 Consequences for Aspect Mining 40
2.6.4 Clone Extension . 40

2.7 Conclusions . 41
2.7.1 Contributions . 41
2.7.2 Future Work . 42

3 Isolating Idiomatic Crosscutting Concerns 43
3.1 Introduction . 43
3.2 Approach . 44

3.2.1 Overview . 44
3.2.2 Adoption Strategies . 45

3.3 Parameter Checking . 46
3.3.1 Industrial Context . 46
3.3.2 The Parameter Checking Concern 46
3.3.3 Coding Idiom Used . 46

3.4 An ADSL for the Parameter Checking Concern 47
3.4.1 Specification . 47
3.4.2 Translation to AspectC . 49

3.5 Migration Support . 49
3.5.1 Concern Verification . 50
3.5.2 Aspect Extraction . 50
3.5.3 Concern Elimination . 51
3.5.4 Conservative Translation . 51

3.6 Case Studies . 51
3.6.1 Intended and Unintended Deviations 52
3.6.2 Coding Idiom Conformance . 52
3.6.3 Code Size . 53

3.7 Evaluation . 53
3.7.1 Scalability . 53
3.7.2 Code Quality . 54
3.7.3 Maintainability . 55

CONTENTS vii

3.7.4 Change Management . 56
3.8 Related Work . 56
3.9 Concluding Remarks . 57

4 Linking Analysis and Transformation Tools with Source-based Mappings 59
4.1 Introduction . 59
4.2 Source-based Mappings . 60
4.3 SCATR . 63

4.3.1 Implementation . 64
4.3.2 Architecture . 66

4.4 Applications . 67
4.4.1 Concern Code Elimination . 68
4.4.2 Insertion of Annotations . 69

4.5 Discussion . 71
4.6 Related Work . 72
4.7 Conclusion . 73

5 Discovering Faults in Idiom-Based Exception Handling 75
5.1 Introduction . 75
5.2 Related Work . 77
5.3 Characterising the Return Code Idiom . 78

5.3.1 Terminology . 78
5.3.2 Exception Representation . 79
5.3.3 Exception Raising . 80
5.3.4 Handler Determination . 80
5.3.5 Resource Cleanup . 80
5.3.6 Exception Interface & Reliability Checks 80
5.3.7 Other Components . 81

5.4 A Fault Model for Exception Handling . 81
5.4.1 General Overview . 81
5.4.2 Fault Categories . 83

5.5 SMELL: Statically Detecting Error Handling Faults 83
5.5.1 Implementation . 84
5.5.2 Example Faults . 86
5.5.3 Fault Reporting . 87
5.5.4 Limitations . 88

5.6 Experimental Results . 89
5.6.1 General Remarks . 89
5.6.2 Fault Distribution . 90
5.6.3 False positives . 91

5.7 An Alternative Exception Handling Approach 91
5.8 Discussion . 93

5.8.1 Representativeness . 93
5.8.2 Defect Density . 93
5.8.3 Reliability . 94

viii CONTENTS

5.8.4 Idiom design . 94
5.9 Concluding Remarks . 94

6 Analysing Variability in Large-scale Idioms-based Implementations of Crosscut-
ting Concerns 97
6.1 Introduction . 97
6.2 A Method for Analysing Idiom Variability 99

6.2.1 Idiom Definition . 99
6.2.2 Idiom Extraction . 99
6.2.3 Variability Modelling . 99
6.2.4 Variability Analysis . 100
6.2.5 Aspect Design . 101

6.3 Defining the Tracing Idiom . 101
6.4 Extracting the Tracing Idiom . 102
6.5 Modelling Variability in the Tracing Idiom 103
6.6 Analysing the Tracing Idiom’s Variability 104

6.6.1 Setting up FCA for Analysing Tracing 105
6.6.2 Function-level Variability . 108
6.6.3 Parameter-level Variability . 109

6.7 Aspect Design . 112
6.7.1 From Variability Analysis to Language Abstractions 113
6.7.2 Quantification of Parameters . 114
6.7.3 Specifying Default Functionality and Exceptions 114

6.8 Discussion and Evaluation . 115
6.8.1 Further Variability . 115
6.8.2 The Limitations of Idioms . 116
6.8.3 Migration of Idioms to Aspects . 117
6.8.4 Variability Findings . 118
6.8.5 Genericity of the Method . 118
6.8.6 Scalability . 119

6.9 Related Work . 120
6.10 Concluding Remarks . 121

7 Renovating Idiomatic Exception Handling 123
7.1 Introduction . 123
7.2 Idiomatic Exception Handling . 125

7.2.1 Context . 125
7.2.2 Return Code Idiom (RCI) . 126
7.2.3 Tool support for the RCI . 127
7.2.4 Renovation of Exception Handling 127

7.3 Reengineering to Structured Exception Handling 127
7.3.1 Structured Exception Handling (SEH) 128
7.3.2 Code Transformations . 130
7.3.3 Tool Support . 132
7.3.4 Validation . 133

CONTENTS ix

7.3.5 Results . 133
7.3.6 Discussion . 134

7.4 Reengineering to Aspect-Oriented Programming 135
7.4.1 The Tradeoff between Equivalence and Quality 136
7.4.2 Approach . 138
7.4.3 Equivalence Criteria . 139
7.4.4 Results . 140

7.5 Discussion . 142
7.5.1 Limitations . 145
7.5.2 Future Work . 145

7.6 Related Work . 145
7.7 Conclusion . 146

8 Conclusion 149
8.1 Contributions and Evaluation . 149
8.2 Synthesis . 154
8.3 Extrapolations . 156
8.4 Industry as Laboratory . 157

8.4.1 Research Approach . 157
8.4.2 Challenges and Recommendations 158

Bibliography 159

Summary 173

Samenvatting 177

Curriculum Vitae 181

x CONTENTS

List of Acronyms

ADSL Aspect-oriented Domain-Specific
Language

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

ASF Algebraic Specification Formalism

AST Abstract Syntax Tree

CCx C Component x

EH Exception Handling

EHM Exception Handling Mechanism

FCA Formal Concept Analysis

HSML Hot Spot Markup Language

PDG Program Dependence Graph

KLOC Kilo (1,000) Lines Of Code

LOC Lines Of Code

MLOC Million Lines Of Code

NLOC Normalized Lines Of Code

PCSL Parameter Checking Specification
Language

RCI Return Code Idiom

SDF Syntax Definition Formalism

SEH Structured Exception Handling

SCATR Source Code Analysis and
TRansformation

SGLR Scanner-less Generalized LR

SBM Source-Based Mapping

SM State Machine

SMELL State Machine for Exception Linking
and Logging

xii List of Acronyms

Chapter 1

Introduction

1.1 Software Renovation Research

Software systems are constantly evolving. Regular maintenance fixes defects, ongoing de-
velopment adds features, and changing requirements require modification of existing fea-
tures. Lehman and Belady’s laws (Lehman and Belady, 1985) of evolution of large software
systems state that, over time, large software systems necessarily change to remain useful.
Furthermore, these changes cause a decline in software quality unless preventive measures
are being taken. In particular, evolving the software system will itself become harder. This
phenomenon has been dubbed the software evolution paradox (van Deursen, 2005) since the
necessary evolution of a software system seems to be hindered by its own progress.

Software renovation (van Deursen et al., 1999) is meant to counter the problems in-
troduced by software evolution, such that software systems can continue to evolve in the
future. In that sense, renovation is similar to software re-engineering (Arnold, 1993), and
both activities can be seen as special cases of preventive software maintenance (Kitchenham
et al., 1999), which has the goal of making software more maintainable. Software reno-
vation can consist of changes to the software that lie beyond maintenance. For instance,
renovation can introduce a new programming language into the software system, upgrad-
ing (part of) the system to a better representation expressed in the new language. In one
approach, objects are automatically identified in the source code of a legacy COBOL sys-
tem (van Deursen and Kuipers, 1999b). Renovation can also consist of the extraction of doc-
umentation from the software, such that further evolution can be guided by the extracted doc-
umentation (van Deursen and Kuipers, 1999a), removal of GOTO statements from COBOL
programs (Veerman, 2004) to make programs easier to understand, and the numerous adap-
tations that were made to software systems around the world to prevent –succesfully– most
problems caused by inadequate date representations during the year 2000 transition (see for
instance Smith et al. (1997)).

2 Introduction

1.1.1 Legacy Software Systems
The software systems that are typically targetted for renovation are legacy software systems.
These systems are large, consist of older software technology, and have been exposed to many
years of maintenance and evolution. They are still relied on by their respective organizations,
and are too valuable to be replaced completely by new, modern, systems. Legacy systems
are hard to change, especially at the design level, as years of evolution have eroded the cor-
respondences between the system’s original requirements, design, and source code. In fact,
Brody and Stonebraker define a legacy system as “Any information system that significantly
resists modification and evolution to meet new and constantly changing business require-
ments.” (Brodie and Stonebraker, 1995) Renovation is required to alleviate this resistance to
evolution.

1.1.2 Reverse Engineering
Renovation of a legacy system starts with reverse engineering. This process is concerned with
obtaining sufficient knowledge of the legacy system to perform the modifications necessary
to renovate the system. Legacy systems may have a weak correspondence between all the
artifacts that make up the system. Requirements, design documents, and source code may be
out-of-sync. Sometimes source code is the only artifact remaining. Reverse engineering starts
with the artifacts that represent the system at a low level of abstraction, typically the source
code, and works upwards to obtain representations at a higher level of abstraction (Chikof-
sky and Cross, 1990). In software renovation settings, the reverse engineering process can
result in diverse forms of information. Among many examples, one can search for code
smells (van Emden and Moonen, 2002) if the intent is to improve the general code quality, or
mine for aspects to obtain opportunities to use aspects in the legacy system (Ceccato et al.,
2006), but even simple code metrics may be enough to guide renovation.

1.1.3 Program Transformation
The size of legacy systems typically calls for automated tools to support the phase in which
modifications to the system are made. Renovations can require widespread and complex
transformations, which are tedious and error prone to be performed manually. Renovation
factories (van den Brand et al., 2000b) constitute a full line of tools to renovate legacy sys-
tems, from the reverse engineering to the transformation phase. A number of generic systems
also support automatic program transformations: The ASF+SDF Meta-Environment (van den
Brand et al., 2001) and Stratego/XT (Bravenboer et al., 2007) support transformations of
context-free languages through term rewriting, TXL (Cordy, 2006) is a functional program-
ming language specifically targetted at language processing, and DMS (Baxter, 1992) trans-
forms the source code of a system based on changes to an accurate design description.

1.2 Idiomatic Crosscutting Concerns
This thesis studies the renovation of idiomatic crosscutting concerns. In particular, the fo-
cus will be on the special class of crosscutting concerns implemented by idioms (hence, id-

1.2 Idiomatic Crosscutting Concerns 3

Figure 1.1: Scattering of a concern. Vertical bars represent modules. Within each vertical
bar, horizontal lines of pixels correspond to lines of source code implementing the concern.

iomatic) within (legacy) embedded systems, and the benefits offered by AOP in that setting.

1.2.1 Crosscutting Concerns
Crosscutting concerns are phenomena that are present in almost any software system. They
arise if the implementation of a concern –a requirement or design decision– does not fit neatly
into the system’s modular decomposition (Tarr et al., 1999). A crosscutting concern cannot
be confined to a single modular unit in the implementation language without being tangled
with the implementations of other concerns. The first symptom is referred to as scattering:
The implementation of a concern is spread across multiple modules. The second symptom,
tangling, refers to the implementations of two concerns being inseparable.1 Figure 1.1 shows
the scattering of a concern across a number of modules. The columns represent modules,
while each row is a line of source code within a module. Dark rows are lines of source code
belonging to the scattered concern. White rows are code lines of other concerns. Clearly, the
concern is scattered, as its source code is present in multiple modules. Whether the scattered
concern is also tangled is not apparent in Figure 1.1. It may be possible to rearrange the dark
source code lines such that they all end up in a single modules, with no white lines present.
For crosscutting concerns such a rearrangement is not possible.

The example of Figure 1.1 is actually a real crosscutting concern (it is discussed in detail
in Chapter 3). It is responsible for the validation of pointer values in a C system. The concern
must assure that every parameter of a C function that is of pointer type has been checked for
the NULL value. If a NULL value is encountered, the remainder of the function must not
be executed to prevent NULL pointer dereferences. In C, it is not possible to express this
concern separately from the actual function definitions: resulting in an implementation that
is scattered across all functions, and tangled with the other concern(s) implemented by each
function.

1The terms scattering and tangling are due to the original paper on AOP by Kiczales et al. (1997).

4 Introduction

1.2.2 Idioms
An idiom is an expression (i.e., term or phrase) whose meaning cannot be de-
duced from the literal definitions and the arrangement of its parts, but refers in-
stead to a figurative meaning that is known only through common use. (Wikipedia,
November 2007)

The idioms studied in this thesis occur within source code. In programming jargon,
the terms ‘boilerplate code’, ‘template’, ‘pattern’, or ‘recipe’ refer loosely to the same phe-
nomenon. On the one hand, they are fragments of code that occur frequently and are repet-
itive, hence tedious, to reproduce. For example, even for the most simple C program that
produces any output one has to explicitly include the standard input/output library. On the
other hand, they represent common, well-tested and scrutinized solutions to frequently occur-
ring programming problems. Design patterns (Gamma et al., 1995) are examples of the latter
case. At both extremes, the use of idioms is a manual implementation technique, and hence
can be considered to be a fault-prone and effort intensive practice compared to automatic
code generation.

Figure 1.2 shows a realistic example (see Chapter 5) of the widespread C return code
idiom that can be used to implement exception handling in C programs. Exceptions are rep-
resented by integers, and are passed on as return values of functions. The example shows how
exceptions flow through the body of a function as prescribed by the idiom. The variable ev is
used to keep track of the exception state. Exceptions are raised by assigning an integer value
to the ev variable, either directly (lines 6 and 14), or by calling another function (line 10).
The control flow is programmed explicitly to guard (line 9) certain statements from execu-
tion while an exception has been raised previously. Handling of exceptions is also explicitly
programmed. At line 12 a condition checks whether any exception has occurred, and if true,
directs control to handling code. Logging exceptional events (lines 5 and 13) is also part of
the idiom.

1.2.3 Idiomatic Implementation of Crosscutting Concerns
Idiomatic implementation, the practice of applying idioms to implement something, is a
common programming technique. Copy-paste-adapt programming (as studied by Kim et al.
(2005), among many others) is an example of the practice. The use of design patterns (Gamma
et al., 1995) is another prevalent example. Idiomatic implementation represents a style of
reuse of programming solutions (i.e., the idioms) that is informal in the sense that it does
not use programming language features to explicitly specify reuse. Instead, the program-
ming solution itself is replicated, and possibly adapted slightly to fit its new context. Some
forms of idiomatic implementation, in particular copy-paste-adapt programming, have debat-
able merit for software evolution (Koschke et al., 2007; Kapser and Godfrey, 2006; Aversano
et al., 2007).

Crosscutting concerns are concerns that are scattered across the modules of a system, and
tangled with other concerns. Some crosscutting concerns are scattered such that a relatively
similar programming problem has to be solved in a large number of modules. These crosscut-
ting concerns are termed homogeneous by Colyer et al. (2004). The relatively simple pointer
validation concern discussed earlier is a homogeneous crosscutting concern, but also more

1.2 Idiomatic Crosscutting Concerns 5

1 int f(int a, int b) {
2 int ev = OK;
3
4 if (a < 0) {
5 LOG(F_ERROR , OK, "a < 0");
6 ev = F_ERROR;
7 }
8
9 if (ev == OK) {

10 ev = g(a);
11
12 if (ev != OK) {
13 LOG(F_ERROR , ev, "error from g");
14 ev = F_ERROR;
15 }
16 }
17
18 return ev;
19 }

Figure 1.2: C return code idiom.

complex concerns like exception handling might be considered homogeneous (Lippert and
Videira Lopes, 2000).

Since implementing a homogeneous crosscutting concern requires solving a relatively
similar programming problem in a large number of modules throughout a system, an id-
iomatic approach can be used. That is, the system’s programmers define an idiom that can
be applied within the context of each module to implement the crosscutting concern. For
instance, the idiom is included in the system’s programming manual (this is the case for the
return code idiom example in Figure 1.2).

We view the idiomatic implementation of crosscutting concerns as a way of coping with
crosscutting concerns that is sometimes necessary. There may be no means of changing the
system such that concerns are no longer crosscutting. In particular, the modular decomposi-
tion of a system may be biased towards a single concern (Tarr et al., 1999) and simply cannot
be changed, or the system’s programming language may be lacking in features to modularize
certain crosscutting concerns (Kiczales et al., 1997).

The practice of idiomatic implementation of crosscutting concerns may be especially
prevalent in legacy systems, since legacy systems can contain many crosscutting concerns.
Due to their age, legacy systems are implemented in older programming languages. Such lan-
guages can lack the language features necessary to succinctly express certain concerns. For
instance, the C language (by default) does not have the structured exception handling support
of modern languages like Java and C#. Furthermore, the lack of aspects, or other modular-
ization features (e.g., object-oriented features such as inheritance and polymorphism), can

6 Introduction

increase the number of crosscutting concerns a legacy system has. Finally, legacy systems
are not easily changed, especially at the design level (Brodie and Stonebraker, 1995). This is
partly due to the dominant decomposition (Tarr et al., 1999) a system has, i.e, the system is
decomposed according to a certain design, which is crystallized in the system’s source code.
The original design may not have foreseen the full evolution of the system during its lifetime.
Concerns added to the system later on may therefore fit badly into the decomposition, and
hence become crosscutting.

1.2.4 Aspect-Oriented Programming (AOP)

AOP is a relatively new addition to the spectrum of programming paradigms. It aims at
providing programming language constructs that modularize crosscutting concerns. Since
the original paper by Kiczales et al. (1997), these constructs are typically called aspects.
Aspects are comparable to modules of a system, like objects, classes, headers, methods,
functions, and so on. Compared to these traditional modules, aspects differ in the way they
are composed with other modules. Traditional modules typically import functionality from
other modules: C header files can be included, functions or methods call each other, objects
refer to each other via field accesses, and so on. In contrast, aspects have the ability to export
functionality specified in the aspect. The functionality in the aspect can interfere with the
functionality specified in other (traditional) modules. Importantly, the interference can occur
while the traditional modules remain oblivious (Filman and Friedman, 2001) to the fact, in
the sense that there is no additional functionality required to facilitate the interference, as far
as the programmer of the receiving module is concerned. Aspects can thus interfere with the
functionality of another module without the other module being aware of the interference.

AOP is easily explained by an example. Consider the two C functions in the top part
of Figure 1.3. Suppose that tracing functionality has to be added: i.e., on each entry of a
function, print the value of the parameter a, and on each exit, print the return value. The
traditional way to add this functionality is to insert print statements at the appropriate places.
The bottom part of Figure 1.3 shows this solution: print statements have been added at lines
2, 4, 9, and 11.

AOP can solve this problem more elegantly, by specifying separately how the tracing
functionality should be implemented. The original code will not need to be changed. Fig-
ure 1.4 shows an possible AOP solution.2 The code is split into two parts: the base code
consisting of the original code, and an aspect that describes the addition of the necessary
print statements. The aspect consists of pointcuts, and advice associated with the pointcuts.
A pointcut basically describes where or when something should happen. In AOP terminology,
a pointcut specifies a number of joinpoints, which are events in the execution of the program.

In Figure 1.4, the pointcut at lines 1 and 2 captures two joinpoints: one for each function
in the example. The signature functions(int a) on line 1 gives the pointcut a name (i.e.,
functions), and states that it has a parameter a of type int. On line 2 an expression specifies
the joinpoints that pointcut functions captures. The first clause, i.e., execution(int $
(int)) specifies all joinpoints that are executions of functions that have the int $ (int)
signature. The $ in this signature is a wildcard that matches any possible function name.

2The syntax of the example aspect in Figure 1.4 is that of Aspect-Oriented C, or ACC (Aspect-oriented C, 2007).

1.2 Idiomatic Crosscutting Concerns 7

Base code

1 int f(int a) {
2 a = a + 1;
3 return a;
4 }
5
6 int g(int a) {
7 a = a + 2;
8 return a;
9 }

Base code with tracing code

1 int f(int a) {
2 printf("> f: a = %d", a);
3 a = a + 1;
4 printf("< f: %d", a);
5 return a;
6 }
7
8 int g(int a) {
9 printf("> f: a = %d", a);

10 a = a + 2;
11 printf("< f: %d", a);
12 return a;
13 }

Figure 1.3: Manually adding tracing code.

This clause thus specifies the execution of all functions that return an int and have one int
parameter. Both functions in the original example match this signature. The second clause,
args(a), makes the run-time value of the int parameter available to users of the pointcut (as
a).

Pointcuts are used by advice to specify when (or where) the advice should be applied.
Lines 4–9 in Figure 1.4 describe advice that implements the tracing functionality. Line 4 spec-
ifies that the advice body should be applied around the joinpoints of the pointcut functions.
Advice of type around is executed instead of the joinpoints it is applied to, so in our case it
will replace the original function bodies. Other advice types are before and after, which
execute advice before or after the original joinpoints, respectively. Lines 5–8 perform the
actual print statements needed for tracing. At line 7, a special keyword, proceed is used to
execute the original body of the function that the advice has been applied to. Its return value is
the return value of the original function. The return value is stored in the result variable,
such that it can be printed later at line 8. The print statements in the advice make use of the
keyword this to obtain the name of the function to which the advice has been applied. This

8 Introduction

Base code

1 int f(int a) {
2 a = a + 1;
3 return a;
4 }
5
6 int g(int a) {
7 a = a + 2;
8 return a;
9 }

Aspect

1 pointcut functions(int a):
2 execution(int $ (int)) && args(a);
3
4 int around (int a) : functions (a) {
5 int result;
6 printf("> %s: a = %d\n", this ->funcName , a);
7 result = proceed();
8 printf("< %s: %d\n", this ->funcName , result);
9 }

Figure 1.4: An aspect adding tracing code.

keyword is part of the aspect language and is used to expose run-time information about the
joinpoints to which advice has been applied.

The base code and the tracing aspect are compiled together by an aspect weaver that
performs the task of applying the advice to the joinpoints as specified by the aspects. Run-
ning the traditional and the AOP tracing implementations will now produce the same output
(assuming a main function that first calls f(1), then g(2)):

> f: a = 1
< f: 2
> g: a = 2
< g: 4

A broad range of aspect languages are currently being used in industrial and research
settings. To name just a few, aspectJ (Kiczales et al., 1997) is an industrial-strength aspect
weaver for Java, while AspectC++ (2007), and Aspect-oriented C (2007) are research proto-
types for aspects in C++ and C, respectively.

1.3 Industrial Context: ASML 9

Figure 1.5: Cutout of an ASML TWINSCAN XT:400F wafer scanner (courtesy of ASML).

1.3 Industrial Context: ASML

All the research described in this thesis has been performed in the particular industrial context
of ASML. ASML is a provider of lithography systems for the semiconductor industry. They
are based in Veldhoven, the Netherlands, and various other locations throughout the world.
Lithography systems are a key component of integrated circuit (IC) production, and are sub-
ject to a highly innovative and competitive market. The basic functionality provided by a
lithography system consists of imaging extremely precise (nanometer scale) circuits onto sil-
icon wafers. A current family of ASML lithography systems is TWINSCAN (see Figure 1.5).
TWINSCAN systems are also known as wafer scanners.

The ASML wafer scanners are very complex systems. They consist of numerous hard-
ware components that operate at dramatically different levels of precision. Silicon wafers are
moved inside a wafer scanner at average speeds measured on a meters per second (m/s) scale,
yet the wafers are still aligned such that a nanometer (10−9m) scale precision is obtained dur-
ing imaging. To accomplish this feat, the components of a wafer scanner are tightly integrated
by means of a large embedded software system that is responsible for the proper cooperation
of all the hardware components.

This embedded software system is the object of study in this thesis. Its estimated size is 15

10 Introduction

million lines of source text3 written mostly in the C programming language. This source text
has been growing (linearly) with the consecutive generations of ASML lithography systems,
in a timeframe of 20 years. It is being maintained, that is, developed, extended, fixed, and
tested, by roughly 475 people (in 2002).

Idiomatic implementation is an integral part of software development at ASML. Key
concerns, like exception handling, are implemented by applying an idiom, as well as some
auxillary concerns. The idioms themselves are described in a manual that every programmer
must adhere to. In the manual, code examples are an important means of conveying the form
of the idioms. Anecdotal evidence suggests that many programmers use the code examples
as templates, filling in the blanks with their own code.

The example return code idiom presented in Figure 1.2 is actually modelled after a real
idiom that is being applied at ASML. The return code idiom is one of the idioms that is
applied in almost every function in the ASML system, since the concern (exception handling)
that the idiom is meant to implement is almost always applicable. The exception handling
concern and the return code idiom are discussed in more detail in Chapters 5, and 7. Other
concerns that are implemented by idioms are tracing of the in- and output values of a function
(Chapter 6) and the validation of pointer values (Chapter 3). These concerns crosscut the
ASML system in the sense that they are scattered, i.e., apply to almost all modules, and are
tangled with the implementation of other concerns. Figure 1.2 shows a clear example of
a tangled implementation: The exceptional control flow is tightly connected to the normal
control flow of the function.

The industrial context of ASML provides many interesting and realistic problems such
as the improvement of the return code idiom. Studying such realistic problems is not easy:
Many factors influence the observations made, and many practical problems have to be solved
before effective research can be done. To obtain some solid ground to build on, the research
presented in this thesis uses the industry-as-laboratory research method as proposed by Potts
(1993). Section 8.4 discusses the experiences with this method, any challenges that were
encountered, and recommendations for future research.

1.4 Research Questions

Idiomatic crosscutting concerns such as the ASML exception handling concern are the ob-
jects of study of this thesis. The goal is to research such concerns in their legacy situation,
quantify and qualify the problems currently being experienced, and identify possible benefits
offered by renovating idiomatic crosscutting concerns using aspects. The research is per-
formed in the industrial context of the ASML software system. Idioms are explicitly being
used within this system to implement a number of crosscutting concerns. We will now discuss
the four research questions that drive the research presented in this thesis. Table 1.1 provides
an overview of the research questions and the crosscutting concerns that were investigated
during the research.

3Including comments and formatting (whitespace).

1.4 Research Questions 11

Research Question Chapter(s)

1. Can idiomatic crosscutting concerns be identified automat-
ically? In particular, are clone detection tools suitable for this
purpose?

2

2. Is it possible to renovate idiomatic crosscutting concerns?
What are the challenges for an automatic approach?

3, 4, 6

3. Are idiomatic crosscutting concerns sources of implementa-
tion faults or inconsistencies?

5, 6

4. What are the benefits offered by renovating idiomatic cross-
cutting concerns using aspects?

3, 6, 7

Crosscutting Concern Chapter(s)

Parameter checking 2, 3

Tracing 2, 6

Exception handling 2, 5, 7

Table 1.1: Overview of the main topics of this thesis.

Research Question 1
Can idiomatic crosscutting concerns be identified automatically? In particular,
are clone detection tools suitable for this purpose?

Code duplication (or code cloning) is the phenomenon that source code contains multiple
identical (or very similar) fragments of code. Such duplicated fragments can exist because
programmers sometimes use a copy-paste-adapt style of programming, i.e., existing code is
copied to another context, and, if necessary, slightly adapted (Kim et al., 2004). Chapter 2 in-
vestigates the correspondence between code duplication and idiomatic crosscutting concerns.
The hypothesis for this investigation is that since the use of idioms will plausibly result in
duplicated code, the source code of idiomatic crosscutting concerns will indeed exhibit du-
plication. An actual C component of ASML is analyzed by three different clone detection
tools. Then, the clone detection results are compared to a reference body of idiomatic cross-
cutting concern code, resulting in quantitative data on the correspondence.

This investigation is interesting in the context of aspect mining (see Kellens et al. (2007)
for a survey of aspect mining techniques). Idiomatic crosscutting concerns are believed to be
good aspect candidates, and aspect mining aims at automatically finding aspect candidates in

12 Introduction

existing software systems. In Chapter 2 the use of clone detection tools for the purpose of
aspect mining is discussed in light of the actual correspondence found between clones and
crosscutting concerns.

Research Question 2
Is it possible to renovate idiomatic crosscutting concerns? What are the chal-
lenges for an automatic approach?

According to Baniassad et al. (2002) crosscutting concerns are detrimental to software
evolution. Idiomatic crosscutting concerns are no exception, since the use of idioms does
not address the problems of scattering and tangling. Modern programming techniques, in
particular aspect-oriented programming, probably alleviate the evolution problems caused by
crosscutting concerns. It is therefore interesting to consider the renovation of crosscutting
concerns within legacy systems such that aspect-oriented programming can be used.

The renovation (or re-engineering) of legacy systems is a challenging research area, where
automation is one of the key challenges (Arnold, 1993; Brodie and Stonebraker, 1995). Au-
tomation is also increasingly important since the scale of legacy systems shows monotonous
growth Lehman and Belady (1985). Chapter 3 proposes an approach that automates the
process of renovating (idiomatic) crosscutting concerns. This approach focuses on the intro-
duction of aspects as a replacement for the use of idioms.

An essential part of this approach is a tool that encodes an idiom such that the tool can
find the exact locations in the source code where the idiom has been applied. Furthermore,
the tool can find violations of the idiom, i.e., locations in source code where the idiom has
not been implemented correctly. Chapter 5 discusses the use of such a tool, called SMELL,
in the setting of finding implementation faults in idiomatic exception handling code.

Automatic renovation requires a source code analysis and transformation infrastructure
to be carried out. In the case studies presented in this thesis different technologies are used
to support various renovation tasks. The SMELL tool, for example, was implemented as
a plug-in for Grammatech’s CodeSurfer program analysis toolkit. However, various code
transformations (e.g., removing legacy idiom occurrences, or generating aspect code) were
build upon a different technology: the ASF+SDF Meta-Environment (van den Brand et al.,
2001). A complicating factor of using different tools is that they can have different models of
the source code that is processed. Since the results of a tool are typically expressed in terms
of its own model, this can lead to incompatibilities in interpreting the results. Chapter 4
proposes SCATR, a framework that deals with the situation of tools with different source
code models that are immutable, such that it may still be possible to transfer results between
tools.

Another challenge for renovation consists of inconsistencies and faults within the source
code of idiomatic crosscutting concerns.4 Should variations among the scattered applications
of an idiom be unified while renovating? Unification may be fine for small accidental varia-
tions, but essential variations (i.e., necessary deviations from the idiom) may be required to

4Note that the software evolution paradox predicted this challenge: renovation can be considered software evo-
lution, and hence erosion caused by earlier evolution hinders its progress. The question remains whether renovation
will break the paradox.

1.4 Research Questions 13

remain. How to handle implementation faults? Fixing faults may appear benign and benefi-
cial, but a legacy system may depend on work-around’s for those faults. Fixing the faults may
break the work-around’s, and thus imply serious risk. Chapter 6 discusses these problems in
more detail. Whether idiomatic crosscutting concerns actually exhibit faulty or inconsistent
implementations is the subject of the next research question.

Research Question 3
Are idiomatic crosscutting concerns sources of implementation faults or incon-
sistencies?

Idiomatic implementation is a manual and repetitive task. Crosscutting concerns, if im-
plemented idiomatically, may therefore be particularly fault prone. Chapter 5 focuses on the
return code idiom that was introduced in Figure 1.2, and that is used throughout the ASML
system to implement exception handling. As argued before, the implementation of the excep-
tion handling concern is highly scattered and tangled as a result. Chapter 5 first defines a fault
model for the faults that are expected to occur within the exception handling implementation.
Then, an automatic fault finding tool, named SMELL, is constructed to find the faults defined
in the fault model. This tool is used in a number of case studies to investigate the actual fault
proneness of ASML software.

Chapter 2 shows that idiomatic crosscutting concern code is often duplicated or very sim-
ilar. Unfortunately, the differences that do exist turn out to be far from consistent. Chapter 6
explores the variability that is present within the idiomatic code of a particular ASML con-
cern: tracing. The ASML tracing concern requires two calls to the tracing library are made
within the body of a function: One call at the start of the function, tracing the input parame-
ters, and a second call at the end of the function that traces the output parameters. The form
of the library call itself is dictated by the tracing idiom.

Variability occurs when the idiom is applied in the same context, but the resulting code
differs unexpectedly. For instance, parameters need to be converted to a string as part of
the tracing call. It is expected that parameters of the same type are converted consistently,
but it turns out that these conversions are not always consistently implemented. Especially
large structure types are converted differently depending on the function they are traced in. It
can often be unclear whether such variability is essential, i.e., required for correct implemen-
tation (despite the idiom), or accidental, i.e., a mistake made by a programmer. Chapter 6
presents a method to explore the variability present in idiomatic implementations, and make
a distinction between essential and accidental variability.

Research Question 4
What are the benefits offered by renovating idiomatic crosscutting concerns us-
ing aspects?

Aspect-oriented programming aims at preventing the problems caused by idiomatic cross-
cutting concerns that we observe in legacy systems. Therefore, renovating such concerns
using aspects should yield benefits. The aspect-oriented programming community is not fo-
cused on the use of aspects within legacy systems, and hence evidence for the benefits of

14 Introduction

the use of aspects in that context is currently lacking. This thesis presents a number of case
studies of the renovation of idiomatic crosscutting concerns in a large-scale legacy system:
the ASML software system, which consists of 15 million lines of C code. First, Chapter 3 re-
ports on a case study of the ASML parameter checking5 concern. Second, Chapter 6 provides
an in-depth study of the ASML tracing concern, in particular the variability present within
that concern, and the consequences of variability for the use of aspects. Finally, Chapter 7
describes the renovation of the ASML exception handling concern. The current exception
handling idiom, which is similar to the C return code idiom, is first reengineered to a more
structured idiom provided by a library for structured exception handling (Goodenough, 1975).
Next, Chapter 7 analyzes the expected benefits of a re-engineering using aspects.

1.5 Software and Technology
This section describes the software that was developed to support the research performed for
this thesis. The technologies used for implementation consisted of:

• The ASF+SDF Meta-Environment (van den Brand et al., 2001).

• The CodeSurfer program analysis toolkit, programmable edition (CodeSurfer, 2007).
The functionality of CodeSurfer was extended using the Scheme programming lan-
guage (STk dialect).

• Various scripting languages, such as Perl, Make, and Unix shell script.

Table 1.2 gives an overview of the developed software. The columns Scheme, ASF,
and SDF show the non-blank line counts of the source texts in their respective languages.
Scripting is the non-blank line count of scripts written in Perl, Make, or Unix shell script.
Files is the number of files used, and Chapter refers to any chapter(s) in this thesis that
describes(s) the software. From the top down, the software mentioned in Table 1.2 becomes
more specific to a particular context: generic, specific to ASML, and specific to the three
crosscutting concerns investigated (at ASML) in this thesis.

Significant effort has been invested in the development of a C grammar in SDF that is
capable of dealing with most occurrences of preprocessor use within source text, without
actually running the preprocessor. This grammar was developed initially by Jurgen Vinju
(for a partial description, see Chapter 8 in Vinju (2005)), and was later adapted to the ASML
context by the author of this thesis.

Table 1.2 includes the software developed to support the renovation steps described in
Chapter 3. In the case of Exception Handling, transformation refers to the elimination of the
RCI, and its replacement by SEH code (see Chapter 7). For the Tracing concern, transforma-
tion refers to elimination of tracing code, and a transformation step that isolates tracing code
to facilitate the formal concept analysis experiment presented in Chapter 6. A large amount
of code could be shared across the analyses for the different crosscutting concerns. Table 1.2
lists this code as analysis infrastructure. SCATR instantiation refers to code that is required
to instantiate the SCATR framework for the AMSL context.

5Parameter checking consists of making sure the pointer-type parameters of a function are not NULL at runtime.

1.5 Software and Technology 15

Software Scheme ASF SDF Scripting Files Chapter
Generic 80 440 920 395 47
C grammar - - 544 - 11 -
SCATR 80 440 376 395 36 4

ASML-specific 3,206 39 578 - 61
C grammar adaptation - - 279 - 15 -
Analysis infrastructure 3,206 - - - 39 -
SCATR instantiation - 39 299 - 7 4

Parameter Checking 1,649 79 887 - 24
Concern verifier 1,282 - - - 9 3
Aspect extractor 354 - - - 4 3
Concern eliminator 13 13 43 - 8 4
PCSL specification - 66 484 - 3 3

Exception Handling 2,874 357 294 - 33
SMELL 2,874 - - - 27 5
Aspect extractor - 153 170 - 3 7
Transformation - 204 124 - 3 7

Tracing 3,702 359 200 22 52
Concern verifier 1,058 - - - 28 6
Aspect extractor 2,592 - - - 28 6
Transformation 52 359 200 22 14 4, 6
Totals 11,511 1,274 2,879 417 217

Table 1.2: Overview of the developed software.

16 Introduction

1.6 Origins of Chapters and Acknowledgements
Chapter 2. On the Use of Clone Detection for Identifying Crosscutting Concern Code.

This chapter was published in the IEEE Transactions on Software Engineering in Oc-
tober 2005 (Bruntink et al., 2005b). It is co-authored by Arie van Deursen, Remco van
Engelen and Tom Tourwé. An earlier version of this chapter as Bruntink et al. (2004a)
won the best paper award at the 20st IEEE International Conference on Software Main-
tenance (ICSM 2004).

Chapter 3. Isolating Idiomatic Crosscutting Concerns. This chapter was published in
the Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM 2005) as Bruntink et al. (2005a). It is co-authored by Arie van Deursen and
Tom Tourwé.

Chapter 4. Linking Analysis and Transformation Tools with Source-based Mappings.
This chapter was published in the Proceedings of the Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation (SCAM 2006) as Bruntink (2006).
Thanks to Jurgen Vinju, Rob Economopoulos, Tijs van der Storm and Tom Tourwé for
commenting on drafts of this chapter.

Chapter 5. Discovering Faults in Idiom-Based Exception Handling. This chapter was
published in the Proceedings of the 28th International Conference on Software Engi-
neering (ICSE 2006) as Bruntink et al. (2006). It is co-authored by Arie van Deursen
and Tom Tourwé.

Chapter 6. Analysing Variability in Large-scale Idioms-based Implementations of
Crosscutting Concerns. This chapter was published in the Proceedings of the 6th
International Conference on Aspect-Oriented Software Development (AOSD 2007) as
Bruntink et al. (2007). It is co-authored by Arie van Deursen, Maja D’Hondt and Tom
Tourwé.

Chapter 7. Renovating Idiomatic Exception Handling. This chapter will appear in the
Proceedings of the 12th European Conference on Software Maintenance and Reengi-
neering (CSMR 2008) in April 2008. Thanks to Tom Tourwé for commenting on a
draft of this chapter.

Chapter 2

On the Use of Clone Detection for
Identifying Crosscutting Concern
Code∗

In systems developed without aspect-oriented programming, code implement-
ing a crosscutting concern may be spread over many different parts of a system.
Identifying such code automatically could be of great help during maintenance
of the system. First of all, it allows a developer to more easily find the places in
the code that must be changed when the concern changes, and thus makes such
changes less time consuming and less prone to errors. Second, it allows the code
to be refactored to an aspect-oriented solution, thereby improving its modularity.

In this chapter, we evaluate the suitability of clone detection as a technique
for the identification of crosscutting concerns. To that end, we manually identify
five crosscutting concerns in the ASML C system, and analyze to what extent
clone detection is capable of finding them.

2.1 Introduction
The tyranny of the dominant decomposition (Tarr et al., 1999) implies that no matter how
well a software system is decomposed into modular units, some functionality (often called a
concern) crosscuts the decomposition. In other words, such functionality cannot be captured
cleanly inside one single module, and consequently its code will be spread throughout other
modules.

From a maintenance point of view, such a crosscutting concern is problematic. Whenever
this concern needs to be changed, a developer should identify the code that implements it.
This may possibly require him to inspect many different modules, since the code may be

∗This chapter was published in the IEEE Transactions on Software Engineering in October 2005 (Bruntink et al.,
2005b). It is co-authored by Arie van Deursen, Remco van Engelen and Tom Tourwé.

18 On the Use of Clone Detection for Identifying Crosscutting Concern Code

scattered across several of them. Moreover, identifying the code specifically related to the
relevant concern may be difficult. Apart from the fact that the developer may not be familiar
with the source code, this code may also be tangled with code implementing other concerns,
again due to crosscutting. It should thus come as no surprise that identifying crosscutting
code may be a time-consuming and error-prone activity, as shown by Soloway et al. (1988)
for delocalized plans.

Aspect-oriented software development (AOSD) has been proposed for solving the prob-
lem of crosscutting concerns. Aspect-oriented programming languages have an abstraction
mechanism targetted specifically at crosscutting concerns, called an aspect. This mechanism
allows a developer to capture crosscutting concerns in a localized way.

In order to use this new feature, and make the code more maintainable, existing appli-
cations written in ordinary programming languages could be evolved into aspect-oriented
applications. Once again, this requires identifying the crosscutting concern code such that it
can be refactored using aspects. The activity of finding opportunities for the use of aspects in
existing systems is typically referred to as aspect mining (Hannemann and Kiczales, 2001).

To support developers in these tasks some form of automation is highly desirable. Clone
detection techniques are promising in this respect, due to two likely causes of code cloning oc-
curring within scattered crosscutting concern implementations. First, by definition scattered
code is not well modularized. Several reasons can be identified for this lack of modularity,
including missing features of the implementation language (exception handling, or aspects,
for instance), or the way the system was designed. In both cases developers are unable to
reuse concern implementations through the language module mechanism. Therefore, they
are forced to write the same code over and over again, typically resulting in a practice of
copying existing code and adapting it slightly to their needs (Kim et al., 2004).

Second, they may use particular coding conventions and idioms to implement superim-
posed functionality, i.e., functionality that should be implemented in the same way every-
where in the application. Logging and tracing are the prototypical examples of such super-
imposed functionality.

We hypothesize from these observations that clone detection techniques might be suit-
able for identifying some kinds of crosscutting concern code, since they automatically detect
duplicated code in a system’s source code. In this chapter we report on a case study in
which we evaluate the suitability of three different clone detection techniques for identifying
crosscutting concern code. We manually identify five crosscutting concerns and evaluate to
what extent the crosscutting concern code is matched by three different clone detection tech-
niques. The evaluation considers token, AST and PDG-based clone detection techniques (see
Section 2.2), and provides a quantitative comparison of their suitability.

The case study considers crosscutting concerns prevalent in the source base of ASML,
a producer of lithography systems based in Veldhoven, The Netherlands. A domain expert
has manually annotated occurrences of five crosscutting concerns (Error Handling, Tracing,
NULL-value Checking, Range Checking, and Memory Error Handling) in a component con-
sisting of 16,406 lines of C code. The complete source base consists of roughly 15 million
lines of C code, of which at least 25% is estimated to be dedicated to crosscutting concerns
(based on the results found for the component considered in the case study).

The chapter is structured as follows. Section 2.2 discusses related work in the areas of
clone detection and aspect mining. In Section 2.3 we describe the case study and the five

2.2 Related Work 19

different crosscutting concerns. Subsequently, in Section 2.4 we detail the approach used to
evaluate the capability of clone detection to find these crosscutting concerns. In Section 2.5
we present and explain the results obtained, followed by a discussion in Section 2.6. Finally,
the chapter is concluded in Section 2.7.

2.2 Related Work

2.2.1 Clone Detection Techniques

Clone detection techniques aim at finding duplicated code that may have been adapted slightly
from the original. Several clone detection techniques have been described and implemented:

Text-based techniques (Johnson, 1993; Ducasse et al., 1999) perform little or no transfor-
mation to the ‘raw’ source code before attempting to detect identical or similar (sequences
of) lines of code. Typically, white space and comments are ignored.

Token-based techniques (Kamiya et al., 2002; Baker, 1995) apply a lexical analysis (to-
kenisation) to the source code, and subsequently use the tokens as a basis for clone detection.

AST-based techniques (Baxter et al., 1998) use parsers to first obtain a syntactical rep-
resentation of the source code, typically an abstract syntax tree (AST). The clone detection
algorithms then search for similar subtrees in this AST.

PDG-based approaches (Komondoor and Horwitz, 2001; Krinke, 2001) go one step fur-
ther in obtaining a source code representation of high abstraction. Program dependence
graphs (PDGs) contain information of a semantical nature, such as control- and data flow
of the program. Komondoor and Horwitz (2001) look for similar subgraphs in PDGs in order
to detect similar code. Krinke (2001) first augments a PDG with additional details on expres-
sions and dependencies, and similarly applies an algorithm to look for similar subgraphs.

Metrics-based techniques (Mayrand et al., 1996) are related to hashing algorithms. For
each fragment of a program the values of a number of metrics are calculated, which are
subsequently used to find similar fragments.

Information Retrieval-based methods aim at discovering similar high level concepts by
exploiting semantic similarities present in the source text itself (Marcus and Maletic, 2001;
Mishne and de Rijke, 2004).

An important application of clone detection is the improvement of source code quality by
refactoring duplicated code fragments (Rieger et al., 1999). Several authors have proposed to
use clone detection in this setting. Baxter et al. (1998) search for opportunities for replacing
clones with calls to a function that factors out the commonalities among the clones. Balazin-
ska et al. (2000) focus on analyzing differences among clones, and their contextual dependen-
cies, in order to determine suitable refactoring candidates. van Rysselberghe and Demeyer
(2004) compare three classes of clone detection techniques, i.e., line matching, parametrized
matching and metric fingerprinting with respect to refactoring the obtained clones. Removal
of clones by refactoring is further studied by Fanta and Václav (1999).

Other applications exist as well. van Rysselberghe and Demeyer (2003), for example, use
a clone detection algorithm to study the evolution of a software system. In particular, they try
to distinguish move method refactorings that were applied when evolving one version of the
software into another.

20 On the Use of Clone Detection for Identifying Crosscutting Concern Code

Following Walenstein (2003); Walenstein and Lakhotia (2003), clone detection adequacy
depends on application and purpose. Finding crosscutting concerns is a completely new
application area, potentially requiring specialized types of clone detection.

2.2.2 Aspect Mining
Although research on aspect mining is still in its infancy, several prototype tools have already
been developed that support developers in identifying crosscutting code. These tools vary in
accuracy and the level of automation that they offer.

The Aspect Browser (Griswold et al., 2001) is a programming environment that provides
text-based mining, which means it relies on string pattern-matching techniques to identify
aspects. A developer specifies a regular expression that describes the code belonging to
the aspect of interest, and a color. The programming environment then identifies the code
conforming to the regular expression, and highlights it using the associated color in the source
code editor. Three concern elaboration tools, including the Aspect Browser, are compared in
a recent study by Murphy et al. (2005). This study shows that the queries and patterns are
mostly derived from application knowledge, code reading, words from task descriptions, or
names of files. Prior knowledge of the system or known starting points strongly affect the
usefulness of the outcomes of the analysis.

The Aspect Mining Tool (Hannemann and Kiczales, 2001) is an extension of the Aspect
Browser that introduces a combination of text-based and type-based mining. Type-based
mining considers the usage of types within an application to identify crosscutting code. It
appears to be a good complement to simple text-based mining, and the combination of the
two ensures that far less false positives and false negatives occur.

The Prism tool (Zhang and Jacobsen, 2004) (an earlier version is called AMTEX (Zhang
and Jacobsen, 2003)) in its turn extends the Aspect Mining Tool, and additionally provides
a type ranking feature and takes control flow information into account. The type ranking
feature is based on the assumption that types that are used widely in the application are a good
indicator of crosscutting code. Therefore, the tool ranks the types in the system according to
their use. The tool also takes control-flow information into account to identify aspects: e.g.
it considers the values involved in conditional branches and the code involved in accessing
these values (assignments, method calls, etc). If such code is not well localized and appears
in many places in the application, it may be a very good candidate for an aspect.

Ettinger et al. discuss a totally different approach to aspect mining that identifies en-
tangled code based on input by the developer, and disentangles it using program slicing
and aspect-oriented techniques (Ettinger and Verbaere, 2004). In other words, the devel-
oper points out a particular expression or statement and a tool automatically computes the
corresponding slice. The code fragment computed in this way can then be extracted into an
aspect.

Fully automated tools for aspect mining are also proposed in the literature. Breu and
Krinke propose a tool that dynamically analyzes Java software to identify aspects (Breu and
Krinke, 2004). To that end, program traces are generated and analyzed automatically. The
idea is to detect particular patterns occurring in the trace, such as a call to a particular method
a that is always followed by a call to method b, or a call to method c that always occurs inside
a call to method d. Such patterns could point to before/after aspects.

2.3 Case Study 21

Shepherd et al. present a tool that uses a clone detection algorithm based on a program
dependence graph (Shepherd et al., 2004) representation of Java code. The tool identifies
possible aspects fully automatically, focusing currently on a specific type of aspects that
introduces code before function calls (i.e., before advices). Their approach seems capable of
finding such aspects in Java code, though the authors report that evaluation of their findings
has been difficult due to a lack of a reference set of desirable aspects. In our work such a
reference set (consisting of manual annotations) is exploited in the evaluation.

Other techniques uses formal concept analysis (Tourwé and Mens, 2004) or metrics (Marin
et al., 2006) to find crosscutting concern code, and combinations of these techniques are pro-
posed to combine the respective advantages and counter the disadvantages (Ceccato et al.,
2005).

Traditionally, AOP techniques have been applied to object-oriented applications. The
idea of applying it for improving the modularity of large-scale C programs is not new, how-
ever. Most notably, Coady et al. report on an experiment using aspect-oriented techniques to
modularize the implementation of prefetching within page fault handling in the FreeBSD op-
erating system kernel (Coady et al., 2001). To that end, they make use of an aspect language
tailored specifically to the C programming language called AspectC, which is currently un-
der development. However, in their experiment, the crosscutting code is identified manually
rather than automatically.

2.3 Case Study

2.3.1 Setup

In Section 2.1 we argued that the presence of crosscutting concerns in a system could be a
cause for code duplication. The failure to properly modularize a crosscutting concern, due
to missing language features (e.g. exception handling or aspects) or improper system design,
leads to programmers being forced to reuse crosscutting concern code in an ad hoc fashion,
i.e., by copy-paste-adapt. Over time, this practice may even become part of the development
process of an organization, when common code fragments find their way into manuals as
conventions or idioms.

The objective of this case study is to evaluate the hypothetical relation between five known
(annotated) crosscutting concerns and the duplication of code in a component of a real sys-
tem written in C. In particular, the case study focuses on the question how well the code of
these crosscutting concerns is found by three clone detectors implementing different clone
detection techniques.

Clone detectors are designed to find duplicated fragments of code, using a specific clone
detection technique (see Section 2.2.1). However, for the purpose of this case study, a clone
detector is regarded as a search algorithm for crosscutting concern code. Consequently, well-
known performance measures can be used from the field of information retrieval (van Rijs-
bergen, 1979) (also suggested by Walenstein and Lakhotia (2003)). First, recall is used to
evaluate how much of the code of a crosscutting concern is found by a clone detector. Sec-
ond, precision gives the ratio of crosscutting concern code to unrelated code found by the
clone detector. Finally, average precision provides an aggregate measure of the performance

22 On the Use of Clone Detection for Identifying Crosscutting Concern Code

Concern Line Count (%) Files (%) Functions (%)

MEMORY 750 (4.6%) 8 (73%) 43 (27%)

NULL 617 (3.8%) 9 (82%) 67 (42%)

RANGE 387 (2.4%) 7 (64%) 38 (24%)

ERROR 927 (5.7%) 11 (100%) 128 (82%)

TRACING 1501 (9.1%) 10 (91%) 110 (70%)

Table 2.1: Line counts of the five concerns in the CC component. The CC component consists
of 16,406 lines, in 11 files, and 157 functions.

of a clone detector over all recall and precision levels. These measures are defined in detail
in Subsection 2.4.5.

2.3.2 Subject System
The software component selected for this case study is called CC, and consists of 16,406
lines of C code1. It is part of the larger code base (comprising over 10 million lines of code)
of ASML. CC is responsible for the conversion of data between several data structures and
other utilities used by communicating components.

Developers working on CC have expressed the feeling that a disproportional amount of
effort is spent implementing ‘boiler plate’ code, i.e., code that is not directly related to the
functionality the component is supposed to implement. Instead, much of their time is spent
dealing with concerns like Error Handling and Tracing (explained below).

This problem is not limited to just the component we selected; it appears in nearly the
entire code base. Since the developers at ASML use an idiomatic approach to implement
various crosscutting concerns in applicable components, similar pieces of code are scattered
throughout the system. Clearly, significant improvements in code size, quality and compre-
hensibility are to be expected if such concerns could be handled in a more systematic and
controlled way.

Five crosscutting concerns within CC were considered in the case study:

• Memory Error Handling; dedicated handling of errors originating from memory man-
agement functions.

• NULL-value Checking; checking the values of pointer parameters of a function against
NULL (indicative of a failed or missing memory allocation attempt).

• Range Checking; checking whether values of input parameters (other than pointers)
are within acceptable ranges.

• Error Handling, which is responsible for roughly three tasks: the initialization of vari-
ables that will hold return values of function calls, the conditional execution of code

1The line count (LC) used throughout this chapter is defined as the number of lines, excluding completely blank
lines.

2.4 Experimental Setup 23

Figure 2.1: Scattering of NULL-value Checking in the CC component. Vertical bars represent
the .c files of CC (header files are not included). Within each vertical bar, horizontal lines of
pixels correspond to lines of source code implementing the NULL-value Checking concern.

depending on the occurrence of errors, and finally administration of error occurrences
in a data structure.

• Tracing; logging the values of input and output parameters of C functions to facilitate
debugging. Each C function is required to perform tracing at its entry and exit points.

All together, these concerns comprise 4182 lines (25.5%) of the 16,406 lines of CC. The
details are shown in Table 2.1. In tables throughout the chapter, the concerns are referred to
by the short-hands MEMORY, NULL, RANGE, ERROR and TRACING, respectively.

For each concern, Table 2.1 also shows the number of files and functions that includes
at least one line of the concern. The CC component consists of 11 files, containing 157
functions. Fig. 2.1 illustrates the scattered nature of the NULL-value Checking concern by
highlighting the code fragments that implement it. The vertical bars represent the files of
CC, and within each vertical bar, horizontal lines of pixels correspond to lines of source
code within the file. Colored lines are part of the NULL-value Checking concern. The other
concerns exhibit a similarly scattered distribution.

2.4 Experimental Setup

2.4.1 Annotation
The first phase of the case study consisted of a manual annotation effort performed by one
of the authors of the CC component. For each of the concerns described in Section 2.3 the
author of the component marked those source code lines which belong to each concern. Each
line in the component was annotated with at most one mark, and thus, each source code line
belongs to at most one of the concerns, or to no concern. See Table 2.1 in Section 2.3 for an
overview of the number of lines belonging to each of the concerns.

24 On the Use of Clone Detection for Identifying Crosscutting Concern Code

2.4.2 Selected Clone Detectors

During the second phase of the case study, we performed clone detection on the CC compo-
nent. For this purpose we have used three different tools, which implement different clone
detection techniques. First, we used the clone detection tool contained in Project Bauhaus
(version 5.1.1) (Project Bauhaus, 2007), a tool set developed at the University of Stuttgart
with the goal to support program understanding and reengineering. The clone detector, called
‘ccdiml’, is an implementation of a variation of Baxter’s approach to clone detection (Baxter
et al., 1998), and thus falls in the category of AST-based clone detectors. Second, we used
CCFinder (version 7.1.1) (Kamiya et al., 2002), a clone detection tool based on tokenized
representations of source code. Finally, the PDG-based clone detector developed by Ragha-
van Komondoor (Komondoor and Horwitz, 2001) was added to the study initially presented
in Bruntink et al. (2004a). This clone detector will be referred to as PDG-DUP throughout
the chapter.

A distinction between the clone detectors is due to the preprocessing required for Bauhaus’
ccdiml and PDG-DUP before clone detection can commence. In effect, both of these tools
detect clones in the preprocessed C code, instead of in the un-preprocessed code. In contrast,
CCFinder is able to detect clones directly in the un-preprocessed code.

Consequently, Bauhaus’ ccdiml and PDG-DUP have to process a larger amount of source
code than the 16,406 lines mentioned earlier. The larger amount of source code may have per-
formance implications. In total, the LC of the CC component after preprocessing is 40,005.
On this particular component, the running time2 of PDG-DUP is close to 4 hours of pro-
cessor time, on a 2 GHz AMD Athlon processor. In comparison, Bauhaus’ ccdiml requires
3 minutes of processor time to calculate its results. CCFinder needs less than 1 minute to
compute its clone classes, running on a slower 1.4 GHz Intel processor. It is not the goal of
this study to compare the running times of the clone detectors, but repetition of the study on
larger components may require the performance of PDG-DUP to be improved.

The use of preprocessing by Bauhaus’ ccdiml and PDG-DUP has no major implications
for the case study. Both Bauhaus’ ccdiml and PDG-DUP create a mapping for clones detected
in the preprocessed code back to the original un-preprocessed code. As a consequence, the
clone detection results can be interpreted based on the un-preprocessed code.

2.4.3 Clone Detector Configuration

The selected clone detection tools can be configured prior to execution which affects the types
of clones detected.

Bauhaus’ ccdiml A prevalent setting of clone detectors is the minimum size of the reported
clones. For the purpose of this case study, the minimum size should be set such that the
largest, still tractable (with respect to processing time and memory requirements) volume of
results is obtained. In case of Bauhaus’ ccdiml the minimum clone size was set to be 2 lines.
For other (larger) components this value may have to be increased, such that a smaller number
of (small) clones is obtained.

2Excluding parsing the C code and calculating the PDG.

2.4 Experimental Setup 25

Furthermore, Bauhaus’ ccdiml is capable of detecting three types of clones. First, exact
clones are simply verbatim copies, although white space and comments are ignored. Second,
parametrized clones are like exact clones but the leaves of the AST’s are ignored during
comparison. The result is that variable and type names and literal values are not taken into
account. Third, near clones are like parametrized clones but allow for insertion and deletion
of code. For our experiment we consider only the first two types, i.e., exact and parametrized
clones, because near clones cannot be abstracted into clone classes (see Subsection 2.4.4).

The exact command line (without input and output files) to execute ccdiml is given by:

ccdiml -all_statements -minlines 2

CCFinder For CCFinder, we left all settings at their defaults, except for the minimum
length a clone must have in order to be included in the output: a clone must at least be 7
tokens long. A smaller minimum length resulted in more clones than could be handled by
CCFinder, causing an abort.

CCFinder was executed using the following command line options:

ccfinder C -b 7,1.0

where C indicates that the tokeniser should expect C code, and -b 7,1.0 sets the minimum
clone size to 7 tokens.

PDG-DUP The size of clones detected by the PDG-based clone detector is expressed as the
number of vertices in the PDG that are included in a clone. For the CC component 3 vertices
is the smallest minimum size that could still be handled; using a minimum size of 2 vertices
caused PDG-DUP itself to abort.

Furthermore, PDG-DUP requires the user to set a commonality threshold, which is used
to remove clones that are overlapped too much by other clones. Per the recommendation of
PDG-DUP’s author, the COMMON threshold was set to 80%.

2.4.4 Abstracting Clone Detection Results
Some clone detectors produce output consisting of pairs of clones, i.e., they report which pairs
of code fragments are similar enough to be called clones. However, for our purpose the pairs
of clones are not very interesting. Instead, we investigate the groups of code fragments that
are all clones of each other. These groups of code fragments are termed clone classes (Kamiya
et al., 2002).

More formally, a clone detector defines a relation between code fragments and typically
yields the tuples of this relation as its output. Instead of investigating these tuples on their
own, we assume this clone relation to be an equivalence relation. It is clear that a clone
fragment is always either an exact or parametrized clone of itself (reflexivity). Also, if code
fragment A is an exact or parametrized clone of code fragment B, then it is clear that B is
also an exact or parametrized clone of A (symmetry). Finally, if code fragment A is a clone
of B and B is a clone of C, then A is also an exact or parametrized clone of C (transitivity).
Subsequently clone classes are comprised of the equivalence classes of the clone relation.

26 On the Use of Clone Detection for Identifying Crosscutting Concern Code

The output of CCFinder and PDG-DUP indeed describe equivalence relations between
code fragments, and thus obtaining the clone classes is a straightforward task. However,
our version of Bauhaus’ ccdiml does not produce an equivalence relation. Given the types
of clones we include in the study, i.e., either exact or parametrized clones, it is justified
to augment the output of ccdiml such that it does constitute an equivalence relation. For this
purpose we use grok, a relational algebra program developed by Holt (1998). The equivalence
classes were obtained by applying a simple union-find algorithm to the reflexive transitive
closure of the clone relation.

2.4.5 Measurements
In the third phase of the case study we performed measurements to test the hypothesis that
the clone classes detected by the three clone detectors, i.e., Bauhaus’ ccdiml, CCFinder and
PDG-DUP, match the annotated crosscutting concern code.

A clone class defines a (non-contiguous) region of source code that is related according
to a clone detector. The manually annotated source code is also partitioned in several (non-
contiguous) regions, namely those lines of source code that implement the Memory Error
Handling, NULL-value Checking, Range Checking, Error Handling and Tracing concerns,
and other code. With regard to the goal, an interesting criterion for evaluation is the extent to
which the regions defined by the annotations are matched by the regions defined by the clone
classes.

Subsection 2.3.1 proposed to use performance measures from the field of information
retrieval to evaluate the match between crosscutting concern code and clone classes. We now
define those measures in detail:

Definition 1 (Concern) Each concern is represented by a set containing the source lines of
the concern, as specified by the annotations.

Definition 2 (Clone) A clone is defined as a set of source code lines.

Definition 3 (Clone Class) A clone class is a set consisting of clones. For a clone class CC,
we define

lines(CC) =
[

c∈CC

c.

Definition 4 (Clone Class Collection) A clone class collection is a set of clone classes. For
a clone class collection D, we also define

lines(D) =
[

d∈D

lines(d).

Definition 5 (Recall and Precision) Let C be a concern, and D a clone class collection, then
we define recall and precision (van Rijsbergen, 1979) as r and p, respectively:

r(C,D) =
|C∩ lines(D)|

|C|
,

p(C,D) =
|C∩ lines(D)|
|lines(D)|

,

2.4 Experimental Setup 27

Clones Clone Classes LC
Bauhaus 5,694 617 8,606
CCFinder 8,105 1,101 10,584
PDG-DUP 23,427 4,240 8,292

Table 2.2: Raw clone detection results.

where |S| is the cardinality of a set S. Clearly, 0≤ r ≤ 1 and 0≤ p≤ 1.

Originally, some blank lines and lines containing only opening and closing brackets, i.e.,
‘{’ and ‘}’, were included in the annotations. Such lines will never be included in the results
of the PDG-DUP clone detector, because such lines are not included in PDG-DUP’s mapping
from PDG vertices to source code. Therefore, such lines had their annotations removed.

Note that this raises an issue of fairness. While PDG-DUP does not include such lines
in its results, Bauhaus’ ccdiml and CCFinder possibly do. Since those lines no longer be-
long to a concern (have an annotation), the precision of Bauhaus’ ccdiml and CCFinder may
be adversely affected. Therefore, blank lines and lines containing only opening and clos-
ing brackets were also removed from the clones classes calculated by Bauhaus’ ccdiml and
CCFinder. The line counts presented in Table 2.1 and Table 2.2 were performed after the
removal of these lines. We are not aware of other issues regarding fairness at the syntactical
level.

The clone detectors produce a large number of results for CC. See Table 2.2 for an
overview of these results. Given the raw clone detection results, many clone class collections
are possible for each clone detector. For the comparion of the clone detectors we consider
appropriate selections of clone classes instead. First, we define the notion of a clone class
selection:

Definition 6 (Clone Class Selection) Given a clone class collection D, a clone class selec-
tion Sk is a sequence of clone classes 〈x1,x2, . . . ,xn〉, such that
{x1,x2, . . . ,xk} ⊆ D.

For each clone detector and each concern, we consider a clone class selection of size k,
i.e., we select k clone classes from the set of all clone classes found by a clone detector.
Given such a selection, a recall-precision graph (van Rijsbergen, 1979) can be plotted to give
an overview of the quality of the match between the selected clone classes and a concern.
For example, Fig. 2.2 contains the recall-precision graphs for the match between the three
clone detectors and the Memory Error Handling concern. A recall-precision graph shows
the recall (x-axis) and precision (y-axis) levels obtained for a clone class selection Sk. Each
point on a recall-precision graph shows the recall and precision of a clone class collection
{x1,x2, . . . ,xl} consisting of the first l clone classes of Sk, and 1≤ l ≤ k.

For each concern, we attempt to find a clone class selection such that the selected clone
classes together provide the best possible match with a concern. Intuitively, good matches are
provided by clone class selections that result in high recall while maintaining high precision.
The average precision (AP) (van Rijsbergen, 1979) is a commonly used measure that captures
this intuition. We define average precision (AP) for a clone class selection as follows:

28 On the Use of Clone Detection for Identifying Crosscutting Concern Code

Definition 7 (Average Precision) Given a clone class selection Sk = 〈x1,x2, . . . ,xk〉, let S′l
(1 ≤ l ≤ k) be the clone class collection {x1,x2, . . . ,xl} consisting of the first l clone classes
in the selection Sk. With C a concern, we now define:

AP(C,Sk) =
k

∑
i=1

p(C,S′i)∆r(C,S′i),

where ∆r(C,S′i) is the difference between r(C,S′i) and r(C,S′i−1) (S′0 = /0).

Each clone detector yields clone classes containing the clones it found in CC. To compare
the clone detectors at matching crosscutting concern code, for each concern and each clone
detector a clone class selection is made such that the average precision for the selection is
(approximately) optimal.

Additionally, the average precision measure is helpful for the comparison of the recall-
precision graphs obtained for the clone detectors, since average precision maps each recall-
precision graph to a single number. Therefore, average precision is used as the primary means
of evaluation for the performance of the clone detectors at matching the various concerns.

2.4.6 Calculating Clone Class Selections

Unfortunately, finding a clone class selection Sk that has an optimal average precision is a
computationally hard problem. Processing the results has therefore been done using an ap-
proximate (greedy) algorithm which iterates k times over all clone classes, and each iteration
selects the clone class which adds the most average precision. Previously selected clone
classes and lines of a concern are disregarded, such that each iteration considers those lines
of a concern that are still remaining.

See Algorithm 1 for a pseudo-code specification of the algorithm. It computes a clone
class selection of size k as follows: line 1 initializes remainder with all the lines of the
specified concern. remainder will be used as the work list for the algorithm. The loop
initiated in line 6 makes sure that k clone classes will be selected. In line 10 the iteration over
all clone classes is started. Lines 11–12 calculate the concern lines included in the clone class
under consideration (hits), and the other lines that the clone class includes (misses). Based
on the hits and misses, the algorithm calculates the current precision (P), added recall (dR),
and added average precision (dAP) in lines 14–18. Subsequently, the added average precision
is then compared to the current maximum, and if greater, the current clone class is marked as
the current best choice (lines 20–25). After the iteration over all clone classes is finished, the
clone class that adds the most average precision is known. The hits and misses of this clone
class are added to the totals (lines 28–29), and the hits are subtracted from the remainder
of the concern (line 30). In line 31 the selection is extended with the best clone class, after
which the algorithm iterates in order to determine the next best clone class for the ordered
selection. Finally, the selected clone class is written to output at line 34.

The algorithm described above possibly calculates clone class selections that are not op-
timal with respect to their average precision. Small differences between average precision
values are therefore required to be interpreted cautiously.

2.5 Results 29

SELECT CLONE CLASSES(concern, cloneClasses, k)
(1) remainder← concern
(2) totalHits← /0

(3) totalMisses← /0

(4) selection← 〈〉

(6) for i = 1 to k
(7) bestCC← /0

(8) bestdAP← 0

(10) for each CC ∈ cloneClasses
(11) hits← remainder∩CC
(12) misses← CC−hits− totalMisses

(14) tHits← totalHits∪hits
(15) tMisses← totalMisses∪misses
(16) P←](tHits)/(](tHits)+](tMisses))
(17) dR←](hits)/](concern)
(18) dAP← P ·dR

(20) if dAP > bestdAP
(21) bestCC← CC
(22) bestdAP← dAP
(23) bestHits← hits
(24) bestMisses←misses
(25) end if
(26) end for

(28) totalHits← totalHits∪bestHits
(29) totalMisses← totalMisses∪bestMisses
(30) remainder← remainder−bestHits
(31) selection← APPEND(bestCC, selection)
(32) end for

(34) OUTPUT(selection)

Algorithm 1: Select Clone Classes

2.5 Results

For each of the five crosscutting concerns, we used Algorithm 1 to calculate a clone class se-
lection for each of the clone class collections yielded by the clone detectors. The maximum
number (k) of clone classes to select per clone class collection was set to 100. In case of the
CC component this value is high enough to ensure that the point is reached where selecting

30 On the Use of Clone Detection for Identifying Crosscutting Concern Code

MEMORY NULL RANGE ERROR TRACING
Bauhaus .65 .99 .71 .38 .62
CCFinder .63 .97 .59 .36 .57
PDG-DUP .81 .80 .42 .35 .68

Table 2.3: Average Precision values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Bauhaus’ ccdiml

CCFinder

PDG-DUP

Figure 2.2: Recall-Precision graphs for Memory Error Handling. 21 clone classes shown for
Bauhaus’ ccdiml, 26 for CCFinder, and 20 for PDG-DUP.

an additional clone class no longer adds average precision. The recall-precision graphs pre-
sented for each concern are limited to the range where average precision is added by selecting
each new clone class. The average precision levels reached by the clone class selections are
presented in Table 2.3.

Figures 2.2, 2.4, 2.6, 2.8, and 2.10 depict the recall-precision graphs of the clone class
selections made for the five crosscutting concerns. All graphs are rooted at 0.0 recall and 1.0
precision, which is the case where no clone classes are selected, i.e., S0. The results for each
of the concerns will now be discussed in detail.

2.5 Results 31

2.5.1 Memory Error Handling

Based on the recall-precision graphs, and the resulting average precision values (see Ta-
ble 2.3) for Memory Error Handling, the PDG-DUP clone detector clearly performs best.
The recall-precision graph for PDG-DUP is significantly above those of Bauhaus’ ccdiml
and CCFinder for almost all l. Consequently, the final AP level reached by PDG-DUP is
significantly higher as well.

The difference between Bauhaus’ ccdiml and CCFinder is not so clear. Bauhaus’ ccdiml
does better in the high recall area (above .60 recall, in the right half of the figure), while
CCFinder does better in the low recall area. Their respective AP values are quite close as
well.

Observe in Fig. 2.2 that CCFinder reaches .45 recall using only 1 clone class (the first
data point for CCFinder). This particular clone class contains 96 clones which are 6 lines in
length. Fig. 2.3 shows an example clone from this class. While the lines marked with ‘M’
belong to the Memory Error Handling concern, only the lines marked with ‘C’ are included
in the clones. Note that completely blank lines, and lines containing only brackets have no
annotation in this example, as was discussed earlier in Subsection 2.4.1. Consequently, those
lines were also removed from the clone classes to allow for a fair comparison. In Fig. 2.3 the
lines which were removed from the clones are marked with ‘-’.

As can be seen from the line markers, the CCFinder clone captures the Memory Er-
ror Handling fragment only partly, stopping half way the parameter list of a function call.
CCFinder allows clones to start and end with little regard to syntactic units. (see Fig. 2.12
for another example) In contrast, Bauhaus’ ccdiml does not allow this, due to its AST-based
clone detection algorithm. PDG-DUP is bound to conform to language syntax as well, since
its PDGs are built on top of ASTs.

M C if (r != OK)
- {

M C ERXA_LOG(r, 0, ("PLXAmem_malloc failure."));
-

M C ERXA_LOG(CCXA_MEMORY_ERR, r,
M C ("%s: failed to allocated %d bytes.",
M func_name, toread));

M r = CCXA_MEMORY_ERR;
}

Figure 2.3: CCFinder clone (‘C’ lines) covering Memory Error Handling (‘M’ lines).

The first clone class of CCFinder does not cover Memory Error Handling code exclu-
sively. In Fig. 2.2, note that the precision obtained for the first clone class is roughly .83.
Through inspection of the code we found that some of the clones do not cover memory error
handling code at all, but code that is similar at the lexical level, yet conceptually different.
In other words, some clones capture entirely different functionality. The results show that
PDG-DUP is better able to make this distinction, resulting in a higher level of precision.

32 On the Use of Clone Detection for Identifying Crosscutting Concern Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Bauhaus’ ccdiml

CCFinder

PDG-DUP

Figure 2.4: Recall-Precision graphs for NULL-value Checking. 8 clone classes shown for
Bauhaus’ ccdiml, 10 for CCFinder, and 10 for PDG-DUP.

2.5.2 NULL-value Checking

Fig. 2.4 shows the recall-precision graphs for the NULL-value Checking concern. All clone
detectors obtain excellent results here, with Bauhaus’ ccdiml and CCFinder even approaching
1 (perfect) average precision. PDG-DUP performs significantly worse than both Bauhaus’
ccdiml and CCFinder, but still obtains a high average precision of .80.

The clone class that was selected first in the case of Bauhaus’ ccdiml captures .66 of the
concern, at a precision of 1. This class consists of 77 clones, spanning 405 lines of NULL-
value Checking code. In Fig. 2.5 we show an example clone of this clone class. The lines
marked with ‘N’ belong to the NULL-value Checking concern and those marked with ‘C’
are the lines included in the clone. Again, lines marked with ‘-’ are included in the original
clones, but were removed for the comparison.

The coding style adopted at ASML distinguishes three kinds of pointer parameters: input,
output and output pointer parameters. All parameters of type pointer are checked against
NULL by the NULL-value checking concern. Both input and output parameters are checked
in the same way, whereas a check for an output pointer parameter differs slightly from the
other checks as it requires an extra dereference. The clone detection results confirm this;
the first two selected clone classes of Bauhaus’ ccdiml cover input/output and output pointer
parameter checks with high precision, respectively.

2.5 Results 33

N C if ((r == OK) && (msg == (void *) NULL))
- {

N C r = CCXA_PARAMETER_ERR;
-

N C ERXA_LOG(r, 0,
N C ("%s: input parameter ’%s’ is NULL.",
N C func_name,
N C "msg"));

- }

Figure 2.5: Bauhaus’ ccdiml clone (‘C’ lines) covering NULL-value Checking (‘N’ lines).

The first clone class selected for PDG-DUP results in far lower precision than Bauhaus’
ccdiml or CCFinder. It turns out that, although the first clone classes are similar for all clone
detectors, all the clones of PDG-DUP are extended with additional lines. For instance, the
fragment in Fig. 2.5 is also found by PDG-DUP, but as part of a larger clone. The larger
clone includes the declarations (and initializations) of the r and func name variables, which
are not considered to be part of the NULL-value Checking concern. The purpose of these
variables is to facilitate error handling in general, and thus their declarations are part of the
Error Handling concern.

PDG-DUP adds these declarations to its clones despite the fact that the declarations are
not textually near the other code fragment in Fig. 2.5. This behavior is due to the existence
of data dependency edges in the PDG between nodes representing uses of the variables and
nodes representing their declarations. Since Bauhaus’ ccdiml and CCFinder do not regard
data dependencies, they do not extend their clones to include the declarations.

2.5.3 Range Checking
As indicated by the average precision values, Bauhaus’ ccdiml (AP .71) outperforms the
other clone detectors at finding Range Checking code. Especially PDG-DUP performs badly,
resulting in only .42 average precision. CCFinder’s performance is in-between Bauhaus’
ccdiml and PDG-DUP, with .59.

The recall-precision graph in Fig. 2.6 shows some significant drops in precision. For
example, the 4th clone class selected for PDG-DUP (recall .53, precision .28) causes a drop
in precision of .36. Similar drops in precision happen for Bauhaus’ ccdiml (clone classes
3 and 4) and CCFinder (clone class 5). These clone classes add code fragments which are
similar to the one in Fig. 2.7, yet do not represent Range Checking code. In fact, these
fragments perform checks on the return values of function calls, while Range Checking is
concerned with checking the values of input parameters. The way invalid values are handled
is identical in both cases, which explains why these fragments are included in clone classes
together with Range Checking code.

2.5.4 Error Handling
Of the concerns we consider, error handling is clearly the worst in terms of the recall-
precision graphs (Fig. 2.8) and average precision. Bauhaus’ ccdiml has a slight advantage
over CCFinder and PDG-DUP in the low recall area.

34 On the Use of Clone Detection for Identifying Crosscutting Concern Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Bauhaus’ ccdiml

CCFinder

PDG-DUP

Figure 2.6: Recall-Precision graphs for Range Checking. 17 clone classes shown for
Bauhaus’ ccdiml, 18 for CCFinder, and 26 for PDG-DUP.

The error handling concern can be partitioned into three sub-concerns: initialization,
error linking and skipping. First, the initialization sub-concern deals with the initialization of
variables used to keep track of return values. Second, error linking handles the administration
of error occurrences in a data structure. Third, skipping is concerned with making sure that
specific parts of a function are not executed in case an error has occurred.

Further inspection has shown that the initialization and error linking sub-concerns are in-
cluded almost entirely by the first and second clone class of Bauhaus’ ccdiml, respectively.
However, the skipping sub-concern is found very badly, which explains why the error han-
dling concern in general is found badly.

Consider the code fragment in Fig. 2.9, a simple example of code belonging to the skip-

default:
R C r = CCXA_PARAMETER_ERR;

R C ERXA_LOG(r, 0,
R C ("%s: unknown type code encountered (%d).",
R C func_name,
R C desc_src->type_code));

Figure 2.7: PDG-DUP clone (‘C’ lines) covering Range Checking (‘R’ lines).

2.5 Results 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Bauhaus’ ccdiml

CCFinder

PDG-DUP

Figure 2.8: Recall-Precision graphs for Error Handling. 69 clone classes shown for Bauhaus’
ccdiml, 62 for CCFinder, and 74 for PDG-DUP.

ping sub-concern. The line marked with ‘S’ belongs to the skipping (sub-)concern. Skipping
accounts for 445 lines of code, i.e., 2.7% of the CC component, and furthermore it is present
in the entire code base. In the example, the r variable is used to hold return values of previous
function calls, and the if statement ensures the conditional execution of the remaining code.

S if (r == OK)
{

r = FD_read(read_fd,
&msg_hdr,
(int) sizeof(CCCN_msg_header));

}

Figure 2.9: Instance of the skipping concern (‘S’ line).

The clone classes yielded by the three different clone detectors do not provide a good
match with this concern for the same reason: the pieces of skipping code are simply too small
to qualify for clones by themselves due to the limits we set in Section 2.4. Furthermore, the
code that appears inside the if statements can differ greatly. As a result no clone classes are
found that cover just the skipping concern. However, some clone classes cover the skipping
sub-concern by accident, i.e., the clones cover a large number of non-concern lines compared
to the number of skipping lines covered.

36 On the Use of Clone Detection for Identifying Crosscutting Concern Code

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Bauhaus’ ccdiml

CCFinder

PDG-DUP

Figure 2.10: Recall-Precision graphs for Tracing. 28 clone classes shown for Bauhaus’
ccdiml, 65 for CCFinder, and 41 for PDG-DUP.

2.5.5 Tracing

The average precision values show that PDG-DUP clone classes have the best match with
Tracing code, although the difference with Bauhaus’ ccdiml is not large. All three clone
detectors show notable drops in precision; Bauhaus’ ccdiml at clone class 3, CCFinder at
clone class 2 and PDG-DUP at clone class 5.

It turns out that these drops in precision are caused by a small number of functions which
are almost entirely cloned. The clone classes mentioned before contain clones which are
almost as big as entire functions. As a result, the included Tracing code is accompanied by a
large number of lines belonging to other concerns.

The first selected clone class for Bauhaus’ ccdiml obtains .23 recall at 1.0 precision. An
example clone from the first clone class is shown in Fig. 2.11. In total, 71 clones of this class
are present in the CC component, spanning 343 lines. The lines belonging to the Tracing
concern are marked with ‘T’, while lines marked with ‘C’ belong to the example clone.

The clones for PDG-DUP contain non-Tracing lines for the reason also observed for
the NULL-value Checking concern. Due to a data dependency between the use of the
func name variable in the call to the tracing function and the declaration (and initialization)
of func name, the declaration is also included in the clone. Again, this declaration is not part
of the Tracing concern, but instead it is included in the Error Handling concern.

2.5 Results 37

T C THXAtrace(CC,
T C THXA_TRACE_INT,
T C func_name,
T C "< () = %R",
T C r);

Figure 2.11: Bauhaus’ ccdiml clone (‘C’ lines) covering Tracing (‘T’ lines).

MEM NULL RAN ERR TRA
Bauhaus ∪ CCFinder .69 .98 .76 .52 .70
Bauhaus ∪ PDG-DUP .83 .99 .72 .53 .78
CCFinder ∪ PDG-DUP .79 .97 .62 .38 .73
Bauhaus ∪ CCFinder ∪ PDG-DUP .77 .98 .79 .54 .81

Table 2.4: Average Precision values for combined clone detection results.

All the code belonging to the Tracing concern is very similar to the example in Fig. 2.11.
The THXAtrace(...) function is always called, and its first three arguments are typically the
same. However, a variable number of arguments can follow the first three. As a consequence,
we also find clone classes which consist of calls to THXAtrace(...) with 5 arguments, 6
arguments, and so on. In fact, the second clone class selected for Bauhaus’ ccdiml contains
clones of the THXAtrace(...) function call with 6 arguments.

CCFinder does not yield clones of the THXAtrace(...) function call with less than 6
arguments, simply because we have limited the minimum size of a clone to 7 tokens (see
Section 2.4). However, clone classes including THXAtrace(...) function calls with less
than 6 arguments do turn up, but those also include a number of non-Tracing lines. A clone
belonging to the first clone class selected for CCFinder is shown in Fig. 2.12. It does in fact
include many of the same lines as the first clone class selected for Bauhaus’ ccdiml, but as
can be seen in Fig. 2.12, the clones are extended with non-Tracing lines.

T C THXAtrace(CC,
T C THXA_TRACE_INT,
T C func_name,
T C "< () = %R",
T C r);

-
C return r;
- }

Figure 2.12: CCFinder clone (‘C’ lines) covering Tracing (‘T’ lines).

2.5.6 Combining Clone Detectors
Table 2.4 contains average precision values obtained for combinations of the three clone
detectors. A combination of two (or more) clone detectors consists of the union of their
respective clone class collections. The union is then subject to the same selection procedure
as for the individual clone detectors, i.e., Algorithm 1. The resulting clone class selections
then possibly consist of a mix of clone classes from the combined clone detectors.

38 On the Use of Clone Detection for Identifying Crosscutting Concern Code

Some combinations of clone detectors perform better than the individual clone detectors
at matching some concerns. The Range Checking concern is matched better by the combina-
tion of Bauhaus’ ccdiml and CCFinder than by any individual clone detector (see Tables 2.3
and 2.4). The combination of all clone detectors reaches the highest AP for the Range Check-
ing concern. The same result is true for the Error Handling and Tracing concerns. Matching
of Error Handling code especially seems to benefit from combining clone detectors.

Clearly, combinations of clone detectors allow for the balancing of the weaknesses and
strengths of the individual clone detectors. Further research will be required to provide a
qualitative explanation of these results.

It is expected that the combination of all clone detectors performs best at matching a
concern. However, this is not the case for the Memory Error Handling and NULL-value
Checking concerns. For Memory Error Handling the AP for Bauhaus ∪ PDG-DUP is .83
(see Table 2.4) while for Bauhaus ∪ CCFinder ∪ PDG-DUP the obtained AP is lower at .77.
Similarly for NULL-value Checking, the AP for Bauhaus ∪ PDG-DUP is .99 while Bauhaus
∪ CCFinder ∪ PDG-DUP falls short at .98. These small anomalies can be explained by the
fact that a non-optimal algorithm is used to calculate the clone class selections.

2.5.7 Summary

Based on the average precision values in Table 2.3, the clone class selections obtained for
Bauhaus’ ccdiml provide the best match with the Range Checking, NULL-value Checking
and Error Handling concerns. However, CCFinder’s clone class selections perform almost
equally well for NULL-value Checking and Error Handling.

For the remaining concerns, i.e., Tracing and Memory Error Handling, the clone class
selections for PDG-DUP perform best. Especially for NULL-value Checking high average
precision values are obtained, which even approach the perfect score in case of Bauhaus’
ccdiml and CCFinder. The Error Handling concern is matched badly across the board, how-
ever.

Combining clone detectors is expected to improve the matching of crosscutting concern
code, and our results confirm this expectation (except for some small anomalies due to the
algorithm used in the evaluation). Especially the Error Handling and Tracing concerns are
matched better when a combination of clone detectors is considered.

2.6 Discussion

2.6.1 Limitations

Clone detection techniques identify the code of our crosscutting concerns because code du-
plication is the way programmers at ASML reuse (parts) of these concerns. Furthermore,
the development process at ASML has a strong idiomatic character. First, it provides strict
rules on the implementation of the concerns in question, in the sense that programmers are
required to implement the concerns for (almost) every function. Second, programmers are
inclined to implement the crosscutting concerns in a similar fashion each time, maybe even
making verbatim copies of existing implementations. The programming manual used by each

2.6 Discussion 39

programmer even provides templates for the implementation of some crosscutting concerns,
such as Error Handling, Tracing and NULL-value Checking. As a result, a large number
of similar implementations of the crosscutting concerns are scattered across the system. We
view an idiomatic nature of the development process (such as the one at ASML) as a major
condition to the applicability of our results.

The evaluation performed does not punish the clone detectors for yielding irrelevant clone
classes. For example, clone classes that do not contain any lines of a concern are not consid-
ered. In general, the clone class selection algorithm only considers those clone classes that
can add recall at a given point during the selection. If no such clone classes remain, then the
average precision of the clone class selection is fixed. Clone classes which do not add recall
do not influence the average precision, since their ∆r is 0 by definition. For the evaluation
of the case study hypothesis it does not matter that clone detectors also yield irrelevant clone
classes: The case study addresses the question which clone detector is capable of providing
the closest match between crosscutting concern code and the detected clones, not whether all
detected clones match crosscutting concern code.

A limitation that surfaced mainly for the PDG-DUP clone detector is due to the line
granularity of the case study. Each source code line can belong to at most one concern, while
in some cases we could consider including a line in multiple concerns. An example was
discussed in Subsection 2.5.2. In that case the first PDG-DUP clone class for the NULL-value
Checking concern consists of clones covering mostly NULL-value Checking code. However,
each clone is extended with the declarations of the variables used within the clones. In turn,
these declarations are considered to be part of another concern, Error Handling in this case.
The main use of these variables lies with the Error Handling concern, yet they are used in
an auxiliary fashion by a couple of other concerns, e.g., NULL-value Checking, Tracing and
Memory Error Handling. An appropriate solution could be to allow lines to belong to multiple
concerns, however this option remains unexplored for now.

2.6.2 Oracle Reliability
A key element of the case study consists of source code annotations produced by a human
oracle. The main author of the studied component marked those lines of source code that are
to be considered part of one of five (crosscutting) concerns. Several measures were employed
to assure the quality of these annotations.

First, the annotated source lines were manually inspected to identify any obvious mistakes
made during annotation. As a result, annotations of blank lines and lines containing nothing
but opening and closing brackets were removed (see Subsection 2.4.1).

Second, the crosscutting concerns considered in the case study are not specific to the
selected component. In fact, all five concerns are present in a large number of other compo-
nents of the ASML source base. Furthermore, concerns such as error handling, tracing and
NULL-value checking are described in detail by the actual programming manuals. As a con-
sequence, the nature of the crosscutting concerns was well-known, allowing the annotations
to be checked for non-trivial mistakes.

Third, clone classes that exhibit high added recall fractions, yet cause significant drops in
precision were inspected manually and discussed with the component’s author. Clone classes
such as these relate a number of clones that match part of a concern (explaining the added

40 On the Use of Clone Detection for Identifying Crosscutting Concern Code

recall) to a large number of clones that match other functionality (explaining the drops in
precision). Especially when a number of clones matches a part of the concern precisely, and
the other clones in the clone class match only other functionality, doubts about the complete-
ness of the annotations could arise. An example of such a clone class was encountered for
the Range Checking concern, as discussed in Subsection 2.5.3. The author of the component
verified that the non-concern clones were in fact implementing different functionality. No
missing annotations were discovered in this way.

2.6.3 Consequences for Aspect Mining
The results presented in this chapter have consequences for the extent to which the studied
clone detectors can be used for the purpose of automatic aspect mining. In the case study we
determined the (approximately) best match of (the clone classes of) each clone detector with
five crosscutting concerns. We were able to determine those matches due to the availability of
annotations that map each source line to either a crosscutting concern or to other functionality.

Automatic aspect mining is expected to work without manually obtained annotations. An
aspect miner based on a clone detector typically fits the following framework. First, the clone
detector calculates clone classes. Second, a clone class selection is made such that best aspect
candidates are selected first. The absence of annotations requires that a different approach is
used to perform the clone class selection.

It is reasonable to believe that an automatic aspect miner is not going to deliver a better
match with crosscutting concerns than a manual annotation effort. In that sense, the clone
class selections we obtained based on the annotations can be seen as the best result that can
be expected of an automatic clone class selection approach. For example, the results show that
the Error Handling concern is matched badly by the clone class selections that we calculated
based on the annotations (see 2.5.4). Therefore, an automatic aspect miner that uses one of
the three clone detectors studied here cannot be expected to provide a good match with the
Error Handling concern. In general, the average precision values in Tables 2.3 and 2.4 give
an indication of the suitability of the three clone detectors for the purpose of automatically
mining for aspect candidates like the five crosscutting concerns considered in the case study.

An example aspect mining approach using AST-based clone detection is described in
Bruntink (2005). Clone classes can be characterized by simple metrics like the number of
clones contained in the class, or the number of lines covered by the class, but more complex
metrics can be derived as well, such as the distribution of clones over different files. These
metrics can subsequently be used to guide the clone class selection process.

2.6.4 Clone Extension
The results show many examples of clone classes that consist of clones which all include
some lines of a particular concern, yet also some other lines. One example is the first selected
PDG-DUP clone class for the NULL-value Checking concern (see Subsection 2.5.2). In that
case, each clone has been extended to include the variable declarations of the variables used
in the clone. These variable declarations are not considered to be part of the NULL-value
Checking concern, and hence their inclusion results in a lower precision. Another example
was discussed for the Tracing concern, where the clones of the first selected clone class for

2.7 Conclusions 41

CCFinder include the return statement which always follows the tracing code at the end of
a function.

The clone detectors considered in this study are programmed such that (only) maximally
large clones are presented to the user. Smaller clones which appear as intermediate results
are removed when they are (partly) ‘subsumed’ by bigger clones, and hence do now show
up in the final results. For the purpose of finding duplicated code this is desirable behavior.
However, it is clear from the examples above that in case of matching crosscutting concerns,
precision can be adversely affected. If the subsumed clone classes had not been discarded
from the final results, those classes would have been selected instead of the current ones,
resulting in higher precision.

It should be noted that failing to discard subsumed clones altogether will probably result
in an intractable number of results. Instead, a better solution is to allow the user to control
the extent to which the clone detector discards subsumed clones. PDG-DUP allows the user
limited control over this behavior by means of the COMMON variable, but to our knowledge
Bauhaus’ ccdiml and CCFinder have no such controls.

2.7 Conclusions

2.7.1 Contributions

First, our results confirm the belief that some crosscutting concerns are implemented by sim-
ilar pieces of code, which are scattered throughout a system. Our case study shows that these
pieces of code can contribute up to 25% to the code size. Large gains in terms of maintain-
ability and evolvability are thus to be expected from methods supporting the identification
and refactoring of these crosscutting concerns.

Second, we have evaluated to what extent the code of five crosscutting concerns is identi-
fied by three clone detection techniques. To that end, we manually annotated the code of five
specific concerns in an industrial C application, and analyzed the recall, precision and aver-
age precision obtained by clone classes yielded by the three clone detection tools. It turns out
that the clone classes obtained by Bauhaus’ ccdiml can provide the best match with the Range
Checking, NULL-value Checking and Error Handling concerns. However, CCFinder’s clone
classes perform almost equally well for NULL-value Checking and Error Handling. The re-
maining concerns, i.e., Tracing and Memory Error Handling, can best be matched by clone
classes of PDG-DUP.

Finally, we discussed how the results obtained in the case study pose an upper limit to
the suitability of using the studied clone detectors for aspect mining purposes. In particular,
since Error Handling code is matched badly by all three clone detectors, automatic aspect
mining approaches using (one of) these clone detectors cannot be expected to adequately find
code belonging to the Error Handling concern. On the other end of the spectrum, code of
the NULL-value Checking concern could be found very well by using CCFinder or Bauhaus’
ccdiml.

42 On the Use of Clone Detection for Identifying Crosscutting Concern Code

2.7.2 Future Work
The crosscutting concerns we considered in the case study also occur in a range of other
ASML components. We will investigate how we can identify the code belonging to these
concerns without manual annotations, using the clone classes found in the CC component as
a starting point. In other words, the CC clone classes can be used as seeds for the crosscutting
concern identification in other components of the ASML code base.

The code base studied in this chapter is confidential, which hinders exact reproduction
of the experiment by other researchers. However, we believe that crosscutting concerns sim-
ilar to the ones studied here are also present in publicly accessible source code bases. For
instance, NULL-value checking, Error Handling and Tracing are common concerns for any
reasonably large C system. Therefore, it would be worthwhile and feasible to reproduce the
experiment on a publicly accessible source base.

Clone classes can be characterized by simple metrics like the number of clones contained
in a clone class, or the number of lines covered by the class, but more complex metrics can be
derived as well, such as the distribution of clones over different files. Metrics such as these
could be used to study the nature of clone classes that capture crosscutting concerns (and
those that do not), given that these clone classes are known. The case study presented in this
chapter shows one way of identifying such clone classes, i.e., using manually obtained an-
notations. Consequently, relationships between clone class metrics and recall and precisions
levels could be discovered based on the results of our case study. Such relations could then
be tested on other systems, including those written in other languages.

Aspect mining techniques based on clone detection can possibly benefit from knowing
which clone class characteristics relate to crosscutting concerns. For instance, in Bruntink
(2005) we discuss how a number of clone class metrics can be used to filter clone detection
results.

Finally, we are working toward the elimination of the NULL-value Checking and Trac-
ing concerns from the original source code (see Chapter 3). The implementations of these
concerns are replaced by domain-specific solutions, which subsequently generate aspect-
oriented code. An interesting issue with respect to clone detection is the suitability of the
detected clones for such (semi-automatic) refactorings. For instance, clones that do not con-
sist of complete syntactical units are likely unsuitable for this purpose. Furthermore, clones
that have context dependencies (data or control) require additional effort to be successfully
extracted. The PDG-DUP clone detector appears to be most suitable for such refactoring
activities, since it both respects syntactic integrity and includes context dependencies in its
clones.

Chapter 3

Isolating Idiomatic Crosscutting
Concerns∗

This chapter reports on our experience in automatically renovating the cross-
cutting concerns of the ASML C system using aspect-oriented progrmaming. We
present a systematic approach for isolating crosscutting concerns, and illustrate
this approach by zooming in on one particular crosscutting concern: parameter
checking. Additionally, we compare the legacy solution to the aspect-oriented
solution, and discuss advantages as well as disadvantages of both in terms of se-
lected quality attributes. Our results show that automated migration is feasible,
and that adopting an aspect-oriented approach can lead to significant improve-
ments in source code quality, if carefully designed and managed.

3.1 Introduction
Aspect-oriented software development (AOSD) (Kiczales et al., 1997) aims at improving the
modularity of software systems, by capturing inherently scattered functionality (often called
crosscutting concerns) in a well-modularised way. In order to achieve this, aspect-oriented
programming languages add an extra abstraction mechanism, called an aspect, on top of
existing modularisation mechanisms such as functions, classes and methods.

In the absence of aspects, crosscutting concerns are implemented explicitly using more
primitive means, such as naming conventions and coding idioms (an approach we refer to
as the idioms-based approach throughout this chapter). The primary advantage of such tech-
niques is that they are lightweight, i.e., they do not require special-purpose tools or languages,
are easy to use, and allow developers to recognise the concerns in the code readily. The down-
sides however are that these techniques require a lot of discipline, are particularly prone to
errors, make concern code evolution time consuming and often lead to code duplication (see
Chapter 2).
∗This chapter was published in the Proceedings of the 21st IEEE International Conference on Software Mainte-

nance (ICSM 2005) (Bruntink et al., 2005a). It is co-authored by Arie van Deursen and Tom Tourwé.

44 Isolating Idiomatic Crosscutting Concerns

Figure 3.1: An overview of our isolation approach

In this chapter, we report on a case study involving a large-scale, embedded software
system written in the C programming language, featuring a number of typical crosscutting
concerns implemented using the idioms-based approach. Our first aim is to investigate how
this idioms-based approach can be turned into a full-fledged aspect-oriented approach auto-
matically. In other words, our goal is to provide tool support for identifying the concern in
the code, for implementing it in the appropriate aspect(s), and for removing all idiom traces
from the code. Our second aim is then to evaluate the benefits as well as the penalties of
the aspect-oriented approach over the idioms-based approach. We do this by comparing the
quality of both approaches in terms of scalability, code quality and maintainability.

This chapter is laid out as follows. The next section presents our approach to the problem
of isolating crosscutting concerns, together with three adoption strategies. This approach is
illustrated by looking at one particular concern, parameter checking, explained in Section 3.3.
Section 3.4 presents the domain-specific aspect language we implemented for the parameter
checking concern, and Section 3.5 discusses the migration of the idioms-based approach to
the aspect-oriented approach. Section 3.6 then shows the results of applying our approach
to our case study, allowing us to evaluate the approach and to compare the resulting AOSD
solution to the current solution in Section 3.7. Finally, Section 3.8 discusses related work,
and Section 3.9 presents our conclusions and future work.

3.2 Approach

3.2.1 Overview

The systematic approach we propose for isolating crosscutting concerns is illustrated in Fig-
ure 3.1.

The right part of the figure contains the target solution, in which the crosscutting concern
is defined in a well-modularised way by means of a specification in a aspect-oriented domain-

3.2 Approach 45

specific language (ADSL). The ADSL code and the pure C are merged together automatically
by means of a code weaver. In order to do this, the ADSL specification is translated to
the general purpose AspectC language, which then allows us to reuse an existing AspectC
weaver. Note that directly expressing the crosscutting concerns in AspectC is not always
feasible or desirable, as we will see in Sections 3.4 and 3.6.

The left-hand side of Figure 3.1 describes the steps that make it possible to migrate exist-
ing C components to the ADSL solution.

The key step is the concern verifier, which is capable of checking the proper use of a
coding idiom. It not only detects the locations where the idiom is actually used, but also
identifies deviations, i.e., places where it thinks the idiom should have been used but for
one reason or another was not. Note that such deviations may be on purpose in certain
cases. Since most coding idioms do not provide mechanisms to explicitly indicate intended
deviations, we must rely on a domain expert to separate deviations reported by the verifier
into intended and unintended deviations. This is the only activity in our approach requiring
human intervention.

Subsequently, the results of the verifier are used to generate the appropriate ADSL and C
code. The aspect extractor uses the locations and deviations to come up automatically with
an ADSL specification of the crosscutting concern at hand. The concern eliminator uses the
locations to remove idiom code from the C code automatically. Clearly, the verifier, extrac-
tor, eliminator and translator need knowledge about the concern. Therefor, the approach is
concern dependent, but can be instantiated for many different concerns.

In order to minimise the risk of introducing subtle errors in the course of the migration,
the migrated code obtained through the ADSL should be as similar as possible to the original
code. This is suggested by the dashed arrow in Figure 3.1, which indicates that locations
found for idioms can be reused in the translator in order to put concern code back at the
original position. In Section 3.5 we will return to this issue of conservative migration.

3.2.2 Adoption Strategies
Our tools (concern verifier, aspect extractor, concern eliminator and ADSL translator) can be
adopted in several ways:

No automated weaving: The tools are used for analysis purposes only. They assist the de-
veloper in verifying that he used the idiom correctly and consistently. The tools may
produce C code that the developer can copy-paste into the sources if he chooses so.

The benefit of this approach is that it is low risk: developers do what they always did,
but are now supported by a concern verifier and an example code generator.

Full automation: All concern code is specified using the ADSL and is eliminated from the
existing code base, automatically transformed into the DSL, and then woven back into
the C code. New applications directly use the DSL.

This will generally be considered a high risk endeavour, since it implies making modi-
fications to the full code base.

Hybrid: An aspect-oriented approach is adopted for some components, while an idiom-
based approach is used for others.

46 Isolating Idiomatic Crosscutting Concerns

This is possible since the code produced by the aspect-oriented weaver is fully com-
patible with the original idiom.

3.3 Parameter Checking

3.3.1 Industrial Context
The system on which we perform our case study is an embedded system developed at ASML,
the world market leader in lithography systems, where reliability and maintainability are key
quality attributes. For that reason, ASML adopted a number of coding conventions. One of
them is the parameter checking concern.

The entire software system consists of more than 15 million lines of C code. Our case
study, however, is based on five subsystems, comprising about 160,000 lines of code.

3.3.2 The Parameter Checking Concern
The requirement for the parameter checking concern is that each parameter that has type
pointer and is defined by a public (i.e., not declared static) function should be checked
before it is dereferenced. The purpose of such checks it to improve the reliability and error
reporting of the software system.

The ASML code distinguishes between four different kinds of parameters: input, output
and the special case of output pointer parameters, and in/out parameters. Input parameters
are used to pass a value to a function, and can be pointers or values. Output parameters are
used to return values from a function, and are represented as pointers to locations that will
contain the result value. The actual values returned can be references themselves, giving rise
to a double pointer. The latter kind of output parameters are called output pointer parameters.
In/out parameters are parameters that are used as both input and output parameters.

The implementation of a check depends on the kind of parameter. An input parameter
should contain an actual value, i.e., should not be NULL. An output parameter should point to
an existing variable or location, i.e., should not be NULL. An output pointer parameter may
not point to a location that already contains a value (in order to reduce the chance of memory
leaks). If these preconditions are not met, an error value is assigned to a dedicated error
variable, and an appropriate error message is logged.

Note that the requirement does not specify where exactly a parameter should be checked.
This can be done in the function itself, or alternatively anywhere in the call graph of the
function, as long as a check occurs before a dereference.

3.3.3 Coding Idiom Used
Parameter checks occur at the beginning of a function and are similar to:

if(queue == (CC_queue *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Input parameter %s error (NULL)",

"CC_queue_empty", "queue"));
}

3.4 An ADSL for the Parameter Checking Concern 47

where the type cast depends on the type of the variable (CC queue * in this case). The second
line sets the error that should be logged, and the third line reports that error in the global log
file. It is not strictly specified which string should be passed to the CC LOG function. Checks
for output parameters look almost the same, except for the string that is logged. Checks for
output pointer parameters look as follows:

if(*item_data != (void *) NULL) {
r = CC_PARAMETER_ERR;
CC_LOG(r,0,("%s: Output parameter %s may already "

"contain data (!NULL). This data will "
"be overwritten, which may lead to memory "
"leaks.", "queue_extract", "item_data"));

}

The only difference with the previous test lies in the condition of the if, which now
checks whether the dereferenced parameter already contains some data (!= NULL), and in the
string that is written to the log file.

Parameter checking is representative for several other idioms in use at ASML. Since it is
one of the simplest, it is suitable for conducting first experiments with our approach.

3.4 An ADSL for the Parameter Checking Concern
In order to arrive at a more rigorous treatment of parameter checking, we propose an ADSL
which we have baptised PCSL,1 the Parameter Checking Specification Language. In this
section we describe the language and corresponding tool support2 — in the next we explain
how existing components can be migrated to this target solution.

Observe that language engineering issues are not the focus of the present chapter. Thus,
issues such as interoperability with other languages are not considered. Also note that the lan-
guage (and the corresponding translator) is not specific to our case nor to code from ASML:
it can be used in any other application involving aspects working on parameters (such as pre-
and postcondition checking, for example).

3.4.1 Specification
The idea underlying PCSL is that a developer annotates a function’s signature, by document-
ing the specific kind of its parameters, i.e., either input, output or output pointer. When a pa-
rameter does not require a check, for whatever reason, this can be indicated by the deviation
annotation.

As an example, consider the (partial) specification of the parameter checking aspect for
one of the considered components, as depicted in Figure 3.2. It states that the parameters
CC queue *queue and void **queue data of the CC queue peek front function are out-
put and output pointer parameters, respectively, and that parameter CC queue *queue of
function CC queue init is an output parameter, whereas parameter void *queue data does
not need to be checked.

1PCSL is most easily pronounced pixel.
2The PCSL tools can be obtained by contacting the authors.

48 Isolating Idiomatic Crosscutting Concerns

The aspect only documents the public functions of the component, since these are the only
ones that need to have their parameters checked, according to the requirement. Of course, the
actual checks themselves can occur in non-public functions.

Besides the signature specification, the developer can specify advice code, i.e., the code
that will perform the actual check. Since this code can differ for the different kinds of param-
eters, we allow advice code for input, output and output pointer parameters to be specified
separately. Although in this chapter we do not need it, PCSL also has provisions to express
advice code for deviations.

The special-purpose thisParameter variable used in the advice denotes the parameter
currently being considered by the aspect, and exposes some context information, such as the
name and the type of the parameter and the function defining it. In this respect, it is similar to
the thisJoinPoint construct in AspectJ. Due to the generality introduced by this variable,
we only need to provide three advice definitions in order to cover the implementation of the
concern in the complete ASML source code. As a comparison, using the general-purpose
AspectC language directly instead of PCSL would require providing different advice code
for each parameter. In other words, the thisParameter variable is one of the main reasons
why we need a domain-specific aspect-oriented language as opposed to a general-purpose
one.

1 component CC {
2 CC_queue_peek_front(output CC_queue *queue ,
3 output output-pointer void **queue_data);
4 CC_queue_empty(input CC_queue *queue , output bool *empty);
5 CC_queue_init(output CC_queue *queue , deviation void *queue_data);
6 ...
7 input advice {
8 if(thisParameter.name == (thisParameter.type) NULL) {
9 r = CC_PARAMETER_ERR;

10 CC_LOG(r,0,("%s: Input parameter %s error (NULL)",
11 thisParameter.function.name , thisParameter.name));
12 }
13 }
14 output advice {
15 if(thisParameter.name == (thisParameter.type) NULL) {
16 r = CC_PARAMETER_ERR;
17 CC_LOG(r,0,("%s: Output parameter %s error (NULL)",
18 thisParameter.function.name , thisParameter.name));
19 }
20 }
21 output-pointer advice {
22 if(*thisParameter.name != (thisParameter.type*) NULL) {
23 r = CC_PARAMETER_ERR;
24 CC_LOG(r,0,("%s: Output Pointer parameter %s error",
25 thisParameter.function.name , thisParameter.name));
26 }
27 }
28 }

Figure 3.2: PCSL specification of the parameter checking concern

3.5 Migration Support 49

3.4.2 Translation to AspectC
PCSL code is automatically transformed into AspectC code, which in turn is woven with the
C code containing the implementation of the primary functionality (as seen in Figure 3.1).

The AspectC weaver we use is a stripped-down variant of the AspectC language defined
by Coady et al. (2001). It has only one kind of joinpoint, function execution, and allows us to
specify around advice only. Of course, before and after advice can be simulated easily using
such around advice. Figure 3.3 contains an example that shows how the advice on keyword
is used to specify advice code for a particular function.

The translation is implemented in ASF+SDF (van den Brand et al., 2001), a general pro-
gram transformation tool that includes a C grammar, and proceeds as follows. For each
parameter that does not have the deviation annotation, the translator looks up the param-
eter’s kind, retrieves the corresponding advice code, and expands that code into the actual
check that should be performed.

The expansion phase is responsible for assembling and retrieving the necessary context
information (i.e., setting up the thisParameter variable), and substituting it in the advice
code where appropriate. At the end, this advice code will call the original function by calling
the special proceed function, but only if none of the parameters contain an illegal value (i.e.,
the error variable is still equal to the OK constant).

An illustration of the translation of the specification of Figure 3.2 is given in Figure 3.3.
An input and an output parameter check are added to the CC queue empty function for its
queue and empty parameters, respectively.

1 int advice on (CC_queue_empty) {
2 int r = OK;
3 if(queue == (CC_queue *) NULL) {
4 r = CC_PARAMETER_ERR;
5 CC_LOG(r,0,("%s: Input parameter %s error (NULL)",
6 "CC_queue_empty", "queue"));
7 }
8 if(empty == (bool *) NULL) {
9 r = CC_PARAMETER_ERR;

10 CC_LOG(r,0,("%s: Output parameter %s error (NULL)",
11 "CC_queue_empty", "empty"));
12 }
13 if (r == OK)
14 r = proceed();
15 return r;
16 }

Figure 3.3: AspectC code generated for the PCSL specification

3.5 Migration Support
The aspect solution as described in the previous section can be used when new components
are built, as shown in the right part of Figure 3.1. However, the majority of the software
development activities at ASML (and, in fact, at most companies) is not devoted to greenfield

50 Isolating Idiomatic Crosscutting Concerns

engineering, but to adjusting existing components. In order to achieve the same benefits for
such existing components, we describe how these can be migrated to an ADSL solution. In
particular, we discuss how concern code can be recognized in the original implementation,
how an aspect can be created from it, and how the original concern code can be removed from
the C code.

3.5.1 Concern Verification
The parameter checking concern verifier is used to “characterise” the source code: it in-
fers where parameter checks should be present, according to the requirements, and verifies
whether these checks are there. If a check is present, its location is reported, and if it is not,
a deviation is reported.

The resulting list of deviations is inspected by a domain expert, who classifies a devi-
ation as either intended or unintended. Intended deviations signal parameters that do not
need a check, for example because the function has been designed such that the value null
for the given parameter is meaningful, or because the check is considered too expensive in
a performance-critical function. Unintended deviations signal a violation to the parameter
checking requirement. Note that this manual step is required because even complex program
analysis techniques do not suffice to recognise an intended from an unintended deviation.

The verifier for the parameter checking idiom has been developed as a plugin for the
CodeSurfer source code analysis and navigation tool (CodeSurfer, 2007). CodeSurfer can
construct program dependence graphs for systems written in C, and provides a programmable
interface to navigate through such graphs.

The verifier first extracts the parameter kinds from the source code. All formal param-
eters of all user-defined functions are considered, and checked whether they are assigned
somewhere in the function’s call graph. If they are, they are output parameters, otherwise
they are input parameters. The functionality required for implementing this algorithm, such
as computing the killed set of a parameter (i.e., the location in the code where a parameter’s
value is overwritten, if that exists) and the call graph of a function is provided by CodeSurfer
library functions.

Once the parameter kinds are known, the plugin considers each parameter of a function.
It traverses the control flow graph of the function in order to verify whether a parameter check
is encountered before the parameter is dereferenced. When parameters are passed on to other
functions, the plugin considers the control-flow graph of those other functions as well. Since
following such inter-procedural paths is time consuming, we employ caching to ensure each
path is followed only once.

3.5.2 Aspect Extraction
Since the verifier exactly finds out which parameters need to be checked and what their kind
is, we can use its output to generate a PCSL specification automatically for the verified com-
ponent.

The PCSL code to be generated consists primarily of the signature declarations indicating
the kind of each parameter. The actual advice code for the three kinds does not differ per
parameter, and can be simply appended to the generated signatures.

3.6 Case Studies 51

For convenience, we implemented the aspect extractor as an extension to the concern
verifier, i.e., also as a CodeSurfer plugin.

3.5.3 Concern Elimination
Besides extracting the aspect specification, the code originally implementing the concern has
to be removed from the source code as well.

The locations obtained by the verifier indicate where the parameter checks occur, and
could be used for this purpose. Although line numbers for relevant statements are thus avail-
able, the precise start and end points of the checking code are not always known. For example,
brackets of compound statements are not included in CodeSurfer’s code representation.

In order to solve this issue, we implemented a parameter checking eliminator using
ASF+SDF (van den Brand et al., 2001). Transformations recognise parameter checking code
that obeys the coding idiom explained in Section 3.3, and subsequently remove such code.

Although the concern eliminator obtained in this way works perfectly well, it is some-
what unsatisfactory as it effectively re-implements (a small) part of the verifier, namely the
part recognising existing checks. We are currently looking at techniques to integrate the
program analysis capabilities of CodeSurfer with the program transformation capabilities of
ASF+SDF.

3.5.4 Conservative Translation
Besides straightforward translation (i.e., adding a check for each input, output and output
pointer parameter in each public function), the PCSL translator also implements conservative
translation: it can define an AspectC aspect that reintroduces the parameter checks at exactly
the same locations as where they were found originally. Naturally, this is only possible for
parameters that were already checked originally.

Conservative translation is based on information obtained from the verifier (as explained
above and indicated in Figure 3.1). Four different situations occur for a parameter p of a
function f :

1. the parameter p was checked in function f ;

2. the parameter p was checked, but not in function f ;

3. the parameter p was not checked, but was registered as an unintended deviation;

4. the parameter p was not checked, but was registered as an intended deviation.

In the last case, nothing needs to be done as no check is needed. In the second case, the
function where p was checked is fetched, and we end up in case 1. In the first and third case,
a check for p is added to f.

3.6 Case Studies
In this section, we present the results of running our tools on selected ASML components.
The next section then discusses the lessons learned based on these results.

52 Isolating Idiomatic Crosscutting Concerns

parameters deviations unintended intended
to check detected deviations deviations

CC3 (3 kLoC) 32 8 0 8
CC10 (19 kLoC) 238 65 58 7
CC8 (12 kLoC) 218 of 723 23 16 7
CC8 (98 kLoC) 505 of 723 53 41 12
CC2 (14.5 kLoC) 190 31 24 7
CC1 (15 kLoC) 67 5 4 1

Table 3.1: Parameter checking results

3.6.1 Intended and Unintended Deviations

An overview of the parameter checking verifier results is provided in Table 3.1. The top half
of the table lists systems for which the results have been discussed with system developers,
and for which we have accurate figures on the intended versus unintended deviations.

As can be seen, our verifier reports that 32 of the parameters of the CC3 component must
be checked (recall that only pointers need to be checked). 8 deviations are reported, all of
which are considered to be intended deviations. For the CC10 component, 238 parameters
need to be checked, 65 of which are reported as deviations, and manual inspection eliminated
7 intended deviations. Due to timing constraints, results for the CC8 component are only
confirmed for a 12 kLoC subset. 23 deviations are reported, 16 of which are unintended.

The bottom half of Table 3.1 lists systems to which we have applied our tools, but for
which we do not have confirmed figures on the number of (un)intended deviations. The
figures listed are estimates, obtained by extrapolating the results from the top half of the
Table, which indicate that 74 out of 96 (77%) deviations are considered unintended. Thus, we
predict that 69 unintended deviations will be present in the remainder of the CC8 component
and in the CC2 and CC1 components.

3.6.2 Coding Idiom Conformance

The verifier recovers all parameter checks from the code, which allows us to assess how con-
sistent the various developers have implemented the coding idiom explained in Section 3.3.3.

Most components implement the checks in the same way, but each component logs dif-
ferent strings, even for the same parameter error. The CC3 component logs two different
strings, for instance, and the CC10 component logs 30 different strings. The CC8 component
and the CC2 component log 15 and 5 strings, respectively, whereas the CC1 component does
not log any string. This is due to the fact that it does not contain any parameter checks. The
component defines few public functions and hence requires few checks, which do not seem
to be implemented.

The reason CC10 uses many more strings than the other components is due to the fact that
the logged errors in CC10 are specific to the kind of parameter, whereas other components
use generic strings.

3.7 Evaluation 53

CC3 CC10 CC8 CC2 CC1
Original C code 56 961 456 133 0
PCSL code 46 132 787 166 75
AspectC code 122 1200 1214 272 223

Table 3.2: Lines of code figures for various parameter checking representations

3.6.3 Code Size

Table 3.2 shows the difference measured in lines of concern code3 between the idioms-based,
PCSL and AspectC approaches. Surprisingly, we found that using an aspect-oriented ap-
proach, based on a domain-specific or on a general-purpose aspect language, does not nec-
essarily reduce the code size of the components. This contrasts sharply with an often (infor-
mally) claimed benefit of aspect-oriented software development.

For the PCSL approach, we see that the code size of the CC10 component is reduced
significantly, but that this is not the case for the other components. The CC8 specification
has 72% more lines of code than the original C code. The reason is that the number of pa-
rameter checks in CC8 is relatively low compared to the number of parameters that need to
be checked, but that in PCSL all (public) function signatures should be annotated. This situ-
ation is even more apparent for the CC1 component, which does not implement any checks,
whereas the PCSL specification consists of 75 lines of code. We will further discuss this issue
in Section 3.7.3.

With respect to the AspectC solution, we observe that all aspects, except the CC1 aspect,
require more lines of code than the idioms-based approach. In other words, it requires an
extra amount of code to implement, and contains just as much duplication as the idioms-based
approach (as shown in Figure 3.3). Admittedly, our AspectC code is generated and does not
try to factor out commonalities using generic pointcuts. This is very difficult to achieve with
generic languages such as AspectJ or AspectC, because they currently lack the necessary
features and flexibility for implementing concerns such as parameter checking (Adams and
Tourwé, 2005).

3.7 Evaluation

This section reflects on the lessons learned when applying our approach to the ASML com-
ponents and when comparing the idioms-based approach with the aspect-oriented approach.

3.7.1 Scalability

The idioms-based approach does not scale.

The results of running the parameter checking verifier show that most of the reported
deviations are unintended deviations. These results prove that our verifier is reliable and

3Including whitespaces.

54 Isolating Idiomatic Crosscutting Concerns

worthwhile to consider in a code reviewing activity. Additionally, this shows that the idioms-
based approach is error-prone and does not scale, even for simple concerns, and that a more
rigorous treatment for parameter checking is needed.

We can only speculate about the reasons why so many unintended deviations are present.
The following factors seem to be important:

• The size of the component. The smallest component (CC3) contains no deviations,
whereas the largest component (CC8) contains the most deviations;

• The age of the component and the amount of evolution it has undergone. The CC3
component was redeveloped completely recently, whereas CC8 is already quite old
and has undergone many changes;

• The number of programmers working on the component. Components developed by a
small team of developers do not exhibit many unintended deviations, whereas compo-
nents developed by many different developers show many more deviations.

• The cost of adding a check manually compared to the benefits it may provide to the
developer. The potential benefits of the check are not experienced by the developers
themselves, but by potential clients of the component who would be helped with a
parameter warning upon improper use of the function.

More work is required to pinpoint which of these factors influences the results the most.

3.7.2 Code Quality

An AOSD approach improves code quality by minimising code duplication, im-
proving uniformity and understandability and reducing scattering and tangling.

Minimising Code Duplication

In Chapter 2 we evaluated the amount of code duplication in a number of crosscutting con-
cerns in the CC10 component, among which the parameter checking concern. The results
confirm the common belief that the idioms-based approach leads to a large amount of dupli-
cation. The specific reason for the duplication is that, due to the crosscutting nature of the
code, reuse of that code is not possible in ordinary programming languages, since it does not
fit in a module.

By using aspect-oriented techniques, however, reuse becomes possible again. This is
reflected by the fact that in our PCSL specification of the parameter checking concern, the
advice code for each kind of parameter is specified only once and can be reused.

Note that we specifically devised PCSL with maximal reuse of advice code in mind.
Using a current-day general-purpose aspect language would make it much harder to reuse the
code and avoid duplication, however. This is discussed in Bruntink et al. (2004b) and shows
that simply using AOSD techniques will not necessary reduce (crosscutting) code duplication.

3.7 Evaluation 55

Improving Uniformity

The results in Section 3.6.2 show that the coding idiom for parameter checking is not strictly
adhered to. Although uniform checks are not that important, uniform error strings are. Those
strings are used by automated tools that reason about the logged errors in order to identify and
correct the primary cause of a particular error. The idioms-based approach clearly aggravates
this task.

In the AOSD solution, the advice code specifies how a parameter should be checked, and
this code is specified only once for each component, and reused afterwards. Consequently,
all parameters of a component are checked and logged in the same way.

Improving Understandability

As the number of intended deviations is limited, documenting such exceptions is important.
For example, we observed that most intended deviations for output pointer parameters are
due to the parameter being used as a cursor when iterating over a composite data structure.
Since the parameter points to an item in the list, it does not matter that its value is overwritten,
and hence, no output pointer check is needed. With the idioms-based approach, such infor-
mation is only implicitly present in the source code, and is thus easily overlooked. Explicitly
capturing such information in an aspect improves the understandability of the code.

Reducing Scattering and Tangling

The parameter checking concern is clearly scattered over many different functions and files,
since many functions implement the idiom. The aspect-oriented solution cleanly captures the
concern in a modular and centralised way in an aspect, and thus removes the scattering all
together. This also eliminates the tangling that is present in the C solution: without PCSL,
many functions start with approximately five lines per parameter. This code is unrelated to
the key concern to be handled by the function, and causes unnecessary distraction for the
developer.

3.7.3 Maintainability
An AOSD approach introduces additional maintainability risks.

A potential risk when separating the aspect code from the base code is that the two get out
of sync: when a component evolves, its associated aspects do not. This is an important issue,
as our experience suggests that developers are reluctant to adopt a new technology when it
introduces additional risks of inconsistency.

The simple remedy we adopted is to include sanity checks in the ADSL translator, which
can warn about non-existing functions and parameters, or non-matching signatures. The
result is certainly more consistent than the current practice, which is to include parameter
kind declarations in comments that are not automatically processed.

A complementary solution came up when talking to ASML developers. They suggested
that the function signature annotation and advice code specification can best be separated.
The rationale is that the advice code almost never changes, but the annotations will change

56 Isolating Idiomatic Crosscutting Concerns

more frequently. Additionally, they suggested to allow annotations only for parameters that
do not need to be checked. The majority of the functions behaves normally with respect to
the idiom, and does not need annotation, since we can infer parameter kinds automatically
from the source code. As such, the required lines of code for the PCSL specification will be
reduced significantly.

In a future version of PCSL, we will thus allow developers to specify intended deviations
inside structured comments, near the function definition itself, whereas the advice code will
still be defined in a separate file. This might still introduce consistency problems: a parameter
that deviates from the idiom in one version of the software might adhere to the idiom in the
next, and vice versa, which requires the developer to update the annotation. This situation will
not occur frequently, however, because deviations are scarce and occur only in very specific
circumstances (such as for example, a cursor in a list). Additionally, we believe developers
will be motivated to keep the annotations in sync with the current implementation, as this
helps them to achieve a correct parameter checking concern in a rather easy way.

3.7.4 Change Management
Adoption of AOSD requires different adoption scenario’s and change manage-
ment.

We have observed that (ASML) developers are reluctant toward adopting a new and (for
them) largely unknown solution. The same situation probably occurs in other software com-
panies, and with other tools.

The different adoption strategies incorporated in our approach are expected to alleviate
this problem. We expect that the adoption of our techniques will start with a non-weaving
approach only. Once developers and managers get familiar with the use of PCSL and the pa-
rameter checking verifier, we expect that they will get interested in using automated weaving
for certain components, thus adopting the hybrid approach. After this has been successful for
a significant number of components, we anticipate a migration effort to the fully automated
approach, thus eliminating the need for any hand-written parameter checks.

3.8 Related Work
Our parameter checking verifier resembles tools that verify the quality of the source code. A
number of tools for this purpose have been developed over the years (Johnson, 1977; Paul
and Prakash, 1994). Most of them are only able to detect basic coding errors, such as using
= instead of ==, and are incapable of enforcing domain-specific coding rules. More advanced
tools exist (van Emden and Moonen, 2002; Kataoka et al., 2001; Marinescu, 2002; Tourwé
and Mens, 2003), but these are restricted to detecting higher-level design flaws in object-
oriented code. Tools which are capable of checking custom (domain-specific) coding rules
are described by Eichberg et al. (2004) and Engler et al. (2000).

There is also some similarity with tools from the area of plan recognition (Wills, 1992;
van Deursen et al., 1997). Such tools are parameterised with a library of “program plans”,
typical ways of solving known programming problems, which bear some resemblance with

3.9 Concluding Remarks 57

our idioms. Plans are typically described by data or control dependencies, as done, for ex-
ample in van Deursen et al. (1997) to characterise leap year computations in Cobol code.
The recogniser can then search for plan instances in a code base. In our case we decided
to characterise the idioms in Scheme as a CodeSurfer plugin, which provided the necessary
flexibility and was readily available.

The work described in this chapter has some similarities with work done by Coady et al.
(2001), who describe how they identified prefetching code in the FreeBSD OS kernel, and
propose a new solution in terms of AspectC. Their work does not focus on a general approach
for isolating crosscutting concerns, since they restructured the code manually in an ad-hoc
way.

A number of other studies have investigated the applicability of aspect-oriented tech-
niques to various (domain specific) crosscutting concerns. Murphy et al. (2001) proposes
guidelines for preparing the code for isolating concerns and performing the necessary re-
structurings. Lippert and Videira Lopes (2000) targets exception detection and handling code
in a large Java framework. Both works discuss advantages of using AOSD, such as reduced
code duplication and improved cohesion, and discuss some particular limitations of using
AspectJ. In Lippert and Videira Lopes (2000), the aspect solution does reduce the code size,
contrary to our findings.

An approach to refactoring which specifically deals with tangling is presented by Ettinger
and Verbaere (2004). Their work shows how slicing techniques can help automate restructur-
ing of tangled (Java) code, and could be a good candidate to include in our approach, when
we are dealing with more complex concerns. Hanenberg et al. (2003) provides a more general
discussion of both refactoring in the presence of aspects, and refactoring of object-oriented
systems toward aspect-oriented systems.

3.9 Concluding Remarks

Contributions The key contribution of this chapter is a systematic approach for isolating
crosscutting concerns from existing source code. We illustrated the effectiveness of this ap-
proach by considering the parameter checking concern, which resulted in:

1. a proposal for PCSL, a domain-specific language for implementing concerns dealing
with parameters;

2. insight into the use of the idioms-based approach in an industrial setting, which showed
its shortcomings: the approach does not scale and leads to inconsistencies;

3. insight into the benefits and pitfalls of the AOSD approach: improved source code
quality at the cost of additional maintainability issues and required change management
and adoption strategies.

Future Work The focus of this chapter is on a specific concern (parameter checking) in
five components from the ASML source code. We are presently extending the scope of our
work in various directions:

58 Isolating Idiomatic Crosscutting Concerns

• We are in the process of applying this approach to a larger number of components
within ASML;

• Parameter checking is a concern that is interesting outside ASML as well. Our ap-
proach is mostly generally applicable. The only ASML-specific elements are localised
in (1) the places in the verifier where existing checks are recognised; and (2) the spe-
cific advice specified in the ADSL. Both can be easily changed, making the approach
applicable to, for example, open source systems in which parameter checking advice
should consist of C assert statements.

• The next concern on our list is exception handling. This concern is significantly more
complicated than parameter checking (its implementation being much more tangled).
Chapter 5 describes SMELL, a concern verifier for ASML exception handling. SMELL
is used later in Chapter 7 to facilitate the migration approach outlined in this chapter.
First, SMELL is used to discover idiom violations (faults), which are subsequently
fixed. Second, the encoding of the exception handling idiom within SMELL is ex-
ploited to guide manual reengineering steps.

Chapter 4

Linking Analysis and
Transformation Tools with
Source-based Mappings∗

This chapter discusses an approach to linking separate analysis and trans-
formation tools, such that analysis results can be used to guide transformations.
The approach consists of two phases. First, the analysis tool maps its results to
relevant locations in the source code. Second, a mapping in the reverse direc-
tion is performed: the analysis results expressed as source positions and data
are mapped to the abstractions used in the transformation tool. We discuss a
prototype implementation of this approach in detail, and present the results of
two applications within the context of the ASML C system.

4.1 Introduction
There exists a vast collection of source code analysis and transformation tools. Most of
these tools specialize in either analysis or transformation, and rarely a tool is suitable for
both tasks. Ironically, most non-trivial transformation tasks require deep analysis. Migrating
legacy software to recent technology, such as AOP (See Chapter 3), is but one example.

Combining tools is the obvious solution to this functionality schism. However, tool com-
bination introduces the issue of tool interoperability, and despite the ample attention it has re-
ceived from the research community, it still remains a largely open problem (Cordy and Vinju,
2006). Previous work in this area has focused on solving low-level compatibility issues, re-
sulting in many proposals for generic data formats, and communication protocols (Holt et al.,
2000b; van den Brand et al., 2000a; Bergstra and Klint, 1998; Ebert et al., 2001; Jin and
Cordy, 2005). These technologies have proved to be useful in several successful tool col-

∗This chapter was published in the Proceedings of the Sixth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2006) (Bruntink, 2006).

60 Linking Analysis and Transformation Tools with Source-based Mappings

laborations such as the ASF+SDF Meta-Environment (van den Brand et al., 2001). Another
key feature of tools like the ASF+SDF Meta-Environment is that they operate on an abstract
representation (i.e., ASTs) that is shared by all of their components. A common term for such
an abstract representation is schema, which we will use throughout this chapter.

A remaining challenge consists of coping with differences between schemas (of the source
code) employed by the various tools. For instance, an analysis tool such as Grammatech’s
CodeSurfer (Anderson et al., 2003) revolves around program dependence graphs (PDGs). In
contrast, transformation tools such as ASF+SDF (van den Brand et al., 2001) operate pri-
mairily on abstract syntax trees (ASTs). To leverage analysis results expressed in the PDG
domain (i.e., CodeSurfer), it is first required to map the analysis results to the AST domain
(i.e., ASF+SDF). Clearly, creating such a mapping (or bridge (Cordy and Vinju, 2006)) is a
non-trivial task, requiring deep understanding of the schemas used at both ends. Even if both
tools are targeted at the same language, the use of different grammars, language dialects, and
source correspondences complicate this task enormously, especially since it is often hard to
change those features of a tool.

In this chapter we discuss an approach to create source-based mappings between tools
using different schemas. A source-based mapping consists of pairs of a source code area
and facts relevant at that area. The perspective taken for this discussion consists of two tools
working together on the same source code; one tool performs the analysis required for the
transformations performed by the other tool. We will define when a source-based mapping
is strict and safe, given the relevant abstractions in the analysis and transformation tools, and
a body of source code. A strictly safe source-based mapping guarantees that analysis results
are mapped to the desired abstraction in the transformation tool. Furthermore, we show how
a source-based mapping compares to mappings created using higher-level schemas.

The chapter is organized as follows. Section 4.2 presents source-based mappings in detail.
The idea of source-based mappings has been implemented as a framework called SCATR,
which is described in Section 4.3. SCATR has been applied to a number of cases, which we
report upon in Section 4.4. In Section 4.5 we compare source-based mappings with schema-
based mappings, and propose a way to automatically check the safeness and strictness prop-
erties. Section 4.6 discusses related work.

4.2 Source-based Mappings
Figure 4.1 shows the general idea of source-based mappings. The left hand side is the domain
of an analysis tool, while the transformation domain resides on the right hand side. Both
operate on the same body of source code. As is suggested by the figure, the tools work with
different schemas.

The dashed circles and arrows show how a source-based mapping operates. First, an
element of the schema used by the analysis tool is selected. We will refer to such an element
as an instance of the schema used by the tool. An instance can be of a certain type, for
example a PDG or AST node.

Subsequently, the selected instance is mapped to an appropriate area of the source code,
along with the facts of interest associated with the instance. Next, the process is reversed in
the transformation domain. The source code area obtained in the previous step is used to map

4.2 Source-based Mappings 61

Analysis Transformation

Source code

Down Up

Figure 4.1: Source-based mappings.

the facts of interest to an appropriate instance of the schema used by the transformation tool.
If analysis and transformation operate on the same schema, and their mapping to and from

the source code is identical, it is clear that a source-based mapping will allow facts about
arbitrary instances to be exchanged. In practice, this situation is a rare exception, unless
analysis and transformation are performed by the same tool. We are interested in the case
where analysis and transformation are done by different tools, and possibly using different
schemas, and therefore with a different source code correspondence.

A source-based mapping can be split into two functions, down and up. Down represents
the arrow on the left hand side of Figure 4.1, while up represents the right hand side arrow.
Given that we have fixed types S and T of instances in the analysis and transformation tools
respectively, down and up have the following signatures:

down(S) 7−→ Area,

up(Area) 7−→ T,

where Area refers to a source code area, e.g., a start line and column, paired with an end line
and column. A source-based mapping then consists of the composition up(down(s)), where
s is an instance of type S, and the result is an instance of type T .

Note that with the current definition, down(s) yields a single area corresponding to s.
However, elements of some representations may not be mappable to a single area of source
code. For example, a usage dependency (e.g., an edge in a call graph) between modules
may map to any of the call sites or variable accesses giving rise to the dependency. In these
cases it may be desirable to allow down(s) to yield a list of areas, and apply up to each area
separately. We plan to investigate this matter in the future.

Consider the example source code in Figure 4.2, and its abridged AST representation. The
Stat nodes in the AST are annotated with the line numbers that they correspond to. Suppose

62 Linking Analysis and Transformation Tools with Source-based Mappings

1 for (i = 0; i < length; i++)
2 {
3 if (array[i] > max)
4 {
5 max = array[i];
6 }
7 }

Stat [1−7]

BlockFor−Cond

Stat [3−6]

If−Cond Block

Stat [5]

"for"

"if"

Figure 4.2: Source code example.

analysis results defined for PDG nodes are to be mapped to Stat nodes in the AST (i.e., S is
fixed to PDG nodes, and T is fixed to Stat nodes). Let s be the PDG node representing the
condition of the for loop, and let down(s) yield the area a which spans line 1. Now up(a)
should yield the Stat node corresponding to the for loop, since a is included (only) in the area
([1–7]) of that node.

There may be some situations in which a source-based mapping is more problematic.
First, the area yielded by down(s) might correspond to more than one instance of type T .
A common cause of this problem is recursion in grammars. For instance, expressions are
typically defined recursively, and as a result, more than one expression may be defined at a
source code area. In Figure 4.2, the statement max = array[i]; at line 5 is nested within
both the for and if statements. Consider that s is a PDG node representing the statement
at line 5, and down(s) is the area spanning line 5. Now there are 3 Stat nodes t to which
up(down(s)) could map, because line 5 is included within the area of any of the for, if, and
assignment statements.

A partial solution to this problem would be to have more fine-grained source code corre-
spondence within both analysis and transformation tools. For example, if the source corre-
spondence of the AST node for the if statement in Figure 4.2 would consist of the lines 3, 4,
and 6, instead of the entire range 3–6, then the if statement does not need to be considered as
a target of the up of line 5.

Note that the down function also needs to accommodate the finer-grained source corre-
spondence. Since the up of line 5 no longer yields the AST node of the if statement, down(s)
has to output any of lines 3, 4 or 6 if s is a PDG node representing the if statement. Clearly,

4.3 SCATR 63

whether a finer-grained source correspondence can be used on one end is dependent on the
other end. Down and up have to be implemented in a compatible way, and therefore the
implementor has to be aware of the source correspondences of both S and T .

Tools with an inaccurate source correspondence are therefore particularly problematic.
However, some means are needed to cope with these inaccuracies in practice, since source
correspondence within existing tools cannot always be easily improved. If the source cor-
respondence at either end is not accurate enough to obtain a unique target for up(down(s)),
a strategy has to be defined which implements a choice. For example, up could select the
instance that is most specific to the area generated by down(s). In Figure 4.2, up would
then map line 5 to the assignment statement without a problem. Our SCATR framework (see
Section 4.3) implements this strategy.

Another problem that may occur due to an inaccurate source correspondence is that the
source code area down(s) can not be associated with any instance of type T , because no such
instance is defined at down(s). This problem may also be caused by a bad choice of instance
types, e.g., trying to map PDG nodes representing assignments to AST nodes representing if
statements. The implementor of a source-based mapping has to make sure the instance types
are chosen such that this problem cannot occur.

If the second problem (i.e., no instances of type T at down(s)) is not present, or in other
words, if up(down(s)) is defined for all s from the domain, we call a source-based mapping
safe. Furthermore, a source-based mapping that yields exactly one t for each s is called a
strictly safe mapping. Both properties can be checked to hold given the instance types S and
T , implementations of down and up, and a body of source code. We discuss this further in
Section 4.5.

4.3 SCATR
SCATR (short for Scaffolding And TRansformation, and pronounced as ‘scatter’) is a frame-
work supporting the use of source-based mappings in the context of linking analysis and
transformation tools. Scaffolding is a technique proposed by Sellink and Verhoef (2000),
which constitutes the foundation of SCATR.

SCATR is not completely generic, in the sense that the target transformation tool is fixed;
it is aimed at transformations expressed in ASF+SDF (van den Brand et al., 2001) only.
Nevertheless, SCATR is not tied to a particular analysis tool. Furthermore, SCATR is inde-
pendent of the language used in the source code, provided an SDF grammar for that language
is available.

In terms of Figure 4.1, SCATR operates within the “Transformation” domain. Its purpose
consists of inserting analysis results expressed as scaffolding specifications into the AST used
by the transformation tool (i.e., ASF+SDF). Figure 4.3 gives an overview of SCATR. Three
steps are performed to decorate an AST with analysis results.

1. Parsing with a grammar extended with support for scaffolds, resulting in an AST cor-
responding to the source code. Scaffolds are akin to parse tree annotations (Purtilo and
Callahan, 1989), and allow analysis results to be attached to nodes in the AST. The
precise definition of scaffolds is discussed below.

64 Linking Analysis and Transformation Tools with Source-based Mappings

Source code

Scaffolding

Specifications

Extended

grammar

3. Scaffolding

1. Parsing

2. Analysis

AST

Figure 4.3: SCATR overview.

2. Analysis results are generated by an appropriate analysis tool. The results of the tool
are expressed as scaffolding specifications, which steer the process of inserting scaf-
folds in the AST. Scaffolding specifications are also discussed below.

3. Scaffolding is the final step in which the analysis results are inserted into the AST
based on the scaffolding specifications.

In the remainder of this section we will first discuss the implementation of SCATR, fol-
lowed by a discussion of design decisions underlying SCATR’s architecture.

4.3.1 Implementation
Figure 4.4 presents the core modules of the ASF+SDF implementation of SCATR. The for-
mat used is SDF, which is similar to EBNF, except that the right and left hand sides of the
grammar rules are swapped. Furthermore, non-terminals are referred to as sorts in SDF. Any
parameters of a module are listed between square brackets next to the module’s name. A
parameter of an SDF module allows the user to specify a sort for which the module should
be instantiated. The result of supplying an argument to a parameter is essentially a textual
replacement of the occurrences of the parameter by its argument.

Extended-Language. The module ExtendedLanguage allows a grammar to be extended
to facilitate scaffolding. It defines grammar productions that allow (one or more) Extensions
before or after the Element of interest. The user can specify two parameters when using
this module. Element is the sort the user intends to extend. For instance, Statement would
be specified if the user wishes to extend statements. Extension would normally be specified
as Scaffold, but additional uses (e.g., comments, annotations) justify an additional layer of
abstraction, as proposed by Sellink and Verhoef (2000).

4.3 SCATR 65

module Extended-Language [Element Extension]

Extension+ Element → Element
Element Extension+ → Element

module Scaffolder [Program Element]

scaffolder (Program, ScS*) → Program

module Scaffolding-Spec

"begin" Scaffold Type Position "end" → Scaffolding-Spec
"before" | "after" → Type
"(" Natural Natural ")" → Position

module Scaffold [Ext-Scaffold-Data]

"SCAFFOLD" "[" Scaffold-Data* "]" → Scaffold
Data-Name "[" Scaffold-Data* "]" → Scaffold-Data
[A-Z_]+ → Data-Name
String → Scaffold-Data
Ext-Scaffold-Data → Scaffold-Data

Figure 4.4: SDF excerpts of the core modules of SCATR.

Scaffolder. The main module of SCATR defines the scaffolder function. The scaffolder
function traverses its Program argument and inserts scaffolds to nodes of type Element ac-
cording to a list of ScaffoldingSpecs (ScS*) supplied as the second argument.

The user of this module has to make sure the Program and Element parameters are set
correctly. Program is to be instantiated as the top-level sort of the source code grammar,
while the Element parameter should be set to the sort the user wishes to add scaffolds to.

Scaffolding-Spec. A ScaffoldingSpec specifies the insertion of a scaffold at a certain
node in the AST. To select the target node the user specifies a Position, that is, line and column
number, in the source file from which the AST was derived. The scaffolder will attach the
scaffold to the lowest node in the AST that includes the position in its source range. Whether
the scaffold is added to the left or to the right of the selected node is determined by the Type,
i.e., respectively before or after.

Scaffold. The syntactical definition of a scaffold resides in this module. This definition
is loosely based on the definition in Sellink and Verhoef (2000). Scaffolds can contain nested
lists of named data, which can be of various sorts. By default, Strings are allowed as Scaffold-
Data, but the user can add custom sorts by instantiating the Ext-Scaffold-Data parameter.

66 Linking Analysis and Transformation Tools with Source-based Mappings

4.3.2 Architecture
The source-based mapping for which SCATR was designed consists of source code positions,
that is, pairs of line and column numbers. The analysis tool is expected to map an instance of
its schema (e.g., a PDG node in CodeSurfer) to a single source code position (down function
in Section 4.2). SCATR will attempt to map this source code position to an appropriate
node in an AST maintained by ASF+SDF (up function in Section 4.2). The analysis tool
is burdened with making sure that the source-based mapping obtained is safe, i.e., it must
ensure that an AST node of the selected sort is defined at the source code positions it exports.

Scaffolding. Determining which nodes are extended with a scaffold depends on two
sources of information. First, the user of the SCATR framework specifies the type1 of AST
nodes that can receive a scaffold. For instance, the user may choose to add scaffolds to
Statement nodes, if Statement is a sort defined by the grammar. In Subsection 4.3.1 we
discuss how the user achieves the sort selection.

Second, the scaffolding specification lists source code positions paired with scaffolds
containing data. The scaffolder function adds a scaffold to a node if and only if the node is
of the selected sort, and the source code position specified with the scaffold is included in the
source code area spanned by the node.

Note that this process requires that the target AST is fully decorated with source position
information, that is, each node in the AST can be mapped to its corresponding area within
the source code.

One intricacy of the scaffolding process remains to be explained. A source code position
can point to more than one node of the user selected sort. In C, for example, nested statements,
or expressions, can cause this effect. SCATR ensures that a strict (see Section 4.2) mapping
is obtained through two design decisions. The AST is traversed in a bottom-up fashion, and a
scaffold is inserted at most once. In effect, a scaffold is added to the most specific (or lowest)
AST node of the user selected sort that includes the specified source code position in its area.
This behavior implemented by SCATR may not always be desirable (though it has been for
our purposes).

The number of AST nodes that are pointed to by the source-based mapping could possibly
be reduced by improving upon the accuracy of source code positions. Source code areas could
alternatively be used to create a source based mapping. A source code area more accurately
describes the source representation of an instance by specifying the line and column numbers
of the start and end of the instance. We discussed this solution in Section 4.2, and have shown
that the use of a finer grained source correspondence on one end (here in the analysis tool)
requires changes in the other end (here the transformation tool). For flexibility SCATR uses
the relatively inaccurate source code positions, and deals with multiple matching nodes by
picking the most specific node.

Grammar Extension. In order for scaffolds to be added to AST nodes, the grammar
used to parse the source code needs to be extended such that nodes of interest (i.e., of type
T in terms of Section 4.2) can be preceded or followed by nodes representing scaffolds. 2

SCATR provides for a flexible way of extending grammars. The module Extended-Language

1The type of an AST node corresponds to a sort in the SDF grammar.
2In systems which do not require AST transformations to be syntax preserving such grammar modification may

be unnecessary.

4.4 Applications 67

adds two grammar productions to extend the sort of interest such that it can be preceded and
followed by scaffolds. The details of this module are presented in Subsection 4.3.1.

Lexical Scaffolding. Scaffolding as defined by Sellink and Verhoef (2000) operates
slightly differently. Their approach extends the target grammar much more extensively, by
allowing scaffolds in front of each terminal (occurrence of a lexical sort). This has the ad-
vantage that scaffolds can also be added directly to the source code itself, followed by an
invocation to the parser to obtain a scaffolded AST. In our simple approach to grammar ex-
tension this results in many ambiguities during parsing.

An advantage of our approach is that the scaffolding process inserts scaffolds at exactly
the nodes of interest in the AST. This is beneficial for the purpose of specifying transforma-
tions based on the scaffolds, as no extra work has to be done to locate the scaffolds (if any)
associated with the node. Sellink and Verhoef’s approach causes the scaffolds to be added as
leaves in the AST, possibly a long way from the nodes of interest. Without additional support
for locating scaffolds in the AST, this is an unpractical situation for the specification of trans-
formations. Kort and Lämmel (2003) provide methods that are capable of locating scaffolds,
and dealing with them in transformations.

Finally, one could argue that simple grammar extension could suffice if one would lexi-
cally insert bracketed scaffolds. A bracketed scaffold surrounds the source region it applies
to with brackets, so that no ambiguity arises during parsing. A similar approach is taken by
source code factors (Malton et al., 2001). As it turns out, lexically inserting bracketed scaf-
folds is not practical. The analysis tool exporting its results would then need to generate the
positions of the brackets in a way that is lexically compatible with the grammar used by the
transformation tool. In our approach, the analysis tool can suffice by generating a position
that it knows to lie within the source area of an AST node of the desired sort (safeness).

4.4 Applications
The SCATR framework is currently being used in several real transformation tasks. These
tasks consider components of a 15 million line C system, developed and maintained by
ASML, a Dutch manufacturer of lithography solutions. The tasks are related to our earlier
work on (crosscutting) concern isolation (see Chapter 3), and consist of elimination of con-
cern code, and insertion of annotations (among others). These transformations are required
in a larger migration effort toward aspect-oriented technology.

Source-to-source transformations are desired in these cases, since developers have to be
able to work with the transformed code. Specifically this requires the abilities to parse code
in the presence of C preprocessor directives (including macros), and to preserve comments
and white-space. Due to the availability of an SDF grammar for ANSI C extended with
preprocessing directives and rewriting with layout capability (Vinju, 2005), the ASF+SDF
Meta-Environment (van den Brand et al., 2001) is used to implement the transformation tasks.
The C grammar was modeled strictly after the ANSI C specification, and extended with
support for the specific preprocessor use within ASML.

Several analyses required to identify concern code have previously been implemented
(see Chapter 3) as plugins to GrammaTech’s CodeSurfer (Anderson et al., 2003). Since
these analyses are not trivial, and significant effort would be needed to re-implement them in

68 Linking Analysis and Transformation Tools with Source-based Mappings

868 THXAtrace(CC,
869 THXA_TRACE_INT ,
870 func_name ,
871 "> (read_fd=%d, timeout=%d)",
872 read_fd ,
873 timeout);

Figure 4.5: Example tracing call.

ASF+SDF, the choice was made to reuse the CodeSurfer plugins. SCATR was developed to
solve the problem of leveraging CodeSurfer’s analysis results in transformations expressed in
ASF+SDF.

SCATR has been used for the transformation of two components, CC1 and CC2, consist-
ing of 32,402 and 17,716 non-blank lines of code, respectively. Efforts are currently ongoing
to apply SCATR to 10 components, totalling approximately 2 million lines of code.

4.4.1 Concern Code Elimination
The first transformation task we consider consists of the elimination of code belonging to a
number of concerns:

• Tracing. Dynamic execution tracing of each function such that the values of input and
output parameters can be inspected.

• Timing. Collection of timings for each function execution.

• Function Naming. Each function has a local variable which holds a string representing
the function’s name. These strings are used within tracing and logging calls.

• Parameter Checking. Pointer parameters of functions should not be NULL before
they are referenced, each function therefore has to implement checks. The parameter
checking concern is discussed in detail in Chapter 3.

The instantiation of SCATR for the elimination of these concerns is very similar in all cases,
therefore we suffice with a discussion of the elimination of the tracing concern in this chapter.
The tracing concern consists of calls to a tracing function, where the arguments are the values
of either input or output parameters. An example is shown in Figure 4.5. Chapter 6 discusses
the ASML tracing concern is more detail.

A CodeSurfer plugin was previously developed to identify all the tracing calls for all
functions. The result consists of a set of PDG nodes representing the calls to the tracing
function. Furthermore, a utility script was developed to export these PDG nodes along with
the fact that they belong to the tracing concern, into SCATR’s scaffolding specification format
(see Section 4.3). An example scaffolding specification is shown in Figure 4.6. It states that
a scaffold of the form SCAFFOLD["TRACING"] should be added before the instance at source
code line 868, column 0. This source code position corresponds to the first character of the
tracing call.

Effectively this export script implements the down function that was described in Sec-
tion 4.2. The other part of the source-based mapping, the up function, is implemented by

4.4 Applications 69

1 begin
2 SCAFFOLD["TRACING"]
3 before
4 (868 0)
5 end

Figure 4.6: Scaffolding specification for a single tracing call.

1 SCAFFOLD["TRACING"]<<THXAtrace(CC,
2 THXA_TRACE_INT ,
3 func_name ,
4 "> (read_fd=%d, timeout=%d)",
5 read_fd ,
6 timeout);>>

Figure 4.7: Tracing call decorated with a scaffold.

SCATR. Function calls are parsed as Statements in our SDF C grammar, thus instantiating
SCATR for this task starts by extending the C grammar such that scaffolds can be added to
Statement nodes. As was explained in Section 4.3, this is done through the parameters of the
module ExtendedLanguage (see Figure 4.4).

The next step consists of the invocation of the scaffolder function, with the (parsed) source
code and all generated scaffolding specifications as arguments. The result is an AST in which
all the Statement nodes pointed to by the scaffolding specifications are decorated with a
scaffold. Figure 4.7 shows how this would look if a decorated node was pretty printed.

Finally, the AST is traversed one more time by a function that removes all nodes decorated
with a specific scaffold. In this case the traversal would look for tracing scaffolds, but for the
other concerns the scaffolds contain the respective names of the concerns.

The source-based mapping we defined in this case works because it is strict and safe,
as defined in Section 4.2. First, safeness holds because in the ANSI C grammar the first
character of the name of the called function is guaranteed to point to an AST node of type
Statement. Second, the mapping is also strict, due to SCATR’s strategy of selecting the most
specific node of type Statement. The Statement node representing the tracing call will always
be lower in the AST than Statement nodes representing any surrounding statements. For now
these properties follow from the structure of the grammar, and SCATR’s selection strategy.
In the future we would like to implement a tool to check whether these properties hold given
a body of source code, and a defined source-based mapping.

4.4.2 Insertion of Annotations
Annotations can be used in source code representations to store data at the locations that the
data are relevant. SCATR can be used for the purpose of inserting such annotations. We will
discuss an example application of using SCATR in this way within the context of the tracing
concern.

After all tracing code has been eliminated (see previous Subsection), a compile-time
weaver is responsible for regenerating the tracing functionality. As it turns out, the tracing

70 Linking Analysis and Transformation Tools with Source-based Mappings

549 int CCCN_Wait(int read_fd ,
550 int timeout)
551 __trace__(in (read_fd timeout) out ())
552 {
553 . . .
554 }

Figure 4.8: Tracing annotation.

1 begin
2 SCAFFOLD [IN [read_fd timeout] OUT []]
3 after
4 (550 25)
5 end

Figure 4.9: Scaffolding specification for temporary scaffolds.

concern requires some non-trivial analysis to figure out which function parameters are used
as input and which are used as output parameters. Since it would be costly to integrate this
analysis into the build process, it was decided to perform a one-time analysis of the source
code, and insert the results (i.e., input / output characteristics) into the code as annotations. In
our case, the annotations are specifically targeted at a compile-time weaver for C, WeaveC3.
Here we will discuss the use of SCATR in the annotation process.

Again, the analysis is performed by a CodeSurfer plugin, and results in a list of input and
output parameters for each function (PDG). Figure 4.8 gives an example of how a annotation
should be inserted in the source code at line 551. The annotation has been inserted after the
function signature, and before the defining block of the function. It shows that this function
(CCCN_Wait) has two input parameters, read_fd and timeout, and no output parameters.

The insertion process works by first inserting temporary scaffolds containing the analysis
results, and then translating the scaffolds into the desired annotation format. SCATR again
requires the selection of the sort to which scaffolds need to be added. Since the annotation
has to be inserted after the function signature, the appropriate sort is Declarator, which spans
the area from the start of the function name (CCCN Wait in Figure 4.8), up to and including
the closing parenthesis of the signature. A CodeSurfer script is used to implement down by
generating a scaffolding specification with the input/output information wrapped in a scaf-
fold, and the source code position corresponding to the closing parenthesis of the function
signature. An example is shown in Figure 4.9.

Similar to the result in Figure 4.7, running the scaffolder function on the source code
with the annotation scaffolding specifications results in function signatures with scaffolds
appended to them. The final step then consists of a traversal which trivially translates the
present scaffolds into the tracing annotations shown in Figure 4.8.

Safeness and strictness of the mapping used in this case follows by the same argument
we used before. According to the ANSI C grammar, the closing parenthesis of a function
signature matches exactly one node of sort Declarator.

3http://weavec.sourceforge.net/

4.5 Discussion 71

4.5 Discussion
Source-based mappings versus schema-based mappings. The defining feature of source-
based mappings is that they locate the instances of interest through pointers in the source
code itself. Other approaches exist to solve the location problem that do not utilize source
correspondences at all (or as much). These schema-based approaches locate instances of
interest in the target (transformation) tool through queries expressed using the target schema.
HSML is, in essence, such an approach (Cordy et al., 2001), since it allows maintenance
hot spots to be identified through complex queries expressed using the grammar of the target
language. Other examples are the various query languages for XML documents, e.g. XPath
or XQuery.

We now consider how a schema-based mapping could be used in the context of linking an
analysis and a transformation tool. The setting is the same as defined in Section 4.2, i.e., we
want to map analysis results for instances of type S to instances of type T in a transformation
tool. The analysis and transformation tools have different schemas of the source code. What
alternatives to the down and up functions would need to be implemented?

To start with down, recall that its purpose is to map an instance s to an appropriate area
of source code, such that up can map that area to an instance of type T . The analogue of
down in a schema-based mapping then consists of a function that maps s to an appropriate
expression in the schema used by the transformation tool. Subsequently, the analogue of up
is tasked with interpreting this expression and applying the results to the matching instances.
For instance, an expression pointing out the assignment statement (at line 5) in Figure 4.1
could consist of Stat – Block – Stat [0] – Block – Stat [0], where Stat [i] would refer to the
i-th statement within a block.

The question that arises is what knowledge is required for the implementation of a schema-
based mapping, and how does this compare to a source-based mapping? Creating an expres-
sion that points out an instance of interest requires knowledge of the target schema. For
example, the expression above can only be created if it is known that the Stat node of interest
is the 0-th child of its parent Block node containing it, which is a child of a Stat node itself,
and so forth, all the way up to the top Stat node. As a result, creating such an expression re-
quires knowledge of the target schema from the top down to at least the type of the instances
of interest. Possibly this knowledge requirement can be mitigated by designing a query lan-
guage that allows abstraction, but we conjecture that at least all the containment relations
must still be known in order to accurately point out the instances of interest.

Source-based mappings also require knowledge of the target schema. Down(s) has to
yield a source code area that corresponds to an instance of type T at the transformation
end (safeness). Therefore, implementing down cannot be done without knowledge of the
source correspondence of instance type T . Recall the example explained in Section 4.2,
where a finer-grained source correspondence within the transformation tool required down to
be changed accordingly. However, as long as the safeness property can be guaranteed, down
does not have to re-generate the exact source correspondence of the transformation tool.

Additional awareness is needed for guaranteeing the strictness property, i.e., making sure
that at most one instance of type T is the target of up(down(s)). This problem can occur if
down(s) is included in the source correspondence of more than one instance of type T . There-
fore, implementing a source-based mapping requires knowledge of overlapping source cor-

72 Linking Analysis and Transformation Tools with Source-based Mappings

respondences of instances of type T . If the problem cannot be evaded by changing down(s)
to generate a more specific source code area, a strategy will have to be implemented in up to
make a choice, as was discussed in Section 4.2.

In summary, a schema-based mapping requires detailed knowledge of the target schema.
It may be required to know the definition of other types of instances than the type of interest,
because containment relations need to be traversed from the top down leading to the instance
of interest. In contrast, the knowledge a source-based mapping needs of the target schema
is limited to the type of interest only. However, it is required to be aware of its source
corresponce, and possible overlapping source correspondences of instances of the type of
interest.

Automatically checking safeness and strictness. The use of source-based mappings in
real transformation tasks may benefit from some form of automated verification. In particular,
checking the safeness and strictness properties could be a good starting point. Fortunately,
these properties can be checked automatically for a fixed body of source code by the following
process. First, the domain of the source-based mapping is established. All instances s of
type S belong to the domain. For each s then up(down(s)) is performed, yielding a list of
instances of type T . If this list is empty, no instance of type T was found defined at down(s),
the source-based mapping is not safe, and an error must be reported. If the list contains
exactly one instance t, the mapping is safe and strict for s. Finally, a list of length 2 and
more indicates that multiple instances are defined at down(s), and the mapping is not strict,
resulting in an error. After all s have been checked, the complete mapping is only safe and
strict if no errors have been reported.

For some schemas, the safeness and strictness properties could even be determined for all
possible bodies of source code. For now this remains the area of future research.

4.6 Related Work
Tool interoperability The topic of tool interoperability has been widely discussed in the
community (Cordy and Vinju, 2006; Ebert et al., 2001). A large number of proposals exist
in the literature that contribute a solution to interoperability issues. Among others, technolo-
gies like the ToolBus (Bergstra and Klint, 1998), the Ontological Adaptive Service-Sharing
Integration System (OASIS) (Jin and Cordy, 2005), and the Interface Description Language
(IDL) (Snodgrass and Shannon, 1986) provide architectures for integration of tools. Commu-
nication is an essential part of tool interoperability, and as such a number of data interchange
formats have been defined. Examples are the Graph eXchange Language (GXL) (Holt et al.,
2000b), ATerms (van den Brand et al., 2000a), and Rigi Standard Format (RSF) (Müller et al.,
December 1993). Technologies like these provide tool interoperability solutions at a different
level than source-based mappings. In terms of Cordy and Vinju (2006), these technologies
provide protocols, (data) marshalling, or representations. Source-based mappings are aimed
at solving the identification (of source elements) problem.

Markup and annotations Source code markup is a technique that has been used in many
different contexts. Here we focus only on those approaches that are closely related to source-

4.7 Conclusion 73

based mappings. Scaffolding by Sellink and Verhoef (2000) is proposed to be used to store
intermediate results of transformations, and share results between tools via markup in the
source code. However, they do not explicitly focus on the issue of tools using different
schemas. Source code factors by Malton et al. (2001) is an approach that is very similar to
scaffolding, as it also marks up the source code with intermediate analysis and transformation
results.

HSML by Cordy et al. (2001) is a markup approach that allows maintenance hot spots
to be defined as queries expressed in the target schema. In that sense it is a schema-based
mapping as defined in Section 4.5, except that the results of the mapping are also made visible
in the source code through markup. The difference with source-based mappings consists of
the extensive use of the target schema by HSML. A source-based mapping is less dependent
on the target schema, but more dependent on the source correspondence.

XML is a popular means to marking up source code. Cordy (2003) proposes a method to
markup source code with task-specific XML. By employing agile parsing (possibly combined
with island grammars (Moonen, 2001)), the source code grammar can be adjusted to focus
the source markup to those pieces of source code that are interesting to the task at hand. In our
SCATR framework, pretty printing the scaffolded AST has the same result, since scaffolds
are only added to those nodes that are interesting within a transformation task. Power and
Malloy (2002) instead proposes to markup all the source code with XML corresponding to
its AST, resulting in a verbose representation.

Tool interoperability schemas A number of schemas have been proposed specifically for
the purpose of tool interoperability. The Dagstuhl Middle Metamodel (DMM) is aimed at
object-oriented and procedural languages, and can further be extended by the user of the
schema (Lethbridge et al., 2004). Columbus is a specific schema for C++ programs (Ferenc
and Beszédes, 2002). Both Columbus and DMM are expressed as UML diagrams. Holt
et al. (2000a) instead use an E/R diagram to define a schema for Datrix, a software exchange
format for C, C++ and Java programs.

4.7 Conclusion
In this chapter we discussed source-based mappings, a technique to link analysis and trans-
formation tools. The setting used for this discussion consisted of analysis and transformation
tools that do not share a schema of the source code, and therefore reuse of analysis results
by the transformation tool is not trivial. We defined two properties, safeness and strictness
that constitute a base of confidence in the mapping between two tools. These properties can
be checked automatically for a given body of source code, allowing for a practical way of
verification of a source-based mapping.

The idea of source-based mappings was implemented in the SCATR prototype tool, which
allows analysis results to be mapped into ASTs produced by ASF+SDF. Two applications
showed how this technology could be used in practice to implement transformation tasks
such as concern code elimination or insertion of annotations.

An interesting link may exist between this work and island grammars (Moonen, 2001),
or agile parsing (Cordy, 2003). These technologies allow the easy adaptation of grammars

74 Linking Analysis and Transformation Tools with Source-based Mappings

to specific tasks. For instance, the grammar could be limited to defining only the statements
that need to be removed, or the program elements that analysis results must be attached to.

Chapter 5

Discovering Faults in Idiom-Based
Exception Handling∗

In this chapter we analyse the exception handling mechanism of the ASML
C cystem. Like many systems implemented in classic programming languages
(e.g, C), the ASML system uses the popular return-code idiom for dealing with
exceptions. Our goal is to evaluate the fault-proneness of this idiom, and we
therefore present a characterisation of the idiom, a fault model accompanied by
an analysis tool, and empirical data. Our findings show that the idiom is indeed
fault prone, but that a simple solution can lead to significant improvements.

5.1 Introduction

A key component of any reliable software system is its exception handling. This allows the
system to detect errors, and react to them correspondingly, for example by recovering the
error or by signalling an appropriate error message. As such, exception handling is not an
optional add-on, but a sine qua non: a system without proper exception handling is likely to
crash continuously, which renders it useless for practical purposes.

Despite its importance, several studies have shown that exception handling is often the
least well understood, documented and tested part of a system. For example, Toy (1982)
states that more than 50% of all system failures in a telephone switching application are due
to faults in exception handling algorithms, and Lions (1996) explains that the Ariane 5 launch
vehicle was lost due to an unhandled exception.

Various explanations for this phenomenon have been given.
First of all, since exception handling is not the primary concern to be implemented, it

does not receive as much attention in requirements, design and testing. Robillard and Mur-
phy (1999) explains that exception handling design degrades (in part) because less attention

∗This chapter was published in the Proceedings of the 28th International Conference on Software Engineering
(ICSE 2006) (Bruntink et al., 2006). It is co-authored by Arie van Deursen and Tom Tourwé.

76 Discovering Faults in Idiom-Based Exception Handling

is paid to it, while Christian (1995) explains that testing is often most thorough for the or-
dinary application functionality, and least thorough for the exception handling functionality.
Granted, exception handling behaviour is hard to test, as the root causes that invoke the ex-
ception handling mechanism are often difficult to generate, and a combinatorial explosion of
test cases is to be expected. Moreover, it is very hard to prepare a system for all possible
errors that might occur at runtime. The environment in which the system will run is often
unpredictable, and errors may thus occur for which a system was not prepared for.

Second, exception handling functionality is crosscutting in the meanest sense of the word.
Lippert and Videira Lopes (2000) shows that even the simplest exception handling strategy
takes up 11% of an application’s implementation that it is scattered over many different files
and functions and that it is tangled with the application’s main functionality. This has a severe
impact on understandability and maintainability of the code in general and the exception
handling code in particular, and makes it hard to ensure correctness and consistency of the
latter code.

Last, older programming languages, such as C or Cobol, that do not explicitly support
exception handling, are still widely used to develop new software systems, or to maintain ex-
isting ones. Such explicit support makes exception handling design easier, by providing lan-
guage constructs and accompanying static compiler checks. In the absence of such support,
systems typically resort to systematic coding idioms for implementing exception handling, as
advocated by the well-known return code technique, used in many C programs and operating
systems. As shown in Chapter 3, such idioms are not scalable and compromise correctness.

In this chapter, we focus on the exception handling mechanism of a 15 year-old, real-time
embedded system, developed by ASML, a Dutch company. The system consists of approx-
imately 15 million lines of C code, and is developed and maintained using a state-of-the-art
development process. It applies (a variant of) the return code idiom consistently throughout
the implementation. The central question we seek to address is the following: “how can we
reduce the number of implementation faults related to exception handling implemented by
means of the return code idiom?” In order to answer this general question, a number of more
specific questions needs to be answered:

1. What kinds of faults can occur? Answering this question requires an in-depth analysis
of the return code idiom, and a fault model that covers the possible faults to which the
idiom can lead.

2. Which of these faults do actually occur in the code? A fault model only predicts which
faults can occur, but does not say which faults actually occur in the code. By care-
fully analysing the subject system (automatically) an estimate of the probability of a
particular fault can be given.

3. What are the primary causes of these faults? The fault model explains when a fault
occurs, but does not explicitly state why it occurs. Because we need to analyse the
source code in detail for detecting faults, we can also study the causes of these faults,
as we will see.

4. Can we eliminate these causes, and if so, how? Once we know why these faults occur
and how often, we can come up with alternative solutions for implementing exception

5.2 Related Work 77

handling that help developers in avoiding such faults. An alternative solution is only a
first step, (automated) migration can then follow.

We believe that answers to these questions are of interest to a broader audience than
the original developers of our subject system. Any software system that is developed in a
language without exception handling support will suffer the same problems, and guidelines
for avoiding such problems are more than welcome. In this chapter we offer experience, an
analysis approach, tool support, empirical data, and alternative solutions to such projects.

5.2 Related Work
Fault (Bug) Finding Recently a lot of techniques and tools have been developed that aim at
either static fault finding or program verification. However, we are not aware of fault finding
approaches specifically targeting exception handling faults.

Fault finding and program verification have different goals. On the one hand, fault find-
ing’s main concern is finding as many (potentially) harmful faults as possible. Therefore fault
finding techniques usually sacrifice formal soundness in order to gain performance and thus
the ability to analyse larger systems. Specifically, Metal (Engler et al., 2000), PREfix (Bush
et al., 2000), and ESC (Flanagan et al., 2002) follow this approach. We were inspired by
many of the ideas underlying Metal for the implementation of our tool (see Section 5.5).

Model checking is also used as a basis for fault finding techniques. CMC (Musuvathi
et al., 2002) is a model checker that does not require the construction of a separate model
for the system to be checked. Instead, the implementation (code) itself is checked directly,
allowing for effective fault finding. In Yang et al. (2004) the authors show how CMC can be
used to find faults in file system implementations.

On the other hand, program verification is focused on proving specified properties of a
system. For instance, MOPS (Chen and Wagner, 2002) is capable of proving the absence
of certain security vulnerabilities. More general approaches are SLAM (Ball and Rajamani,
2002) and ESP (Das et al., 2002). While ESP is burdened by the formal soundness require-
ment, it has nevertheless been used to analyse programs of up to 140 KLOC.

Idiom Checkers A number of general-purpose tools have been developed that can find
basic coding errors (Johnson, 1977; Paul and Prakash, 1994). These tools are however in-
capable of verifying domain-specific coding idioms, such as the return code idiom. More
advanced tools (van Emden and Moonen, 2002; Tourwé and Mens, 2003) are restricted to
detecting higher-level design flaws but are not applicable at the implementation level.

In Chapter 3, we present an idiom checker for the parameter checking idiom, also in use
at ASML. This idiom, although much simpler, resembles the exception handling idiom, and
the verifier is based on similar techniques as presented in this chapter.

Exception Handling Several proposals exist for extending the C language with an ex-
ception handling mechanism. Lee (1983); Roberts (1989) and Winroth (1993) all define ex-
ception handling macro’s that mimic a Java/C++ exception-handling mechanism. Although
slightly varying in syntax and semantics, these proposals are all based around an idiom using
the C setjmp/longjmp facility.

Exceptional C (Gehani, 1992) is a more drastic, and as such more powerful, extension
of C with exception handling constructs as present in modern programming languages. It

78 Discovering Faults in Idiom-Based Exception Handling

allows developers to declare and raise exceptions and define appropriate handlers. A func-
tion’s signature should specify the exceptions that the function can raise, which allows the
preprocessor to check correctness. Standard C code is generated as a result.

All these proposals differ from our proposal (Section 5.7) in that our proposal still uses the
return-code idiom, but makes it more robust by hiding (some of) the implementation details.
This makes migration of the old mechanism to the new one easier, an important concern
considering ASML’s 10 MLoC code base.

Several papers describe exception handling analyses for Java-like exception handling
mechanisms. Robillard and Murphy (2003, 1999) show how exception structure can degrade
and present a technique based on software compartmenting to counter this phenomenon.
Their work differs from ours in that they reason about the application-specific design of
exception handling, whereas we focus on the (implementation of) the exception handling
mechanism itself. Fu et al. (2005) present an exception-flow analysis that enables improving
the test coverage of Java applications. Similarly, Sinha and Harrold (1999) present a class
of adequacy criteria that can be used for testing exception handling behaviour. Although
this work could lead to better tests, and hence well-tested exception handling code, a test-
based approach remains necessarily partial. Hence, such techniques should be considered
complementary to our technique. Additionally, both techniques are targeted toward Java-like
exception handling mechanisms, and it is not clear how they would work for systems using
the return-code idiom.

5.3 Characterising the Return Code Idiom
The central question we seek to answer is how we can reduce the number of faults related
to exception handling implemented by means of the return code idiom. To arrive at the
answer, we first of all need a clear description of the workings of (the particular variant of)
the return code idiom at ASML. We use an existing model for exception handling mechanisms
(EHM) (Lang and Stewart, 1998) to distinguish the different components of the idiom. This
allows us to identify and focus on the most error-prone components in the next sections.
Furthermore, expressing our problem in terms of this general EHM model makes it easier to
apply our results to other systems using similar approaches.

5.3.1 Terminology
An exception at ASML is “any abnormal situation found by the equipment that hampers or
could hamper the production”. Exceptions are logged in an event log that provides infor-
mation on the machine history to different stakeholders (such as service engineers, quality
assurance department, etc).

The EHM itself is based on two requirements:

1. a function that detects an error should log that error in the event log, and recover it or
pass it on to its caller.

2. a function that receives an error from a called function must provide useful context
information (if possible) by linking an error to the received error, and recover the error

5.3 Characterising the Return Code Idiom 79

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((r == OK) && ((a < 0) || (a > 10))) {
7 r = PARAM_ERROR;
8 LOG(r,OK);
9 }

10 if(r == OK) {
11 r = g(a);
12 if(r != OK) {
13 LOG(LINKED_ERROR ,r);
14 r = LINKED_ERROR;
15 }
16 }
17 if(r == OK)
18 r = h(b);
19 if((r != OK) && allocated)
20 mem_free(b);
21 return r;
22 }

Figure 5.1: Exception handling idiom at ASML.

or pass it on to the calling function.

An error that is detected by a function is called a root error, while an error that is linked
to an error received from a function is called a linked error.

If correctly implemented, the EHM produces a chain of related consecutive errors in the
event log. This chain is commonly referred to as the error link tree, and resembles a stack
trace as output by the Java virtual machine, for example.

Because ASML uses the C programming language, and C does not have explicit support
for exception handling, each function in the ASML source code follows the return code
idiom. Figure 5.1 shows an example of such a function. We will now discuss this approach
in more detail.

5.3.2 Exception Representation

An exception representation defines what an exception is and how it is represented. At
ASML, a singular representation is used, in the form of an error variable of type int. Line
2 in Figure 5.1 shows a typical example of such an error variable, that is initialised to the OK
constant. This variable is used throughout the function to hold an error value, i.e., either OK
or any other constant to signal an error. The variable can be assigned a constant, as in lines 7
and 14, or can be assigned the result of a function call, as in lines 4, 11 and 18. If the function
does not recover from an error itself, the value of the error should be propagated through the
caller by the return statement (line 21).

80 Discovering Faults in Idiom-Based Exception Handling

5.3.3 Exception Raising

Exception raising is the notification of an exception occurrence. Different mechanisms exist,
of which ASML uses the explicit control-flow transfer variant: if a root error is encountered,
the error variable is assigned a constant (see lines 6 − 9), the function logs the error, stops
executing its normal behaviour, and notifies its caller of the error.

Logging occurs by means of the LOG function (line 8), where the first argument is the new
error encountered, which is linked to the second argument that represents the previous error
value. The function treats root errors as a special case of linked errors, and therefore the root
error detected at line 8 is linked to the previous error value, OK in this case.

Explicit guards are used to skip the normal behaviour of the function, as in lines 10 and
17. These guards check if the error variable still contains the OK value, and if so, execute
the behaviour, otherwise skip it. Note that such guards are also needed in loops containing
function calls.

If the error variable contains an error value, this value propagates to the return statement,
which notifies the callers of the function.

5.3.4 Handler Determination

Handler determination is the process of receiving the notification, identifying the exception
and determining the associated handler. The notification of an exception occurs through the
use of the return statement and catching the returned value in the error variable when invok-
ing a function (lines 4, 11 and 18). This approach is referred to as explicit stack unwinding.

The particular exception that occurs is not identified explicitly most of the time, rather
a catch-all handler is provided. Such handlers are mere guards that check whether the error
value is not equal to OK. Typically, such handlers are used to link extra context information to
the encountered error (lines 12 − 15), or to clean up allocated resources (lines 19 − 20).

5.3.5 Resource Cleanup

Resource cleanup is a mechanism to clean up resources, to keep the integrity, correctness and
consistency of the program.

ASML has no automatic cleanup facilities, although specific handlers typically occur at
the end of a function if cleaning up of allocated resources is necessary (lines 19 − 20).

5.3.6 Exception Interface & Reliability Checks

The exception interface represents the part in a module interface that explicitly specifies the
exceptions that might be raised by the module. ASML developers sometimes specify (parts
of) this interface in informal comments, but this is not strictly required.

Consequently, reliability checks that test for possible faults introduced by the EHM it-
self are currently not possible. The focus of this chapter is to analyse which faults can be
introduced and to show how they can be detected and prevented.

5.4 A Fault Model for Exception Handling 81

5.3.7 Other Components
An EHM consists of several other components than the ones mentioned above. Although
these are less important for our purposes, we shortly describe them here for completeness.

Handler scope is the entity to which an exception handler is attached. At ASML, handlers
have local scope: handlers are associated to function calls (lines 12 − 15), where they
log extra information, or can be found at the end of a function (lines 19 − 20), where
they clean up allocated resources.

Handler binding attaches handlers to certain exceptions to catch their occurrences in the
whole program or part of the program. ASML uses semi-dynamic binding, which
means that the same exception can be handled differently in different locations in the
source code, by associating a different handler with each exception occurrence.

Information passing is defined as transfer of information useful to the treatment of an ex-
ception from its raising context to its handler. At ASML there is no information pass-
ing except for the integer value that is passed to a caller. Although an error log is
constructed, the entries are used only for offline analysis.

Criticality management represents the ability to dynamically change the priority of an ex-
ception handler, so that it an be changed based on the importance of the exception, or
the importance of the process in which the error occurred. This is not considered at
ASML.

5.4 A Fault Model for Exception Handling
Based on the characterisation presented in the previous section, we establish a fault model
for exception handling by means of the return code idiom in this section. The fault model
defines when a fault occurs, and includes failure scenarios which explain what happens when
a fault occurs.

5.4.1 General Overview
Our fault model specifies possible faults occurring in a function’s implementation of the
exception raising and handler determination components. Those components are clearly
the most prone to errors, because their implementation requires a lot of programming work,
a good understandability of the idiom, and strict discipline. Although this also holds for
the resource cleanup component, at ASML this component primarily deals with memory
(de)allocation, and we therefore consider it to belong to a memory handling concern, for
which a different fault model should be established.

The return code idiom at ASML relies on the fact that when an error is received, the
corresponding error value should be logged and should propagate to the return statement.
The programming language constructs that are used to implement this behaviour are function
calls, return statements and log calls. The fault model includes a predicate for each of these

82 Discovering Faults in Idiom-Based Exception Handling

Function

return

receive LOG

Figure 5.2: Inputs and outputs of a function with respect to exception handling.

Category 1

receive(x) ∧
LOG(y,z) ∧
x 6= z

Category 2

receive(x) ∧
LOG(y,x) ∧
return(z) ∧
y 6= z

Category 3

receive(x) ∧
LOG(void,void) ∧
return(y) ∧
x 6= y

Figure 5.3: Predicates for the three fault categories.

constructs, and consists of three formulas that specify a faulty combination of these con-
structs. If one of the formulas is valid for the execution of a function, the EH implementation
of the function necessarily contains a fault.

A function is regarded as a black box, i.e., only its input–output behaviour is considered.
This perspective allows easy mapping of faults to failure scenarios, at the cost of losing some
details due to simplification. Figure 5.2 gives an overview of the relevant input and outputs of
a function. Any error values received from called functions (receive predicate) are regarded
as input. Outputs are comprised of the error value that is returned by a function (return), and
values written to the error log (LOG). We map the input and outputs to logical predicates as
follows.

First, receive is a unary predicate that is true for an error value that is received by the
function during its execution. For instance, if a function receives an error PARAM ERROR
somewhere during its execution, then receive(PARAM ERROR) holds true. If a function does
not receive an error value during its execution (either because it does not call any functions,
or no exception is raised by a called function), then receive(OK) holds. Likewise, return is
a unary predicate that holds true for the error value returned by a function at the end of its
execution. Finally, LOG is a binary predicate that is true for those two error values (if any)
that are written to the error log. The first position of the LOG predicate signifies the new error
value, while the second position signifies the (old) error to which a link should be established.
If and only if nothing is written to the error log during execution, LOG(void, void) holds.

The fault model makes two simplifications: it assumes a function receives and logs at
most one error during its execution. This is reasonable, because if implemented correctly, no
other function should be called once an error value is received. Additionally, if only one error
value can be received, it makes little sense to link more than one other error value to it.

5.5 SMELL: Statically Detecting Error Handling Faults 83

5.4.2 Fault Categories
The fault model consists of three categories, each including a failure scenario, which are ex-
plained next. The predicates capturing the faults in each category are displayed in Figure 5.3.
Example code fragments corresponding to Categories 1–3 are displayed in Figures 5.4–5.6,
respectively.

Category 1 The first category captures those faults where a function raises a new error
(y), but fails to perform appropriate logging. There are two cases to distinguish. First, y is
considered a root error, i.e., no error has been received from any called function, and there-
fore receive(OK) holds. The function is thus expected to perform LOG(y,OK). However, a
category 1 fault causes the function to perform LOG(y,z) with z 6= OK.

Second, y is considered a linked error, i.e., it must be linked to a previously received error
x. So, receive(x) holds with x 6= OK, and the function is expected to perform LOG(y,x). A
category 1 fault in its implementation results in the function performing LOG(y,z) with x 6= z.

Category 1 faults have the potential to break error link trees in the error log. The first
case causes an error link tree to be improperly initiated, i.e., it does not have the OK value at
its root. The second case will break (a branch of) an existing link tree, by failing to properly
link to the received error value. Furthermore, the faulty LOG call will start a new error link
tree which has again been improperly rooted. Especially in the latter case it will be hard to
recover the chain of errors that occurred, making it impossible to find the root cause of an
error.

Category 2 Here the function properly links a new error value y to the received error value
x, but then fails to return the new error value (and instead returns z). The calling function will
therefore be unaware of the actual exceptional condition, and could therefore have problems
determining the appropriate handler. In the special case of receive(OK), the function properly
logs a root error y by performing LOG(y,OK), but subsequently returns an error z different
from the logged root error y.

Possible problems include corruption of the error log, due to linking to the erroneously
returned error value z. Calling functions have no way of knowing the actual value to link to
in the error log, because they receive a different error value. Even more seriously, calling
functions have no knowledge of the actual error condition and might therefore invoke func-
tionality that may compromise further operation of software or hardware. This problem is
most apparent if OK is returned while an error has been detected (and logged).

Category 3 The last category consists of function executions that receive an error value x,
do not link a new error value to x in the log, but return an error value y that is different from
x. The failure scenario is identical to category 2.

5.5 SMELL: Statically Detecting Error Handling Faults
Based on the fault model we developed SMELL, the State Machine for Error Linking and
Logging, which is capable of statically detecting violations to the return code idiom in the

84 Discovering Faults in Idiom-Based Exception Handling

source code, and is implemented as a plugin for CodeSurfer (2007). We want to detect faults
statically, instead of through testing as is usual for fault models, because early detection and
prevention of faults is less costly (Boehm, 1981; Bush, 1990), and because testing exception
handling is inherently difficult.

5.5.1 Implementation
SMELL statically analyses executions of a function in order to prove the truth of any one of
the logic formulas of our fault model. The analysis is static in the sense that no assumptions
are made about the inputs of a function. Inputs consist of formal or global variables, or values
returned by called functions.

We represent an execution of a function by a finite path through its control-flow graph.
Possibly infinite paths due to recursion or iteration statements are dealt with as follows. First,
SMELL performs intra-procedural analysis, i.e., the analysis stays within a function and does
not consider functions it may call. Therefore recursion is not a problem during analysis. Intra-
procedural analysis only does not impact SMELL’s usefulness, as it closely resembles the
way ASML developers work with the code: they should not make specific assumptions about
possible return values, but should instead write appropriate checks after the call. Second,
loops created by iteration statements are dealt with by caching analysis results at each node
of the control-flow graph. We discuss this mechanism later.

The analysis performed by SMELL is based on the evaluation of a deterministic (finite)
state machine (SM) during the traversal of a path through the control-flow graph. The SM
inspects the properties of each node it reaches, and then changes state accordingly. A fault
is detected if the SM reaches the reject state. Conversely, a path is free of faults if the SM
reaches the accept state.

The error variable is a central notion in the current implementation of SMELL. An error
variable, such as the r variable in Figure 5.1, is used by a programmer to keep track of
previously raised errors. SMELL attempts to identify such variables automatically based on
a number of properties. Unfortunately, the idiom used for exception handling does not specify
a naming convention for error variables. Hence, each programmer picks his or her favourite
variable name, ruling out a simple lexical identification of these variables. Instead, a variable
qualifies as an error variable in case it satisfies the following properties:

• it is a local variable of type int,

• it is assigned only constant (integer) values or function call results,

• it is not passed to a function as an actual, unless in a log call,

• no arithmetic is performed using the variable.

Note that this characterisation does not include the fact that an error variable should be
returned or that it should be logged. We deliberately do not want the error variable identi-
fication to depend on the correct use of the idiom, as this would create a paradox: in order
to verify adherence to the idiom, the error variable needs to be identified, which would need
strict adherence to the idiom to start with.

5.5 SMELL: Statically Detecting Error Handling Faults 85

Most functions in the ASML source base use at most one error variable, but in case
multiple are used, SMELL considers each control-flow path separately for each error variable.
Functions for which no error variable can be identified are not considered for further analysis.
We discuss the limitations of this approach at the end of this section.

The definition of the SM was established manually, by translating the informal rules in
the manuals to appropriate states and transitions. Describing the complete SM would require
too much space. Therefore we limit our description to the states defined in the SM, and show
a subset of the transitions by means of example runs.

The following states are defined in the SM:

Accept and Reject represent the absence and presence of a fault on the current control-flow
path, respectively.

Entry is the start state, i.e., the state of the SM before the evaluation of the first node.
A transition from this state only occurs when an initialisation of the considered error
variable is encountered.

OK reflects that the current value of the error variable is the OK constant. Conceptually this
state represents the absence of an exceptional condition.

Not-OK is the converse, i.e., the error variable is known to be anything but OK, though the
exact value is not known. This state can be reached when a path has taken the true
branch of a guard like if(r != OK).

Unknown is the state reached if the result of a function call is assigned to the error variable.
Due to our limitation to intra-procedural analysis, we conservatively assume function
call results to be unknown.

Constant is a parametrised state that contains the constant value assigned to the error vari-
able. This state can be reached after the assignment of a literal constant value to the
error variable.

All states also track the error value that was last written to the log file. This information
is needed to detect faults in the logging of errors. Since we only perform intra-procedural
analysis, we set the last logged v value to unknown in the case of an Unknown state (i.e.,
when a function was called). We thus assume that the called function adheres to the idiom,
which allows us to verify each function in isolation. Faults in these called functions will still
be detected when they are being checked.

While traversing paths of the control-flow graph of a function, the analysis caches re-
sults in order to prevent infinite traversals of loops and to improve efficiency by eliminating
redundant computations. In particular, the state (including associated values of parameters)
in which the SM reaches each node is stored. The analysis then makes sure that each node
is visited at most once given a particular state. The same technique is used by Engler et al.
(2000).

86 Discovering Faults in Idiom-Based Exception Handling

5.5.2 Example Faults
The following three examples show how the SM detects faults from each of the categories in
the fault model. States reached by the SM are included in the examples as comments, and
where appropriate the last logged error value is mentioned in parentheses. First, consider the
code snippet in Figure 5.4.

1 int calibrate(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 1)
5 LOG(RANGE_ERROR , OK); // Reject
6 ...
7 }

Figure 5.4: Example of fault category 1.

A fault of category 1 possibly occurs on the path that takes the true branch of the if state-
ment on line 4. If the function call at line 3 returns with an error value, say INIT ERROR then
receive(INIT ERROR) holds. The call to the LOG function on line 5 makes LOG(RANGE ERROR,
OK) true, and since OK is different from INIT ERROR, all clauses of the predicate for category
1 are true, resulting in a fault of category 1.

SMELL detects this fault as follows, starting in the Entry state on line 1. The initialisation
of r, which has been identified as an error variable, causes a transition to the OK state on line
2. The assignment to r of the function call result on line 3 results in the Unknown state.
On the true branch of the if statement on line 4, a (new) root error is raised. The cause
of the fault lies here. SMELL reaches the Reject state at line 5 because if an error value
(say INIT ERROR) would have been returned from the call to the initialise function, it is
required to link the RANGE ERROR to the INIT ERROR, instead of linking to OK.

1 int align() { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(r != OK) // Not-OK
5 LOG(ALIGN_ERROR , r); // Not-OK (ALIGN_ERROR)
6 return r; // Reject
7 }

Figure 5.5: Example of fault category 2.

The function in Figure 5.5 exhibits a fault of category 2 on the path that takes the true
branch of the if statement. Again, suppose receive(INIT ERROR) holds, then the function
correctly performs LOG(ALIGN ERROR, INIT ERROR). The fault consists of the function not
returning ALIGN ERROR, but INIT ERROR, because after linking to the received error, the new
error value is not assigned to the error variable.

Again SMELL starts in the Entry state, and subsequently reaches the OK state after the
initialisation of the error variable r. The initialise function is called at line 3, and causes
SMELL to enter the Unknown state. Taking the true branch at line 4 implies that the value of r

5.5 SMELL: Statically Detecting Error Handling Faults 87

must be different from OK, and SMELL records this by changing to the Not-OK state. At line
5 an ALIGN ERROR is linked to the error value currently stored in the r variable. SMELL then
reaches the return statement, which causes the error value to be returned that was returned
from the initialise function call at line 3. Since the returned value differs from the logged
value at this point, SMELL transits to the Reject state.

1 int process(int a) { // Entry
2 int r = OK; // OK
3 r = initialise(); // Unknown
4 if(a == 2) {
5 r = PROCESS_ERROR; // Reject
6 }
7 ...
8 return r;
9 }

Figure 5.6: Example of fault category 3.

Category 3 faults are similar to category 2, but without any logging taking place. Suppose
again that for the function in Figure 5.6 receive(INIT ERROR) holds. For the path taking the
true branch of the if statement a value different from INIT ERROR will be returned, i.e.,
PROCESS ERROR.

Until the assignment at line 5 the SM traverses through the same sequence of states as
for the previous examples. However, the assignment at line 5 puts SMELL in the Reject
state, because the previously received error value has been overwritten. A category 3 fault is
therefore manifest.

5.5.3 Fault Reporting

SMELL reports the presence of faults using a more fine-grained view of the source code than
the fault model. While the fault model takes a black box perspective, i.e., regarding behaviour
only at the interface level, SMELL reports detected faults using a white box perspective, i.e.,
considering the implementation level details of a function. The white box perspective is
considered to be more useful when interpreting actual fault reports, which developers may
have to process.

In the following we present a list of “low-level faults”, or programmer mistakes that
SMELL reports to its users. For each programmer mistake we mention here the associated
fault categories from the fault model. SMELL itself does not report these categories to the
user. To help users interpreting the reported faults, SMELL prints the control-flow path lead-
ing up to the fault, and the associated state transitions of the SM.

function does not return occurs when a function declares and uses an error variable (i.e.,
assigns a value to it), but does not return its value. If present, SMELL detects this fault
at the return statement of the function under consideration. This can cause category 2
or 3 faults.

88 Discovering Faults in Idiom-Based Exception Handling

wrong error variable returned occurs when a function declares and uses an error variable
but returns another variable, or when it defines multiple error variables, but only returns
one of them and does not link the others to the returned one in the appropriate way. This
can cause category 2 or 3 faults.

assigned and logged value mismatch occurs when the error value that is returned by a func-
tion is not equal to the value last logged by that function. This can cause category 2
faults.

not linked to previous value occurs when a LOG call is used to link an error value to a pre-
vious value, but this latter value was not the one that was previously logged. If present,
SMELL detects this fault at the call site of the log function. This causes category 1
faults.

unsafe assignment occurs when an assignment to an error variable overwrites a previously
received error value, while the previous error value has not yet been logged. Clearly, if
present SMELL detects this fault at the assignment that overwrites the previous error
value.

5.5.4 Limitations
Our approach is both formally unsound and incomplete, which is to say that our analysis
proves neither the absence nor the presence of ‘true’ faults. In other words, both false nega-
tives (missed faults) or false positives (false alarms) are possible. False negatives for example
occur when SMELL detects a fault on a particular control-flow path, and stops traversing that
path. Consequently, faults occurring later in the path will go unnoticed. The unsoundness
property and incompleteness properties do not necessarily harm the usefulness of our tool,
given that the tool still allows us to detect a large number of faults that may cause much
machine down-time, and that the number of false positives remains manageable. The experi-
mental results (see Section 5.6) show that we are currently within acceptable margins.

SMELL also exhibits a number of other limitations:
Meta assignments Meta assignments are assignments involving two different error vari-

ables, such as r = r2;. SMELL does not know how to deal with such statements, since it
traverses the control-flow paths for each error variable separately. As a result, when consid-
ering the r variable, SMELL does not know what the current value of r2 is, and vice versa.

For the moment, SMELL recognises such statements and simply stops traversing the
current control-flow path.

Variableless log calls Variableless log calls are calls to the LOG function that do not use
an error variable as one of their actual arguments, but instead only use constants, such as in
the following example:

r = PARAM_ERROR;
LOG(PARAM_ERROR,OK);

The problem appears when a function defines more than one error variable. Although
a developer is able to tell which error variable is considered from the context of the call,
SMELL has trouble associating the call to a specific error variable.

5.6 Experimental Results 89

reported false positives limitations validated
CC3 (3 kLoC) 32 2 4 26 (13)
CC10 (19 kLoC) 72 20 22 30
CC11 (15 kLoC) 16 0 3 13
CC2 (14.5 kLoC) 107 14 13 80
CC1 (15 kLoC) 9 1 3 5
total (66.5 kLoC) 236 37 45 154 (141)

Table 5.1: Reported number of faults by SMELL for five components.

Whenever possible, SMELL tries to recover from such calls intelligently. In the above
case, SMELL is able to infer that the log call belongs to the r variable, because it logs the
constant that is assigned to that variable. However, the problem reappears when a second
error variable is considered. When checking that variable and encountering the LOG call,
SMELL will report an error if the error value contained in the second error variable differs
from the logged value, because it does not know the LOG call belongs to a different error
variable.

Infeasible Paths Infeasible paths are paths through the control-flow graph that can never
occur at runtime, but that are considered as valid paths by SMELL. SMELL only considers
the values for error variables, and smartly handles guards involving those variables. But it
does not consider any other variables, and as such cannot infer, for example, that certain
conditions using other variables are in fact mutually exclusive.

Wrong Error Variable Identification The heuristic SMELL uses to identify error vari-
ables is not perfect. False positives occur when integer values are used to catch return values
from library functions, for example, such as puts or printf. Additionally, false negatives
occur when developers pass the error variable as an actual or perform some arithmetic op-
erations on it. This is not allowed by the ASML coding standard, however. Currently, false
positives are easily identified manually, since SMELL’s output reports which error variable
was considered. If this error variable is meaningless, inspection of the fault can safely be
skipped.

In order to overcome these limitations, we are currently reimplementing SMELL, using
path-identification and constant propagation algorithms involving all (local) variables of a
function. This will solve the problems of variableless log calls and meta assignments, because
we will approximate the values of all variables, and reduce the problem of infeasible paths.
We believe this new implementation will also eliminate the need for explicitly identifying the
error variables, but this remains to be investigated.

5.6 Experimental Results

5.6.1 General Remarks

Table 5.1 presents the results of applying SMELL on 5 relatively small ASML components.
The first column lists the component that was considered together with its size, column 2 lists
the number of faults reported by SMELL, column 3 contains the number of false positives we
manually identified among the reported faults, column 4 shows the number of SMELL limita-

90 Discovering Faults in Idiom-Based Exception Handling

tions (as discussed in the previous section) that are encountered and automatically recognised,
and finally column 5 contains the number of validated faults, or ‘true’ faults.

Four of the five components are approximately of the same size, but there is a striking
difference between the numbers of reported faults. The number of reported faults for the
CC11 and CC1 components is much smaller than those reported for the CC10 and CC2
components. When comparing the number of validated faults, the CC2 component clearly
stands out, whereas the number for the other three components is approximately within the
same range.

Although the CC3 component is the smallest one, its number of validated faults is large
compared to the larger components. This is due to the fact that a heavily-used macro in the
CC3 component contains a fault. Since SMELL is run after macro expansion, a fault in a
single macro is reported at every location where that macro is used. In this case, only 13
faults need to be corrected (as indicated between parenthesis), since the macro with the fault
is used in 14 places.

The number of validated faults reported for the CC1 component is also interestingly low.
This component is developed by the same people responsible for the EHM implementation.
As it turns out, even these people violate the idiom from time to time, which shows that the
idiom approach is difficult to adhere to. However, it is clear that the CC1 code is of better
quality than the other code.

Overall, we get 236 reported faults, of which 45 (19 %) are reported by SMELL as a
limitation. The remaining 191 faults were inspected manually, and we identified 37 false
positives (16 % of reported faults). Of the remaining 154 faults, 141 are unique, and so in
other words, we found 2.1 true faults per thousand lines of code.

5.6.2 Fault Distribution

A closer look at the 141 validated faults shows that 13 faults are due to a function not return-
ing, 28 due to the wrong error variable being returned, 54 due to unsafe assignments, 10 due
to incorrect logging, and 36 due to an assigned and logged value mismatch.

The unsafe assignment fault occurs when the error variable contains an error value that is
subsequently overwritten. This kind of fault is by far the one that occurs the most (54 out of
141 = 38%), followed by the assigned and logged value mismatch (36 out of 141 = 26%). If
we want to minimise the exception handling faults, we should develop an alternative solution
that deals with these two kinds of faults.

Accidental overwriting of the error value typically occurs because the control flow trans-
fer when the exception is raised is not implemented correctly. This is mostly due to a forgotten
guard that involves the error variable ensuring that normal operation only continues when no
exception has been reported previously. An example of such a fault is found in Figure 5.6.

The second kind of fault occurs in two different situations. First, as exemplified in Fig-
ure 5.5, when a function is called and an exception is received, a developer might link an
exception to the received one, but forgets to assign the linked exception to the error variable.
Second, when a root error is detected and a developer assigns the appropriate error value to
the error variable, he might forget to log that value.

5.7 An Alternative Exception Handling Approach 91

5.6.3 False positives

The number of false positives is sufficiently low to make SMELL useful in practice. A
detailed look at these false positives reveals the reasons why they occur and allows us to
identify where we can improve SMELL.

Of the 37 false positives identified, 23 are due to an incorrect identification of the error
variable, 7 are due to SMELL getting confused when multiple error variables are used, 4
occur because an infeasible path has been followed, and 3 false positives occur due to some
other (mostly domain-specific) reason.

These numbers indicate that the largest gain can be obtained by improving the error vari-
able identification algorithm, for example by trying to distinguish ASML error variables from
“ordinary” error variables. Additionally, they show that the issue of infeasible paths is not
really a large problem in practice.

5.7 An Alternative Exception Handling Approach

In order to reduce the number of faults in exception handling code, alternative approaches
to exception handling should be studied. A solution which introduces a number of simple
macros has been proposed by ASML, and we will discuss it here. We thereby keep in mind
that we know that the two most frequently occurring faults are overwriting of the error value
and the mismatch between the value assigned to the error variable and the value actually
logged.

The solution is based on two observations.
First, it encourages developers to no longer write assignments to the error variable explic-

itly, and it manages them automatically inside the macros. Such assignments can either be
constant assignments, when declaring a root error, or function-call assignments, when calling
a function. By embedding such assignments inside specific macros and surrounding them
with appropriate guards, we can prevent accidental overriding of error values.

Second, the macros ensure that assignments are accompanied by the appropriate LOG
calls, in order to avoid a mismatch between logged and assigned values. As explained in the
previous section, such a mismatch occurs when declaring a root error or when linking to a
received error. Consequently, we introduce a ROOT LOG and LINK LOG macro that should be
used in those situations and that take care of all the work.

The proposed macro’s are defined in Figure 5.7. The ROOT LOG macro should be used
whenever a root error is detected, while the LINK LOG macro is used when calling a func-
tion and additional information can be provided when an error is detected. Additionally, a
NO LOG macro is introduced that should be used when calling a function and not linking extra
information if something goes wrong.

Using these macros, the example code from Section 5.3 is changed into the code that can
be seen in Figure 5.8.

It is interesting to observe that using these macros drastically reduces the number of (pro-
grammer visible) control-flow branches. This not only improves the function’s understand-
ability and maintainability, but also causes a significant drop in code size, if we consider that
the return code idiom is omnipresent in the ASML code base. Moreover, the exception han-

92 Discovering Faults in Idiom-Based Exception Handling

1 #define ROOT_LOG(error_value , error_var)\
2 error_var = error_value;\
3 LOG(error_value , OK);\
4
5 #define LINK_LOG(function_call , error_value , error_var)\
6 if(error_var == OK) {\
7 int _internal_error_var = function_call;\
8 if(_internal_error_var != OK) {\
9 LOG(error_value , _internal_error_var);\

10 error_var = error_value;\
11 }\
12 }
13
14 #define NO_LOG(function_call , error_var)\
15 if(error_var == OK) \
16 error_var = function_call;

Figure 5.7: Definitions of proposed exception handling macro’s.

dling code is separated from the ordinary code, which allows the two to evolve separately.
More research is needed to study these advantages in detail.

The solution still exhibits a number of drawbacks.
First of all, the code that cleans up memory resources remains as is. This is partly due to

the fact that we did not focus on such code, since we postulate that it belongs to a different
concern. However, such code also differs significantly between different functions and source
components, which makes it harder to capture it into a set of appropriate macros.

Second, reliability checks are still not available. It remains the developer’s responsibility
to use the macros and use them correctly. Developers can still explicitly assign something
to the error variable, without using the correct macro, for example. Or, they can still raise
exceptions that should not be raised by a particular function.

Last, the macros do not tackle faults that concern the returning of the appropriate error
value. Since this was a deliberate choice, because such errors are rather scarce and can be
easily found, this comes as no surprise.

1 int f(int a, int* b) {
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int *)b);
5 allocated = (r == OK);
6 if((a < 0) || (a > 10))
7 ROOT_LOG(PARAM_ERROR ,r);
8 LINK_LOG(g(a),LINKED_ERROR ,r);
9 NO_LOG(h(b), r);

10 if((r != OK) && allocated)
11 mem_free(b);
12 return r;
13 }

Figure 5.8: Function f implemented by means of the alternative macros.

5.8 Discussion 93

5.8 Discussion
In our examples, we found 2.1 deviations from the return code idiom per 1000 lines of code.
In this section, we discuss some of the implications of this figure, looking at questions such
as the following: How does the figure relate to reported defect densities in other systems?
What, if anything, does the figure imply for system reliability? What does the figure teach us
on idiom and coding standard design?

5.8.1 Representativeness
A first question to be asked is to what extent our findings are representative for other systems.

The software under study has the following characteristics:

• It is part of an embedded system in which proper exception handling is essential.

• Exception handling is implemented using the return code idiom, which is common for
C applications.

• Before release, the software components in question are subjected to a thorough code
review.

• The software is subjected to rigorous unit, integration, and system tests.

In other words, we believe our findings hold for software that is the result of a state-of-
the-art development process and that uses an exception handling mechanism similar to the
one we considered.

The reason so many exception handling faults occur is that current ways of working are
not effective in finding such faults: tool support is inadequate, regular reviews tend to be
focused on “good weather behaviour” — and even if they are aimed at exception handling
faults these are too hard to find, and testing exception handling is notoriously hard.

5.8.2 Defect Density
What meaning should we assign to the value of 2.1 exception handling faults per 1000 lines
of code (kLoC) we detected?

It is tempting to compare the figure to reported defect densities. For example, an often
cited paper reports a defect density between 5 and 10 per kLoC for software developed in the
USA and Europe (Dyer, 1992). More recently, in his ICSE 2005 state-of-the-art report, Little-
wood states that studies show around 30 faults per kLoC for commercial systems Littlewood
(2005).

There are, however, several reasons why making such comparisons is questionable, as
argued, for example, by Fenton and Pfleeger (1997). First, there is neither consensus on
what constitutes a defect, nor on the best way to measure software size in a consistent and
comparable way. In addition to that, defect density is a product measure that is derived from
the process of finding defects. Thus, “defect density may tell us more about the quality of the
defect finding and reporting process than about the quality of the product itself” (Fenton and

94 Discovering Faults in Idiom-Based Exception Handling

Pfleeger, 1997, p.346). This particularly applies to our setting, in which we have adopted a
new way to search for faults.

The consequence of this is that no conclusive statement on the relative defect density of
the system under study can be made. We cannot even say that our system is of poorer quality
than another with a lower reported density, as long as we do not know whether the search for
defects included a hunt for idiom errors similar to our approach.

What we can say, however, is that a serious attempt to determine defect densities should
include an analysis of the faults that may arise from idioms used for dealing with crosscut-
ting concerns. Such an analysis may also help when attempting to explain observed defect
densities for particular systems.

5.8.3 Reliability
We presently do not know what the likelihood is that an exception handling fault actually
leads to a failure, such as an unnecessary halt, an erroneously logged error value, or the
activation of the wrong exception handler. As already observed by Adams (1984), more
faults need not lead to more failures. We are presently investigating historical system data to
clarify the relation between exception handling faults and their corresponding failures. This,
however, is a time consuming analysis requiring substantial domain knowledge in order to
understand a problem report, the fault identified for it (which may have to be derived from
the fix applied) and to see their relation to the exception handling idiom.

5.8.4 Idiom design
The research we are presenting is part of a larger, ongoing effort in which we are investigat-
ing the impact of crosscutting concerns on embedded C code (see Chapters 2 and 3). The
traditional way of dealing with such concerns is by devising an appropriate coding idiom.
What implications do our findings have on the way we actually design such coding idioms?

One finding is that an idiom making it too easy to make small mistakes can lead to many
faults spread all over the system. For that reason, idiom design should include the step of
constructing an explicit fault model, describing what can go wrong when using the idiom.
This will not only help in avoiding such errors, but may also lead to a revised design in which
the likelihood of certain types of errors is reduced.

A second lesson to be drawn is that the possibility to check idiom usage automatically
should be taken into account: static checking should be designed into the idiom. As we have
seen, this may require complex analysis at the level of the program dependence graph as
opposed to the (elementary) abstract syntax tree.

5.9 Concluding Remarks
Contributions

Our contributions are summarised as follows. First, we provided empirical data about the use
of an exception handling mechanism based on the return code idiom in an industrial setting.
This data shows that the idiom is particularly error prone, due to the fact that it is omnipresent

5.9 Concluding Remarks 95

as well as highly tangled, and requires focused and well-thought programming. Second, we
defined a series of steps to regain control over this situation, and answer the specific questions
we raised in the introduction. These steps consist of the characterisation of the return code
idiom in terms of an existing model for exception handling mechanisms, the construction of
a fault model which explains when a fault occurs in the most error prone components of the
characterisation, the implementation of a static checker tool which detects faults as predicted
by the fault model, and the introduction of an alternative solution, based on experimental
findings, which is believed to remove the faults most occurring.

We feel these contributions are not only a first step toward a reliability check component
for the return code idiom, but also provide a good basis for (re)considering exception handling
approaches when working with programming languages without proper exception handling
support. We showed that when designing such idiom-based solutions, a corresponding fault
model is a necessity to assess the fault-proneness, and the possibility of static checking should
be seriously considered.

Future work

There are several ways in which our work can be continued:

• apply SMELL to more ASML components, in order to perform more extensive valida-
tion. Additionally, some components already use the macros presented in Section 5.7,
which allows us to compare the general approach to the alternative approach, and as-
sess benefits and possible pitfalls in more detail. We initiated such efforts, and are
currently analysing approximately two million lines of C code for this.

• apply SMELL to non-ASML systems, such as open-source systems, in order to gener-
alise it and to present the results openly.

• apply SMELL to other exception handling mechanisms for C, such as those based on
the setjmp/longjmp idiom, to analyse which approach is most suited.

• investigate aspect-oriented opportunities for exception handling, since benefits in terms
of code quality can be expected if exception handling behaviour is completely sepa-
rated from ordinary behaviour. Chapter 7 discusses the renovation of idiomatic expec-
tion handling using structured exception handling and aspects.

96 Discovering Faults in Idiom-Based Exception Handling

Chapter 6

Analysing Variability in
Large-scale Idioms-based
Implementations of Crosscutting
Concerns∗

This chapter describes a method for studying idioms-based implementations
of crosscutting concerns, and our experiences with it in the context of the ASML
C system. In particular, we analyse a seemingly simple concern, tracing, and
show that it exhibits significant variability, despite the use of a prescribed idiom.
We discuss the consequences of this variability in terms of how aspect-oriented
software development techniques could help prevent it, how it paralyses (auto-
mated) migration efforts, and which aspect language features are required in
order to obtain precise and concise aspects. Additionally, we elaborate on the
representativeness of our results and on the usefulness of our proposed method.

6.1 Introduction
The lack of certain languages features, such as aspects or exception handling, can cause
developers to resort to the use of idioms1 for implementing crosscutting concerns. Idioms
(informally) describe an implementation of required functionality, and can often be found
in manuals, or reference code bodies. A well-known example is the return-code idiom we
have studied in a realistic setting in Chapter 5. It is used in languages such as C to imple-

∗This chapter was published, as “Simple Crosscutting Concerns Are Not So Simple – Analysing Variability in
Large-Scale Idioms-Based Implementations”, in the Proceedings of the 6th International Conference on Aspect-
Oriented Software Development (AOSD 2007) (Bruntink et al., 2007). It is co-authored by Arie van Deursen, Maja
D’Hondt and Tom Tourwé.

1Synonyms are code templates, coding conventions, patterns, etc.

98 Analysing Variability in Large-scale Idioms-based Implementations. . .

ment exception handling. It advocates the use of error codes that are returned by functions
when something irregular happens and caught whenever functions are invoked. Idioms are
also used purposefully as a means of design reuse, for instance in the case of (design) pat-
terns (Buschmann et al., 1996; Coplien, 1991).

Using idioms can result in various forms of code duplication (see Chapter 2). Despite
this duplication, idioms-based implementations are not guaranteed to be consistent across the
software, however. Several factors may give rise to variability in the use of the idiom. Some
variability, which is essential, occurs if there is a deliberate deviation from the idiom, for
example in order to deal with specific needs of a subsystem, or to deal with special cases not
foreseen in the idiom description. In addition to this, variability will occur accidentally due
to the lack of automated enforcement (compilers, checking tools), programmer preference or
skills, changing requirements and idiom descriptions, and implementation errors.

In this chapter, we are interested in the answer to the following question:

Is the idioms-based implementation of a crosscutting concern sufficiently sys-
tematic such that it is suitable for an aspect-oriented solution (with appropriate
pointcuts and advice)?

While answering this question is an endeavour too ambitious for this chapter, we do take an
important step towards an answer by addressing the following sub questions: First, can we
analyse the variability of the idioms-based implementation of a crosscutting concern? And
secondly, can we determine the aspect language abstractions required for designing aspects
that succintly express the common part and the variability of a crosscutting concern?

We have encountered a number of examples of idiomatically implemented crosscutting
concerns in Chapters 2, 3 and 5. Several more are mentioned in the literature (Colyer and
Clement, 2004; Coady et al., 2001). The questions we ask in this chapter need to be answered
in order to start migrating these crosscutting concerns to aspect-oriented solutions.

We present a generally-applicable method for analysing the occurrence of variability in
the idioms-based implementation of crosscutting concerns, that will help us answer these
questions. We show the results of applying this method in order to analyse the tracing idiom
in four selected components (ranging from 5 to 31 KLOC) of a 15 million line C software
system that is fully operational and under constant maintenance. Tracing is one of the ubiq-
uitous examples from aspect-oriented software development (AOSD), and although it is a
relatively simple idiom, we show that it exhibits significant and unexpected variability.

We also discuss the implications of this variability. We illustrate the limitations of idioms-
based implementations and as such provide a solid motivation, based on our experiences with
a large legacy system, for using aspect technology as a means to localise implementations
and avoid accidental variability. This should interest the AOSD community as a whole. We
also discuss how variability complicates and even paralyses efforts to migrate legacy code to-
wards modern languages. Researchers investigating such (automated) migration of code can
study our results and use them to improve their methods and techniques, such that they can
deal with the significant variability we observed. Additionally, the results of our method’s
variability analysis can be used directly to determine the required aspect language features,
capable of expressing the idioms with their essential variability. We discuss two such lan-
guage requirements for the tracing idiom under investigation.

6.2 A Method for Analysing Idiom Variability 99

The structure of the chapter is as follows. The next section briefly presents our method for
analysing variability by describing each individual step. Sections 6.3–6.7 then describe how
we applied each step on the selected components of our subject system in order to analyse
the tracing idiom’s variability. Section 6.8 then presents a discussion of the repercussions
of these results and an evaluation of our method. Section 6.9 discusses related work and
Section 6.10 presents our conclusions.

6.2 A Method for Analysing Idiom Variability
This section proposes the general approach we use to acquire a deep understanding of the
variability in the idioms-based implementation of a crosscutting concern, and explains how
to use this understanding in subsequent aspect specification and design phases.

6.2.1 Idiom Definition
The aim of this step is to provide a definition that is as clear and unambiguous as possible
for the idiom that we want to study. The input for this (manual) step is typically found in the
documentation accompanying the software, by means of code inspections, or by discussions
with developers. In this respect, this step closely resembles the Skim the Documentation,
Read all the Code in One Hour and Chat with the Maintainers patterns discussed in the First
Contact cluster of Demeyer et al. (2003).

While this step may seem simple, in our experience idiom descriptions in coding standard
manuals often leave room for interpretation. When presenting our results, it happened more
than once that developers started a heated debate on whether a particular use of the idiom was
valid or not.

6.2.2 Idiom Extraction
In this step, the code implementing the idiom is automatically extracted from the source code.
This requires that the idiom code is recognised, and hence the output of the previous step is
used as input for this step. The result of this step is similar to a slice (Weiser, 1984), albeit
that the extracted code does not necessarily need to be executable. Nevertheless, the extracted
code can be compiled and analysed by standard tools, and it is much smaller than the original
code, allowing us to scale up to large systems.

Naturally, the complexity of this step is strongly dependent on the idiom: idioms that are
relatively independent of the code surrounding them are easy to extract using simple program
transformations, whereas idioms that are highly tangled with the other code require much
more work.

6.2.3 Variability Modelling
In this step, we describe which properties of the idiom can vary and indicate which variability
we will target in our analysis. It is important to note that we do not require a description
of variabilities that actually occur in the source code. We only need to know where we

100 Analysing Variability in Large-scale Idioms-based Implementations. . .

can expect variabilities, given the definition of the idiom. For example, variability in the
tracing idiom under investigation can occur in the specific macro that is used to invoke the
tracing functionality. In practice, it might turn out that the same macro is used consistently
throughout the source code, or it might not.

Additionally, it is preferable to model different levels of variability separately in order
to understand them fully, and subsequently to consider combinations. For example, in the
tracing idiom there is the aforementioned variability in the way the tracing functionality is
invoked, but also variability in the way the function parameters are converted to strings before
being traced.

Finally, we do not require all possible variability to be modelled. As we discuss later, we
only study part of the variability of the tracing idiom, while other parts are not considered.
This is no problem if this is taken into account when discussing the results of the analysis.
In other words, these results can be seen as a lower bound of the amount of variability that
occurs.

6.2.4 Variability Analysis

This step forms the core of our method, as it analyses the variabilities actually present in the
source code. This is achieved by taking the extracted idiom code, and analysing it consider-
ing the variabilities that were modelled in the previous step. We are particularly interested in
finding out how properties that can vary are typically related. For example, is it the case that
tracing macro m is always invoked with either parameter c1 or c2, but never with c3? Answer-
ing such questions can help us in designing the simplest aspect that captures all combinations
as occurring in practice.

To analyse such relations between variable properties we use formal concept analysis
(FCA) (Ganter and Wille, 1999). FCA is a mathematical technique for analysing data which
takes as input a so-called context. This context is basically a matrix containing a set of objects
and a set of attributes belonging to these objects. The context specifies a binary relation that
signals whether or not a particular attribute belongs to a particular object. Based on this
relation, the technique finds maximal groups of objects and attributes — called a concept —
such that

• each object of the concept shares the attributes of the concept;

• every attribute of the concept holds for all of the concept’s objects;

• no other object outside the concept has those same attributes, nor does any attribute
outside the concept hold for all objects in the concept.

Intuitively, a concept corresponds to a maximal “rectangle” in the context, after permuta-
tion of the relevant rows and columns.

The resulting concepts form a lattice and therefore we can use relations between concepts,
as well as characteristics of the concepts themselves, to get statistics and interpret the results.

6.3 Defining the Tracing Idiom 101

1 int f(chuck_id* a, scan_component b) {
2 int result = OK;
3 char* func_name = "f";
4 ...
5 trace(CC, TRACE_INT , func_name , "> (b = %s)",
6 SCAN_COMPONENT2STR(b));
7 ...
8 trace(CC, TRACE_INT , func_name , "< (a = %s) = %d",
9 CHUCK_ID_ENUM2STR(a), result);

10
11 return result;
12 }

Figure 6.1: Code fragment illustrating the tracing idiom at ASML.

6.2.5 Aspect Design

If we assume that accidental variability in the implementation of an idiom is ultimately re-
moved, the next step is to design aspects that replace the idiom implementation, taking into
account its essential variability. However, aspect design is constrained by the choice of the
target aspect-oriented programming language. Ideally the selected language should provide
abstractions for representing the idiom’s common pattern and its variations, as defined in
Gabriel (1996). If not, the common pattern has to be repeated for each variation, which
results in code duplication in the aspect. Evidently, this partly undermines the expected use-
fulness of the aspect-oriented solution.

In this step, we determine the required abstractions in aspect languages, which can be
nearly directly distilled from the results of the variability analysis in the previous step. We
discuss two such requirements for the tracing idiom under investigation later on in the chapter.

6.3 Defining the Tracing Idiom
The idiom we study in this chapter is the tracing idiom, as adopted by ASML. ASML is
the world market leader in lithography systems, and their software controls wafer scanner
machines used to produce computer chips. It consists of 15 million lines of code, spread
over approximately 200 components, implemented almost entirely in the C programming
language.

As we have discussed in Chapters 2, 3 and 5, the software implements a number of cross-
cutting concerns, such as tracing, parameter checking, memory handling and exception han-
dling. ASML uses idioms to implement these concerns, and in this chapter, we study one
such idiom, tracing, and consider its implementation in 4 different components.

Tracing is a seemingly simple idiom, used at development-time to facilitate debugging or
any other kind of analysis. The base code is augmented with tracing code that logs interesting
events (such as function calls), such that a log file is generated at runtime. The simplicity of
the idiom is reflected in its simple definition: “Each function should trace the values of its in-
put parameters before executing its body, and should trace the values of its output parameters
before returning”

102 Analysing Variability in Large-scale Idioms-based Implementations. . .

The ASML documentation describes the basic implementation version of the idiom,
which looks as in Figure 6.1. The trace function is used to implement tracing and is a
variable-argument function. The first four arguments are mandatory, and specify the follow-
ing information:

1. the component in which the function is defined;

2. whether the tracing is internal or external to that component;

3. the function for which the parameters are being traced;

4. a printf-like format string that specifies the format in which parameters should be
traced.

The way in which each of these four parameters should be passed on to the trace function
is described by the standard, but not enforced. For example, some components follow the
standard and use the CC constant, which always holds the component’s name, to specify the
name, while others actually hardcode the name with a string representing the name (as in
"CC3"). Similarly, the func name variable should be used to specify the name of the function
whose parameters are being traced. Since func name is a local variable, however, different
functions might use different names for that variable (f name, for instance). The structure of
the format string is also not fixed, and developers are thus free to construct strings as they
like.

The optional arguments for trace are the input or output parameters that need to be
traced. If these parameters are of a complex type (as opposed to a basic type like int or
char), they need to be converted to a string representation first. Often, a dedicated func-
tion or macro is defined exactly for this purpose. In Figure 6.1, SCAN COMPONENT2STR and
CHUCK ID ENUM2STR are two such examples. Developers can choose to trace individual fields
of struct instead of using a converter function, however.

Although the idiom described above is the standard idiom, some development teams de-
fine special-purpose tracing macro’s, as a wrap around the basic idiom. These macro’s try to
avoid code duplication by filling in the parameters to trace in the standard way beforehand.
Typically, tracing implementations by means of such macro’s thus require fewer parameters,
although sometimes extra parameters are added as well, for example to include the name of
the file where tracing is happening.

It should be clear from this presentation that the tracing idiom precisely prescribes what
information should be traced, but that the way in which this information is provided is not
specified. Hence, we can expect a lot of variability, as we will discuss in Section 6.5.

6.4 Extracting the Tracing Idiom
Extraction of the tracing idiom out of the source code is achieved by using a combination
of a code analysis tool, called CodeSurfer (2007) and a code transformation tool, called the
ASF+SDF Meta-Environment (van den Brand et al., 2001). The underlying idea is that the
analysis tool is used to identify all idiom-related code in the considered components and that
this information is passed on to the transformation tool that extracts the idiom code from the

6.5 Modelling Variability in the Tracing Idiom 103

base code. The end result is a combination of the base code without the idiom-related code,
and a representation of the idiom code by itself.

6.5 Modelling Variability in the Tracing Idiom
Tracing is generally considered as a very simple example of a crosscutting concern that can
be captured in an aspect easily. This is confirmed by the fact that we can express the require-
ments for tracing in one single sentence, and hence we could expect an aspect to be simple
as well. However, the tracing idiom we consider here is significantly more complex than the
simple example often mentioned and than the requirement would reveal. Rather, it represents
a good example of what such an at first sight simple idiom looks like in a real-world setting.

The following characteristics of the tracing idiom distinguish it from a simple logging
concern:

• A simple logging aspect typically weaves in log calls at the beginning and end of a
function, and often only logs the fact that the function has been entered and has been
exited. The tracing idiom described above also logs the values of actual parameters and
the module in which the function is defined. Moreover, it differentiates between input
and output parameters, which have to be traced differently.

• Tracing the values of actual parameters passed to a C function is a quite complex matter.
Basic types such as int or bool can be printed easily, but more complex types, such as
structs and enums, are a different story. These should be converted to a string-based
representation first, which differs for different structs and enums. Moreover, certain
fields of a struct may be relevant in the context of a particular function, but may not be
relevant elsewhere. Hence, the printed value depends on the context in which the type
is used, and not only on the type itself.

• The conversion of complex types to a string representation is quite different in C than
in Java, or any other modern programming language. C does not provide a default
toString function, as do all Java classes, for example. Consequently, a special-
purpose converter method for complex types needs to be provided explicitly. Addition-
ally, since C does not support overloading of function names, each converter function
needs to have a unique name.

These issues, together with the way tracing is invoked as explained in Section 6.3, show
that variability can occur at many different levels. In the remainder of this chapter, how-
ever, we will focus on function-level and parameter-level variability. The variability present
on those levels possibly has the biggest impact on the definition of aspects for the tracing
concern.

At the function-level, the variability occurs in the specific way the tracing functionality is
invoked. This depends on four different properties: the name of the tracing function that is
used (for example trace), the way the component name and the function name are specified
(by using CC and func name, for example), and whether internal or external tracing is used.
More properties are considered when a different tracing idiom requires more parameters when
it is called, for example the name of the file in which the traced function is defined.

104 Analysing Variability in Large-scale Idioms-based Implementations. . .

CC4 CC5 CC6 CC7 global
LOC 29,339 17,848 31,165 4,985 83,337
functions 328 134 174 68 704
parameter types 108 71 65 49 249
tracing macro’s 1 1 2 1 2
component names 2 3 1 2 6
function names 3 1 1 1 3

Table 6.1: Basic statistics of the analysed components.

At the parameter-level, the variability involves the different ways in which a parameter
of a particular kind is traced. As explained in Section 6.3, a parameter of a complex type
can be traced by first invoking a converter function that converts the complex type to a string
representation, or by tracing the fields of the complex type individually. In this case, we are
interested in verifying whether a particular type of parameter is traced in a systematic and
uniform manner across the considered components, and if not, how much variability occurs.

6.6 Analysing the Tracing Idiom’s Variability

As shown in Table 6.1, our experiments involve 4 different components, comprising 83,000
lines of non-white lines of C code. These components define 704 functions in total, which in
turn define 249 different parameter types.2

The table also lists the different number of ways in which tracing is invoked, i.e., the
different tracing macros that are used, as well as the different component names and function
names that are specified 3 The numbers clearly show the variability present in the idiom at
the function level, since globally 2 different tracing macro’s, 6 different ways to specify the
component name and 3 different ways for specifying the function name are used.

The goal of our analysis is to identify, at the function level, which functions invoke tracing
in the same way, and at the parameter level, which parameter types are converted consistently.
Analysing this allows us to make headway into answering our key question, since it shows
us where the implementation is systematic and what is variable. Since FCA, introduced in
Section 6.2.4, is capable of identifying meaningful groupings of elements, we use it in our
variability analysis.

The FCA algorithm needs to be set up before it can be applied, i.e., we need to define the
objects and attributes of the input context. The next subsection explains how this is achieved
for our experiment. Subsequent subsections then describe, for function-level and parameter-
level variability, the results of running FCA on each of the components separately, as well

2Note that types may be shared across components, hence the total number of types is smaller than the sum of
the numbers of types per component.

3Due to space restrictions, we do not provide equivalent numbers for the parameter-level variability. Such num-
bers would have to be specified for each type defined by the four components, and the table would hence contain
more than 249 rows.

6.6 Analysing the Tracing Idiom’s Variability 105

trace CC TRACE TRACE INT TRACE EXT CC func name f name
f

√
-

√
-

√ √
-

g -
√

- - -
√

-
h

√
- -

√ √
-

√

i -
√

- - -
√

-
j

√
-

√
-

√ √
-

Table 6.2: Example FCA context for function-level variability

as on all components together. This will allow us to discuss the variability within a single
component, as well as the between different components.

6.6.1 Setting up FCA for Analysing Tracing

We first explain how objects and attributes are chosen for our experiment, and how we run
the FCA algorithm. Afterwards, we explain how we interpret the results.

Objects and Attributes

For studying function-level variability, the objects and attributes are chosen such that all func-
tions that invoke tracing in the same way are grouped. Hence, the objects we use in the FCA
context are the names of all functions defined in the components we consider. The attributes
are different instantiations of the four properties used to invoke tracing, as discussed in Sec-
tion 6.3. A sample context is shown in the upper part of Table 6.2. In that table, ‘trace’ and
‘CC TRACE’ represent names for the tracing function, ‘TRACE INT’ and ‘TRACE EXT’
are possible boolean values that select internal or external tracing behavior, ‘CC’ is a name
for the component in which tracing occurs, and ‘func name’ and ‘f name’ are names for the
functions which invoke tracing.

For the analysis at the parameter level, the objects are slightly less obvious to choose. Our
goal is to let the FCA algorithm group functions that have a parameter of a certain type and
convert that parameter in the same way. The objects thus have to be unique for a particular
function that uses a particular parameter type. This means that functions cannot serve as
objects, since they may have different parameters. Similarly, parameter types cannot serve as
objects, since they can be used by many different functions. Hence, we form a combination
of the parameter type and the function that uses it.

The attributes we consider are, on the one hand, the types used in the considered compo-
nents, and on the other hand, the particular converter functions that are used (if any) or the
constant no tracing when the parameter is not traced by that particular function.

A sample of a corresponding context can be found in the lower part of Table 6.3. The
functions f and h both define a formal parameter of type CC scan component and both use
the CC SCAN COMPONENT2STR converter function. Similarly, the functions f, g and i define
a formal of type CC chuck id, but only function f uses a converter function, the other two
functions do not trace their parameter of that type.

106 Analysing Variability in Large-scale Idioms-based Implementations. . .

C
C

SC
A

N
C

O
M

PO
N

E
N

T
2S

T
R

C
C

C
H

U
C

K
–I

D
E

N
U

M
2S

T
R

no
tr

ac
in

g

C
C

ch
uc

k
id

C
C

sc
an

co
m

po
ne

nt

f CC scan component
√

- - -
√

f CC chuck id enum -
√

-
√

-
g CC chuck id enum - -

√ √
-

h CC scan component
√

- - -
√

i CC chuck id enum - -
√ √

-

Table 6.3: Example FCA context for parameter-level variability

Applying FCA

Once the context is set up, the algorithm can be applied. We use Lindig’s Concepts tool to
compute the actual concepts (Lindig and Snelting, 1997). The context is specified in a file in a
specific format, which we generate using ASF+SDF and the extracted tracing representation
files. The tool can output the resulting concepts in a user-defined way, and we tune the results
so that they can be read into a Scheme environment. This allows us to reason about the results
using Scheme scripts.

An alternative is to use the ConExp tool4, which requires a slightly different input format,
but that can visualise the concepts (and the resulting lattice) so that it can be inspected easily.
The graphical representations of lattices in this chapter are obtained by this tool.

Interpreting the Results

From running the FCA algorithm, we obtain a concept lattice that shows the different con-
cepts identified and the relation between them. An example lattice appears in Figure 6.2.
Each dot in the lattice represents a concept, and the lines connecting the dots represent con-
cepts that are related because they share objects and/or attributes.

While traversing a lattice from top to bottom, following the edges that connect concepts,
attributes are gradually added to the concepts, and objects are removed from them. The
top concept contains all objects and all attributes shared by all objects (if any), whereas the
bottom concept contains all attributes and all objects shared by all attributes (if any). At
some point in the lattice, a concept contains objects that are not contained within any of its
sub-concepts. Those objects are the concept’s own objects. The attributes associated with the

4http://conexp.sf.net

6.6 Analysing the Tracing Idiom’s Variability 107

Figure 6.2: Function-level variability in the CC4 component

own objects of a concept are always “complete”, in the sense that in the input context passed
to the FCA algorithm, the own objects precisely are related to precisely those attributes.

A concept with own objects represents a single variant for invoking tracing, or a single
variant for converting a particular type. In the first case, for example, the own objects are
functions, all these functions share the same (complete) set of attributes, an no other attribute
is shared by these functions. In Figure 6.2, the concepts with own objects are denoted by
nodes whose bottom half is coloured black and whose size is proportional to the number of
own objects they contain. They also have white labels indicating the number of own objects
and the percentage of own objects with respect to the total number of objects of the concept.
The largest concepts contains 190 own object, which are functions in this case.

We observe that a particular kind of variability occurs when either input and output trac-
ing in the same function are invoked in a different way, or a single type is converted using two
different converter functions. Such situations, which are in most cases clearly examples of
accidental variability, immediately show up in the concept lattice. They are embodied by con-
cepts with own objects that have at least one parent concept with own objects. Indeed, such
concepts have more attributes than is necessary, hence some of these attributes are different
variations for the same property. As an example, consider again Figure 6.2 and observe the
two concepts in the lower left part that contain 1 and 2 own objects, respectively. From their
positions in the lattice, it can be derived that the leftmost concept uses both FUNCTION and
func name for specifying the function name when tracing, and the other concept "CC1" and
CC for specifying the component name.

108 Analysing Variability in Large-scale Idioms-based Implementations. . .

CC4 CC5 CC6 CC7 total global
Function-level variability

#concepts 11 6 24 2 43 47
#tracing variants 6 4 19 2 31 29

#functions w. std. tracing 13 1 26 0 40 40
% of total functions 4 0.7 15 0 5.7

Parameter-level variability
#concepts 191 120 194 84 589 517
#not traced 61 49 4 16 130 115

#consistently traced 15 5 16 19 55 40
#inconsistently traced 32 17 45 14 108 94

#w.o. not traced 11 6 39 8 64 57

Table 6.4: Function-level and parameter-level variability results for 704 functions.

6.6.2 Function-level Variability
The upper half of Table 6.4 presents the results of analysing the function-level variability in
the four components we consider. The first row of data contains the total number of concepts
that are found by the FCA algorithm. The second row lists the number of different tracing
invocations that are found (i.e., the total number of concepts containing own objects). The
third row then lists the number of functions that implement the standard tracing idiom as
described in ASML’s coding standards (i.e., the number of own objects found in the con-
cept with attributes trace, CC, TRACE INT or TRACE EXT and func name), and the last row
presents the percentage of those functions with respect to the total number of functions in the
component.

The most striking observation revealed by these results is that only 5.7% (40 out of 704) of
all functions invoke tracing in the standard way, as described in Section 6.3. This immediately
raises the question why developers do not adhere to the standard. Maybe a new standard for
invoking tracing should be considered? Can we observe candidate standards in our results?

Looking at the second row in the upper half of Table 6.4, we see that 29 different tracing
variants are used in the four components. If we consider each component separately, we find
31 variants in total. This difference can be explained by the fact that 3 components invoke
tracing according to the standard idiom, and that the functions of these components doing
so are all grouped in one single concept when considering the components together. This
results in one concept replacing three other concepts, hence the reduction with two concepts.
Reversing this reasoning also means that there is no other way of invoking tracing that is
shared by different components, or in other words, all components invoke tracing by using
their own variant(s). Consequently, we can not select one single variant that can be considered
as the standard among these 29 variants, with the other variants being simple exceptions to
the general rule. This is confirmed by looking at the lattices.

Looking at Figures 6.2 and 6.3, it is clear that both components use a similar tracing vari-
ant implemented by most functions (190 or 58% functions in the case of CC4, 123 functions
or 92% in the case of CC5). Additionally, CC4 has yet another “big” variant that uses the
FUNCTION preprocessor token instead of the variable func name. This variant is used in

6.6 Analysing the Tracing Idiom’s Variability 109

Figure 6.3: Function-level variability in the CC5 component

121 functions (37%).
Figures 6.5 and 6.4 show significantly different results. The CC7 component implements

only two tracing variants, implemented by 31 and 37 functions respectively. The difference
between the two variants is that one is an extension of the other: one variant uses CC4 LINE
to denote the component name, whereas the other uses both CC4 LINE and CC4 CC. The CC6
component implements 19 different variants, and none can be selected as the most repre-
sentative or resembles the variants of another component. The variability in this case stems
from the fact that the CC6 component defines its own macro for invoking tracing, and that
this macro requires one extra argument, namely the name of the file in which is defined the
function that is being traced. This is clearly visible in the lattice: each concept corresponding
to a specific tracing variant that corresponds to a specific file in the source code, contains
an extra attribute that denotes the constant used in the trace call corresponding with the file.
Interestingly, although CC6 defines its own macro, it is also the component that uses the stan-
dard idiom the most. Whether the mixing of the standard idiom with the dedicated macro is
a deliberate choice or not is an issue that remains to be discussed with the developers.

Summarising, we can state that very few functions implement the standard tracing variant
that no other standard variant can be identified that holds for all components, but that within
one single component a more common variant can sometimes be detected.

The previous subsection discussed an example of accidental variability in the CC4 com-
ponent. A similar situation occurs in the CC5 component, as can be seen in Figure 6.3, where
one function uses CC and "CC2". The CC6 component contains one variant that is acciden-
tal, as confirmed by the ASML developers, consisting of a copy/paste error when passing a
constant representing the file name in invoking the CC3 trace macro.

6.6.3 Parameter-level Variability
The parameter-level variability involves the way a parameter of a specific kind is traced, i.e.,
whether it is converted to a string representation by means of a converter function, whether
it is traced in a different way or whether it is not traced at all. Note that we do not show

110 Analysing Variability in Large-scale Idioms-based Implementations. . .

Figure 6.4: Function-level variability in the CC6 component

Figure 6.5: Function-level variability in the CC7 component

6.6 Analysing the Tracing Idiom’s Variability 111

lattices for this part of experiment since the large number of parameter types generates too
many concepts. Instead we produce statistics from the results of the FCA algorithm with our
Scheme scripts.

The lower half of Table 6.4 summarises the results for this experiment on our four com-
ponents. The first row describes the total number of concepts found for each component. The
second row shows the number of types that are never traced, while the third and fourth depict
the number of types that are used consistently (i.e., they are always converted in the same
way) and the number of types that are not used consistently.

The fact that the global number of consistently-used types is lower than the sum of the
numbers of consistently-used types per component shows that there is variability between
different components: one type can be converted consistently per component, but if these
components each convert it in their specific way, the type becomes inconsistently-used at the
global level. The opposite is of course not possible: if a type is used inconsistently within
a single component, it can never become consistently used at the global level. The fact that
the number of inconsistently-traced types drops as well on a global level, is due to the fact
that the different components share types, and that the different ways in which these types
are traced are combined into a single inconsistency.

One immediate conclusion that we can draw from these results is that 37.7% of the types
(94 out of 249) are traced in an inconsistent way, and only 16% (40 out of 249) is traced
consistently. If we consider that 115 types are not traced at all, we can even say that, of
all types that are traced, 70.1% (94 out of 134) is traced inconsistently and 29.8% is traced
consistently. However, we should take into account one particularity of the tracing idiom.
Although its definition states that each function should trace all of its parameters, in practice
this does not happen. Helper functions, in particular, often do not trace all of their parameters,
since these are passed in from the calling function, and are traced there. In order to take this
into account, we exclude from the number of inconsistently-traced types those types that are
traced using one single converter function or are not traced at all. Hence, the fifth row in the
table shows the types that are converted using more than one converter function, and thus we
can conclude that 42.5% (57 out of 134) of all types are not traced consistently, and 57.5%
(77 out of 134) are traced consistently.

In contrast to the situation at the function-level, closer analysis of the results at the
parameter-level reveals that most of the types that are traced inconsistently are converted
in two or three different ways only. This result is found by counting the number of unique
conversion attributes that are included in concepts that a type appears in (except for the bot-
tom concept, which includes all attributes but does not represent a meaningful grouping). The
median and mode of the number of conversion functions for an inconsistently traced type are
both 2.

There are two interesting outliers in this result. The basic type double, and simple derived
type bool, are traced respectively in 13 and 11 different ways. What appears strange is that
these basic types are sometimes converted with a converter function defined for another type.
This might be explained by C’s weak typing mechanism: the other types are basically defined
in order to prevent overloading of the basic type and to make the code more readable, but are
not always used consistently by the developers.

Studying the results at the level of individual components reveals interesting issues as
well.

112 Analysing Variability in Large-scale Idioms-based Implementations. . .

As can be seen in the table, the tracing implementation in the CC4 and CC6 components
appears to be less consistent than in the other two components. If we take into account the
basic statistics from Table 6.1, this seems logical: CC4 and CC6 are by far the largest com-
ponents. However, taking into account size does not explain everything: the CC5 component
defines more types than CC6, but is more consistent.

Even when excluding types that are either traced consistently or not traced at all, the CC6
component still traces a lot of its types in many different ways. When we take a detailed look
at the way in which the 39 parameter types are traced inconsistently, we can observe a clear
pattern however. It turns out that 28 of these types are traced using a slightly different variant
of the standard tracing idiom: the value of the parameter is traced, as always, but this value
is accompanied by the memory address of the parameter, as follows:

1 CC3_TRACE(CC, TRACE_INT , func_name ,
2 FILE_CONSTANT ,
3 "< (p = [%p], *p = [%s])",
4 p, p_store_values_ptr_args(p));

Our variability model does not take into account this slight variation in the idiom, and
hence reports a lot of variability. A refinement of the variability model could prevent this.

Some cases very clearly show that the variability is not intended. For example, the CC5
component uses a type chuck enum and a type chuck id enum. Each of these types has
its own converter function, but the converter function for the chuck id enum type is used
twice for converting a parameter of type chuck enum. The CC6 component also uses the
chuck id enum type, and converts it in three different ways, using converter functions defined
in different components. It is not clear why this happens, and presumably this is undesirable
behaviour.

6.7 Aspect Design

This section considers how the results of the variability analysis can be used in aspect design,
more specifically to determine the required language abstractions for representing the partic-
ular concern. The purpose here is not to come up with new language features that should
be provided by every aspiring aspect language, nor to conduct a study of existing aspect
languages for determining the degree in which they can implement the required variability.
In our concrete case, this exercise would be incomplete anyway, since we analysed part of
the variability of the ASML tracing concern — enough to demonstrate the relevance of our
method. Instead, we attempt to point out that from our method it is straightforward to deter-
mine the required (aspect) language abstractions for capturing the variability. Note that even
if the target aspect language does not provide the required abstractions, it can probably still
express the concern in one way or another. However, the resulting aspect implementation will
be long and complicated, which we attempt to demonstrate later on in this section.

Typically, not all the discovered variability will be represented in an aspect-oriented so-
lution, since a substantial amount of it is undoubtedly accidental. With our proposed method
for analysing the variability we are able to make some educated guesses as to what is essen-
tial variability and what is accidental. However, the process of confirming these findings is
one that requires feedback from the software developers, which is outside the scope of this

6.7 Aspect Design 113

chapter but is discussed briefly in Section 6.8.3. In the context of aspect design, we assume
that only the confirmed, essential variability will be considered.

In the next subsection we describe how the results of our method’s variability analysis can
be used directly to determine required aspect language abstractions, capable of expressing the
concern with its essential variability. In the two following subsections, we discuss two such
concrete language requirements for the tracing idiom under investigation.

6.7.1 From Variability Analysis to Language Abstractions
The results of the analysis described in the previous section summarise the tracing idioms
and their variability. For example, the most common variant of the tracing idiom for com-
ponent CC4 can be described quite succinctly as follows: all functions invoke tracing with
the function trace and values CC4 CC, TRACE INT and func name, except for functions f1,
..., fn, which invoke this trace function with CC4 LINE in addition to CC4 CC. Similarly,
the most common variant of the tracing idiom for component CC3 can be expressed as: all
functions invoke tracing with the function CC3 TRACE, values CC, TRACE INT and func name
, and a variable that varies according to the name of the file.

We observe that such statements can serve as a concise specification for a future aspect
implementation per component. Indeed, they clearly specify what the common part of the
aspect is, as well as its variation points. We argue briefly in Section 6.2.5 that the choice
of the target aspect language should be such that it provides abstractions for capturing the
specified variability. If not, the amount of duplication in the aspect implementation will
increase with a factor that is equal to the number of variations. We attempt to express this in
a more systematic way below. Consider the following representation of an aspect:

∀x1, ...,xn : f (x1, ...,xn)

The variables x1, ...,xn each correspond to different join points or values from join points.
The types of these variables are elements of the program definition or execution5. The pred-
icate f expresses that the functionality of the crosscutting concern will be woven for all
x1, ...,xn. When employing an aspect language that supports quantification of all the types of
elements to which x1, ...,xn are bound, the aspect specification and implementation are struc-
turally similar. However, if the aspect language does not support quantification of the type of
element to which xi is bound for example, the aspect implementation becomes:

(∀x1, ...,xn : xi = a1∧ f (x1, ...,xi−1,b1,xi+1, ...,xn))∧
·· ·∧
(∀x1, ...,xn : xi = am∧ f (x1, ...,xi−1,bm,xi+1, ...,xn))

where m is the number of ways in which xi can vary. As a result, the aspect implementation
contains code that is duplicated m times. Additional limitations in quantification will again
result in the code duplication increasing with a factor, and so on.

Based on the results of our analysis of the tracing idiom, we identified two aspect language
abstractions that are required to capture the discovered variability and thus avoid duplication

5Depending on the join point model being static or dynamic, respectively.

114 Analysing Variability in Large-scale Idioms-based Implementations. . .

in the aspect implementation as described above. In the worst case, when employing an aspect
language that is not able to meet these requirements, the aspect implementation converges to
a state where there is one aspect per function. These aspects duplicate the entire tracing
idiom but differ in the essential variability, which does not offer substantial advantages over
an idioms-based implementation of the tracing concern.

6.7.2 Quantification of Parameters
Our experiments with respect to parameter-level variability show that complex parameter
types require a converter function and that each type requires a different function. If we look
at mainstream aspect languages, the join point model does not explicitly include parameters
or parameter types as quantifiable elements, however. We can only select functions based on
their number of parameters, or based on specific types occurring in the function’s signature.
Few languages, such as AspectJ (Kiczales et al., 1997), provide extensive reflective access to
the current join point, however, and as such the actual and formal parameters can be retrieved.
For expressing the tracing idiom in an aspect language for C with such capabilities, which to
the best of our knowledge does not exist, the per-function advice needs to be parameterised
with the list of parameters, and we need to be able to refer to the individual elements of this
list in order to determine their converter method.

Let us consider an aspect language that is able to represent parameters as quantifiable
elements directly. In pseudo-code and using a logic-based pointcut language, the pointcut
expression could look as follows

execution(* *(?params))

which selects all functions regardless of their name and return type, and binding their param-
eter list to the ?params variable. The advice code corresponding to the pointcut should then
be able to refer to the individual parameters contained within the ?params variable, and re-
trieve their corresponding converter functions. This requires meta-programming facilities to
be present in the aspect language, not only to iterate over all parameters, but also to construct
the actual trace call that will be woven into the code out of the different parameters that it
requires.

6.7.3 Specifying Default Functionality and Exceptions
Another requirement is an aspect-language mechanism that allows us to specify default func-
tionality as well as some exceptions to that general rule. As we have seen in our analysis,
the implementation of the idiom is never consistent, not in a single component and not even
when we only consider essential variability. For example, a parameter type might always be
converted with the same converter function, except in one particular case when the developer
is actually interested in the address of the parameter instead of in its value. Another example
occurs in component CC6 where the use of a special-purpose tracing macro is mixed with the
use of the default trace function.

One obvious solution for dealing with this kind of behaviour is to define separate aspects
for these special cases. However, each exception then requires its proper aspect, and one
single component might need many different aspects that have a lot of commonality. This is

6.8 Discussion and Evaluation 115

undesirable, since it can (and probably will) again lead to accidental variability and code du-
plication. Indeed, for a particular function, one single parameter might need to be converted
differently, but the other parts of the tracing implementation remain standard, but need to be
specified as well.

We argue that a mechanism for specifying default functionality together with its excep-
tions should be incorporated into the aspect language. This allows us to define one main
aspect for a single component, that specifies what the default tracing implementation for that
component looks like. Additionally, it allows for denoting those few cases where variability
occurs. For example, a particular function that traces a particular parameter type in a different
way, or that uses a different tracing macro.

The addition of annotations to the Java language and the way these annotations can be
addressed in the AspectJ language are a good starting point for experimenting with such a
feature. A default aspect is defined and used for all elements that have no annotation attached
to them. When such an annotation is present, it should specify what it denotes and the weaver
should then know how to handle the situation.

6.8 Discussion and Evaluation

This section discusses the implications of variability caused by idioms-based development
from the perspectives of software development and legacy system migration. Whereas the
discussion in the previous section concerned the essential variability, the discussion here is
based on the occurrence of accidental variability. First, however, we discuss the consequences
of taking into account additional variability that was not considered in our analysis.

6.8.1 Further Variability

It is important to note that we have only considered function-level and parameter-level vari-
ability in our experiments, and in our discussion above. However, the tracing idiom has
other characteristics that we did not analyse in depth, and these characteristics make the id-
iom richer. Hence, more features might be needed in an aspect language then the ones we
described above if we wish to express ASML’s tracing idiom in an aspect.

For example, ASML code distinguishes between input and output parameters. Our anal-
ysis did not make that distinction and considered input and output tracing together. Although
this allowed us to detect accidental variabilities that we would not have discovered otherwise,
it also prevented us from considering the impact on an aspect implementation. An aspect
needs to know which parameters are input and which are output in order to construct the
appropriate input and output trace statements. An aspect weaver could extract such informa-
tion from the source code using data-flow analysis, and could make it available in the aspect
language, for example.

Other characteristics that we did not consider but that are relevant for such a discussion
include the position of the input and output trace statements in the original code (do they
always occur right at the beginning and at the end of a function’s execution?), the tracing of
other variables besides parameters (such as local and/or global variables), the order in which

116 Analysing Variability in Large-scale Idioms-based Implementations. . .

the parameters are traced, and the format string that is used, together with the format types
for parameters contained within that string.

Clearly, the results we obtained can thus be seen as a lower bound of the real amount of
variability present in the tracing idiom’s implementation. Since the variability we found was
considerable already, we arrive at our claim that simple crosscutting concerns do not exist, at
least not for software systems of industrial size.

6.8.2 The Limitations of Idioms
A first point in the discussion of variability is more concerned with its cause than its implica-
tions. As is expected, shown in Chapter 3, other work (Colyer and Clement, 2004), and again
confirmed by the results in this chapter, idioms-based development as opposed to the use
of (aspect) language abstractions introduces accidental variability in the implementation of
(crosscutting) concerns. Aspect-oriented languages typically provide abstractions for imple-
menting crosscutting concerns in a localised way, thus avoiding code duplication and, more
importantly, accidental variability in this duplicated code.

Consider for example the results of the analysis of variability in trace calls in the compo-
nent CC5: 123 functions call the trace function using the same idiom. However, 11 functions
introduce a variation in this idiom: nine functions use one variation, whereas two remaining
functions each implement yet another variation. Based on these quantitative results and on an
inspection of the source code, we conclude that 123 functions implement the default tracing
idiom, whereas the other 11 functions exhibit accidental variability. This is confirmed in-
formally by several ASML developers, (although we did not investigate systematically why
ASML developers introduced this variability in the idiom).

Assuming our interpretation is correct, and the aforementioned variability is indeed ac-
cidental, the question is raised whether an aspect-oriented solution for tracing would have
prevented the accidental variability. Ignoring for now the parameter values that need to be
traced, it is easy to imagine an aspect that captures all function executions, specifies that input
and output tracing should be invoked around those executions, and provides the appropriate
actual parameters for the trace invocation ("CC2", trace, TRACE INT and func name in this
case). Such an aspect would be preferred over an idioms-based implementation, since it spec-
ifies once in a single place how tracing should be invoked, and hence prevents the accidental
variation exhibited when using idioms.

If an aspect-oriented solution can prevent accidental variability, the question remains
whether all tracing idioms identified by our analysis can be expressed in a certain aspect
language, such that the accidental variabilities are avoided, but the essential variabilities can
be expressed. We believe the answer is yes, although the conciseness and declarativeness
of the solution highly depends on the presence of certain aspect language characteristics or
features, as discussed in Section 6.7.

It is important to note that the above does not show that over the course of many years, by
large teams of changing developers, the aspect-oriented solution would not have introduced
other accidental variabilities, ones that we cannot even envision currently because of the lack
of legacy aspect-oriented systems.

The results presented in this work should therefore be complemented by a study of the
‘human’ causes behind the variability we observed in the code. A study of that kind would

6.8 Discussion and Evaluation 117

focus on the reasons for the use of a particular deviant idiom, and may reveal additional
opportunities for useful abstraction within an aspect language. An example of such a study
in the context of clone detection is presented by Kim et al. (2004).

6.8.3 Migration of Idioms to Aspects

Given that an aspect-oriented solution has benefits over an idioms-based solution, it is rele-
vant to study the risks involved in migrating the idioms-based implementation to an aspect-
oriented implementation.

In general, migrating code of an operational software system is a high-risk effort. Al-
though one of the biggest contributors to this risk is the scale of the software system, in our
case this can be dealt with by approaching the migration of tracing incrementally (Brodie
and Stonebraker, 1995), for instance on a component-per-component basis. However, other
sources of risk need to be accounted for: the migrated code is of course expected to be func-
tionally equivalent to the original code.

Our findings concerning variability of idioms-based concern implementations introduce
an additional risk dimension. In particular, accidental variability is a complicating factor.
Ignoring such variabilities by defining an aspect that only implements the essential variability
means we would be changing the functionality of the system. A particular function that does
not execute tracing as its first statement but only as its second or third statement, might
fail once an aspect changes that behaviour, for example, when originally a check on null
pointers preceded the tracing of a pointer value. So this risk is real even with functionality
that is seemingly side-effect free, as is the tracing concern, and will become higher when the
functionality does involve side-effects.

On the other hand, migrating the idiom including its accidental variability is undesirable
as well: aspect-oriented languages are not well-equipped for expressing accidental variabil-
ity and the resulting aspect-oriented solution quickly converges to a one-aspect-per-function
solution. So the issue boils down to a trade-off between minimising the risk on the one hand,
and on the other hand reducing the variability in favour of uniformity, in order to reach a
reasonable aspect-oriented solution.

At the moment, we do not have an answer to the question how to migrate idioms of
legacy systems with a high degree of accidental variability — at this point we do not even
know what a high degree of accidental variability is, nor do we know whether automated
migration towards aspects is feasible at all in practice, if a simple aspect such as tracing
already exposes difficult problems. This discussion only serves to point out that the risk is
present and that there are currently no processes or tools available for minimising the risks.
Nevertheless, we can say that in the particular context of ASML, the initial proposal for
dealing with the migration risk is to (1) confirm or refute the detected accidental variability,
(2) eliminate the confirmed accidental variability in the idioms-based implementation of the
legacy system incrementally and test if the resulting implementation is behaviour-preserving
by comparing the compiled code, (3) remove the remaining idioms-based implementation of
the crosscutting concern, and (4) represent the idiom and its essential variability as aspects.

118 Analysing Variability in Large-scale Idioms-based Implementations. . .

6.8.4 Variability Findings

Our results indicate that only 5.7% of the functions implement tracing according to the stan-
dard predefined idiom that no other standard idiom can be identified in the source code, and
that 42.5% of the types defined by those functions is not traced consistently.

An important question is to what extent the figures we obtained for ASML’s tracing idiom
are representative. Assessing the representativeness of our findings allows us to answer the
question whether we can expect similar figures for (1) other ASML components than the ones
we studied; (2) other idioms in use at ASML; or (3) idioms-based software not developed by
ASML.

The four components represent systems of different size, age, and maintenance history.
The components we studied were selected by ASML developers because these components
are currently being reworked, and they wanted an initial assessment of the variability present
in the tracing implementation. They did not expect that variability to be significant. In other
words, the components were chosen fairly randomly, and not with high or low variability of
the tracing concern in mind.

We believe the amount of variability we observed for the tracing idiom will not be sig-
nificantly lower for other idioms as applied by ASML. In Chapter 5, we have shown that the
exception handling idiom they use is responsible for approximately 2 faults per 1000 lines of
code, because the idiom is not applied consistently. Additionally, when studying the param-
eter checking idiom in Chapter 3, we observed that 1 out of 4 parameters was not correctly
checked, and that the implementation of the idiom was not at all uniform. Moreover, trac-
ing is regarded as a very simple concern, since it is not a core functionality of the ASML
software, and it is not tightly tangled with this core functionality, as opposed to exception
handling and parameter checking. Hence, analysing such more complex idioms might result
in significant more variability.

The question whether the ASML software is representative for software developed through
idioms-based development is harder to answer. We can state that the software is developed
using a state-of-the-art development process that includes analysis, design, implementation,
testing and code reviewing. The reasons for the observed variability can however be mani-
fold: inadequate and imprecise documentation, many different developers working on a very
large code base, no adequate automated verification, developers not understanding the rele-
vance of tracing and hence paying less attention to it, etc. This situation is probably not that
much different for software developed in other organisations, or even open source software.
Hence, we are inclined to believe that a variability analysis for other software would show
similar results. However, once again this is only speculation, and remains to be investigated
further.

6.8.5 Genericity of the Method

Another question concerns the genericity of the variability analysis method. ASML has ex-
pressed interest in conducting the method themselves, in order to assess the variability of
tracing in other components. Furthermore, they would like to analyze the variability of other
idioms. Likewise, we are interested in using the approach on non-ASML systems as well.

Several of the steps of our approach are largely manual. These include the idiom defini-

6.8 Discussion and Evaluation 119

Fact extraction Lattice creation
Function 96.39 s 0.03 s
Parameter 140.8 s 0.91 s

Table 6.5: CPU times for tool execution on an AMD Athlon 64 3500+ with 1 GB RAM.
Input consists of all components.

O A Relation Fill ratio Concepts
Function 573 29 2331 0.14 47
Parameter 2219 385 4592 0.005 517

Table 6.6: Context and relation sizes for all components considered together.

tion and variability modeling steps, as well as the aspect design step. These steps will be very
similar independent of the idiom or component analyzed, and hence are sufficiently generic.

The idiom extraction and variability analysis steps require tool support. For the idiom
extraction, the tools have to be configured so that they recognize the idiom at hand. Given
our ASF+SDF and CodeSurfer infrastructure, this is a fairly simple step. It does, however,
require knowledge of these tools, which for ASML may not be readily available. The formal
concept analysis tools do not have to be adjusted: all that is needed is creating the 〈object,
attribute〉 pairs in a simple textual format.

Based on these observations, we believe that the approach is applicable to different idioms
and systems.

6.8.6 Scalability
The scalability of our approach is determined by two factors, tool execution time and the size
of the resulting lattices. These lattices have to be processed by a human.

First, fact extraction is performed using the ASF+SDF Meta-Environment. The tracing
code is parsed using a generalized LR parser (SGLR) (Visser, 1997), followed by a single
traversal of the parse tree to extract the relevant facts (see Section 6.3). Subsequently, Lindig’s
FCA tool concepts6 is used to produce the concept lattices. Table 6.5 contains timing results
for both the function-level and parameter level studies. In both cases, the timing results apply
to the execution of the tools on all components together.

Second, concept lattices can grow exponentially with the size of the object–attribute rela-
tion. However, if a relation is sparsely filled, quadratic growth is observed in practice (Lindig,
2000). Table 6.6 shows the context and relation sizes for our studies. The fill ratio is defined
by the actual relation size, i.e., the number of object–attribute tuples in the relation, divided
by the maximum relation size, i.e., O ·A where O is the number of objects, and A the number
of attributes.

A sparsely filled relation (i.e., fill ratio below 0.1) appears to be no guarantee for a small
enough number of concepts, as is shown by the parameter-level study. Inspecting 517 con-
cepts is too big a task to be performed by a human. Fortunately, such a manual inspection

6This tool is based on Lindig (2000).

120 Analysing Variability in Large-scale Idioms-based Implementations. . .

is not required in our approach. The concepts of interest, i.e., those that contain own objects
(see Section 6.6), are found automatically. The number of concepts containing own objects
can be significantly lower, as can be seen in Table 6.4. The ‘tracing variants’ there correspond
to concepts containing own objects.

Furthermore, the number of concepts containing own objects is a valuable indicator by
itself. It tells us the number of variations on the idiom. Based on this number alone one could
conclude that too much variability will prevent automatic transformation of the idiom. In that
case the actual concepts do not have to be inspected by hand.

6.9 Related Work
The work presented in this chapter can be situated between the work on aspect mining and
that on aspect refactoring.

Aspect mining is the activity of (automatically) identifying crosscutting concerns in source
code. Several techniques have been investigated, among which techniques based on formal
concept analysis (Tourwé and Mens, 2004; Tonella and Ceccato, 2004). An overview of these
techniques can be found in (Kellens et al., 2007; Marin et al., 2006).

Once identified, the crosscutting concerns can be refactored into an aspect. Several au-
thors have proposed a process for such migration (Binkley et al., 2005; Monteiro and Fer-
nandes, 2005; van Deursen et al., 2005). All authors note that after such (semi-)automatic
migration, the aspects should be “tidied up” in order to make them more general, for example
by generalising advice code and creating sensible pointcuts. van Deursen et al. (2005) even
includes extra steps in the process to test whether the migration preserved the behaviour of
the software as a whole. Both Binkley et al. (2005) and van Deursen et al. (2005) present re-
sults of applying their process to JHotDraw, a medium-sized object-oriented software system,
while Monteiro and Fernandes (2005) illustrate their approach on simple examples only.

Our work is situated in between these activities, since we know what the crosscutting
concern code looks like a-priori, and our analysis can provide hints about the difficulties we
can encounter when refactoring it. Given our analysis of a simple concern and our conclu-
sions about the difficulties with automated migration, it is worthwhile to study the behaviour
of all these different approaches for ASML’s tracing concern. Additionally, it would be inter-
esting to study how the results of our analysis could be fed into these approaches in order to
determine automatically the refactorings that should be applied, for example.

Lippert and Videira Lopes (2000) present a study in which they (manually) extracted the
design-by-contract and exception handling behaviour from a software system into aspects.
Just as in our case, they found that some of the variability present in the original imple-
mentation could not be expressed easily in the (early) version of AspectJ they were using.
Interestingly, this variability also involved formal parameters. Another study, by Coady et al.
(2001), describes how the prefetching concern of the FreeBSD operating system can be mi-
grated into an aspect. Both lines of work are closely related to ours, but have a different
focus: they are meant as a study into the benefits of AOSD technology. Hence, the focus of
both papers is on the potential gains when using aspects, and little or no discussion is present
on how the aspects were extracted from the source code, and what the difficulties are when
doing so.

6.10 Concluding Remarks 121

Colyer and Clement (2004) also observe that variability is present in the idiomatic im-
plementation of a tracing policy of a product line. Their work is focused on refactoring the
tracing concern (among others), and in their case studies the variability is (partly) eliminated
by the use of aspects. In comparison, our work takes a more cautious approach by visual-
izing any variability that we detect, and facilitating the process of distinguishing between
accidental and essential variability.

Our use of formal concept analysis and the results it provides can be seen as a means
to identify appropriate aspects, given all concern-related code. Many researchers, Siff and
Reps (1997), Lindig and Snelting (1997), van Deursen and Kuipers (1999b) have been using
formal concept analysis for exactly that purpose, albeit in a procedural versus object-oriented
context. The idea is to let the FCA algorithm group functions that use data structures in the
same way, and that the concepts found in this way correspond naturally to classes. Interest-
ingly, both Siff and Reps (1997) and van Deursen and Kuipers (1999b) mention a problem
that resembles the tangling of concerns and a solution to that problem. Siff and Reps (1997)
refers to it as “tangled” code that uses multiple data structures at the same time, whereas
van Deursen and Kuipers (1999b) considers the problem of large data structures that are ac-
tually a combination of many smaller, and largely unrelated, data structures.

The work on aspect languages, and in particular on which features should be added in
order to improve the expressiveness and conciseness of aspects is of course relevant for our
research as well. Several aspect languages for C have been proposed (Coady et al., 2001;
Durr et al., 2006; AspectC++, 2007; Aspect-oriented C, 2007; Zaidman et al., 2006), and
some of them could even express the variabilities we encountered. Most of these languages
are experimental in nature, however, and it remains an open question whether they scale to
the size of industrial systems. On the other hand, mature aspect languages, such as AspectJ
and JBoss AOP, seem to lack most of the required features for expressing the variabilities we
found in the tracing idiom.

6.10 Concluding Remarks
In this chapter, we have studied “tracing in the wild” using idioms-based development. It
turns out that for systems of industrial size, tracing is not as simple as one might think: in the
code we analysed, the idiom used for implementing the tracing concern exhibits remarkable
variability. Part of this variability is accidental and due to typing errors or improper use of
idioms, which could be seen as a plea for using aspect-oriented techniques. A significant
part of the variability, however, turns out to be essential: aspects must be able to express this
variability in pointcuts or advice. Even with our partial analysis of the variability of the so-
called “trivial” tracing concern, we discover the need for quite general language abstractions
that probably no aspect language today can provide entirely, and certainly not in the context
of an industrial system. This will only worsen when more variability is considered or more
complex concerns are investigated.

In summary, this chapter makes the following contributions:

1. We proposed a method to assess the variability in idioms-based implementation of
(crosscutting) concerns.

122 Analysing Variability in Large-scale Idioms-based Implementations. . .

2. We have shown how existing tools for source code analysis and transformation, and for
formal concept analysis can be combined and refined to support the variability analysis
process.

3. We presented the results of applying the method on selected components of a large-
scale software system, showing that significant variability is present.

4. We show how the results of the variability analysis can be used almost directly to deter-
mine the appropriate language abstractions for expressing the concern and its essential
variability.

5. We discussed the implications of the accidental variability caused by idioms-based
development in the context of crosscutting concerns from the perspectives of software
development and legacy system migration.

The most important direction for further research is strengthening the empirical basis of
our work. This involves both extending the code base to which we have applied our variability
analysis techniques, and involving more concerns, such as parameter checking or exception
handling, in our case studies.

Chapter 7

Renovating Idiomatic Exception
Handling∗

Some legacy programming languages, e.g., C, do not provide adequate sup-
port for exception handling. As a result, users of these legacy programming lan-
guages often implement exception handling by applying an idiom. An idiomatic
style of implementation has a number of drawbacks: applying idioms can be fault
prone and requires significant effort. Modern programming languages provide
support for Structured Exception Handling (SEH) that makes idioms largely ob-
solete. Additionally, Aspect-Oriented Programming (AOP) is believed to further
reduce the effort of implementing exception handling. This chapter investigates
the gains that can be achieved by reengineering the idiomatic exception handling
of an ASML C component to these modern techniques. First, we will reengineer
the legacy component such that its exception handling idioms are almost com-
pletely replaced by SEH constructs. Second, we will show that the use of AOP
for exception handling can be beneficial, even though the benefits are limited by
inconsistencies in the legacy implementation.

7.1 Introduction

Exception handling is a concern in any software system. Every (interesting) software system
is dependent on a number of external inputs that it needs to respond to, and thus it needs
to respond appropriately when those inputs do not fall within the expected range. Most
modern programming languages provide facilities that support the handling of exceptional
situations. For instance, Java, C++ and C# (among others) provide the common try and catch
constructs that enable a programmer to attach handling code to blocks of code that potentially
give rise to exceptional situations. The runtime systems of these languages also take care of

∗This chapter will appear in the Proceedings of the 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008) in April 2008.

124 Renovating Idiomatic Exception Handling

the propagation of exceptions (representations of the occurrence of an exceptional situation)
throughout the software system.

However, some older programming languages, such as C, do not provide such support by
default. Instead, the programmer has to use the general purpose constructs of the language to
program the, often complicated, control flow required to handle exceptions. Furthermore, the
programmer must make sure all relevant components of the software system become aware
of the exception.

An idiom is sometimes used to guide programmers during this task. Idioms are common
solutions (like code templates or examples) to commonly occurring programming problems,
and are often found in manuals, text books or training documents. In Chapter 5 we studied
the so-called return-code idiom that is used to implement exception handling within a large
C software system. We found that such an idiomatic style of implementation can result in a
faulty exception handling system.

This chapter reports on work following up on those findings. We aim at investigating
what can be done to improve legacy software that implements its exception handling using a
return code idiom. First, we are interested to know what improvements can be offered by the
Structured Exception Handling (SEH) (Goodenough, 1975) (e.g., try and catch) constructs
that are available in many modern languages. Second, the use of Aspect-Oriented Program-
ming (AOP) (Kiczales et al., 1997) may bring some additional benefits, as was shown by
several researchers in the AOP community (Lippert and Videira Lopes, 2000; Filho et al.,
2007, 2006). In summary, the research questions this chapter attempts to answer are the
following:

1. Is it technically feasible to replace a return code idiom by SEH constructs?

2. What are the advantages of using exception handling compared to using a return code
idiom?

3. What gains can be expected from reengineering SEH code to an aspect-oriented solu-
tion?

The exception handling idiom we will study in this chapter is in use at ASML, a manu-
facturer of lithography solutions based in Veldhoven, the Netherlands. It occurs throughout
a control system that is estimated to consist of around 15 million lines of C code. Given this
context, we approach our research questions by analyzing the benefits of a reengineering of
an ASML component. The component CC10 has been studied before in Chapter 5, and was
shown to have a faulty exception handling implementation. It consists of 11,134 NLOC.1

The analysis will consist of two steps. First, we semi-automatically reengineer the idiomatic
exception handling code in the CC10 component to obtain a new implementation using SEH
constructs. Second, we perform an analysis of the benefits offered by reengineering the SEH
implementation using aspect-oriented programming.

Whether the ASML return code idiom can be replaced by SEH constructs is not immedi-
ately clear. This depends on the idiom definition and the actual applications of the idiom in
the code. In Section 7.2 we will present the ASML return code idiom in detail. A proposal
to map the idiom to SEH constructs, and the actual reengineering based on this mapping will

1Normalized Lines Of Code (NLOC) is defined as non-comment, non-blank, indent K&R style line count.

7.2 Idiomatic Exception Handling 125

be discussed in Section 7.3. Issues that surfaced during reengineering will also be discussed
in that section. At this point we will present data that enables a comparison between the
idiom-based implementation and SEH constructs. The final step will consist of analyzing the
benefits that can be expected if the SEH-based solution would be reengineered using AOP.
The results of this analysis will be presented in Section 7.4. Further analysis and related work
will be discussed in Sections 7.5 and 7.6, respectively.

7.2 Idiomatic Exception Handling

7.2.1 Context
We will study an exception handling idiom in the context of ASML, a manufacturer of lithog-
raphy solutions in Veldhoven, the Netherlands. The exception handling idiom occurs in a con-
trol system of wafer scanner machines. The estimated size of this control system is around
15 million lines of C code.

Before we turn to the idiom itself, we detail the requirements that the idiom is meant
to implement. The ASML manual prescribes the following requirements for its exception
handling implementation:

1. Every function that detects an exception must

(a) log the exception, and
(b) recover the exception or pass it to the calling function.

2. Every function that receives an exception from a called function must

(a) add any potentially useful context information by logging an exception linked to
the received exception, and

(b) recover the exception or pass it to the calling function.

Requirement 1 specifies the desired behavior when an exception is detected (and no ex-
ceptional situation existed before). Logging an exception consists of calling a predefined log
macro that writes the exception (and a message string) to the exception log file. We will refer
to this kind of exceptions as root exceptions.

Requirement 2 specifies the desired behavior in case an exception is received from a
called function. If some useful context information is available when the exception is re-
ceived, programmers can provide this by calling the log macro with an appropriate message
string. Furthermore, they must link exceptions using the log macro. The first two parameters
of the log macro are the received and a linked exception. The linked exception can be used
to indicate that the scope of the exception situation has expanded. For instance, a ‘file open
failure’ exception is received, and by calling the log macro an ‘I/O error’ is linked to it. Ulti-
mately, this mechanism should result in a chain of exceptions that starts at the root exception
and ends at whatever exception was linked to the chain last. This chain of exceptions should
provide enough information about the problem that caused the exception(s) such that problem
diagnosis is possible.2

2Java provides a similar facility by chaining exceptions.

126 Renovating Idiomatic Exception Handling

1 int f(int a, int b) {
2 int ev = OK;
3

4 if (a < 0) {
5 LOG(F_ERROR , OK, "a < 0");
6 ev = F_ERROR;
7 }
8

9 if (ev == OK) {
10 ev = g(a);
11

12 if (ev != OK) {
13 LOG(F_ERROR , ev, "error from g");
14 ev = F_ERROR;
15 }
16 }
17

18 return ev;
19 }

Figure 7.1: Return code idiom used at ASML.

7.2.2 Return Code Idiom (RCI)

The exception handling requirements are implemented using an idiom, that is, programmers
are trained to implement exception handling by learning code templates or examples de-
scribed in the system manuals. The exception handling idiom in use at ASML is an instance
of the return code idiom (RCI) as described in Chapter 5. In short, each C function uses an
integer return code to report whether or not an error occurred during its execution. Received
return codes are propagated manually along the control flow of a function, and are typically
held in one or more local (integer) variables. We will refer to such variables as exception
variables. Explicit guards check the exception variables to make sure that no functional code
is executed in case an exception has occurred. At appropriate times the log macro is used to
log the current exception, and link to any exception that occurred previously. An example of
the use of this idiom is given in Figure 7.1.

The function f defines a variable ev at line 2 to hold return codes. At line 4, a condition
checks whether something exceptional has occurred, and if so, a call to the log macro is done
at line 5, and a return code is saved in the ev variable. The control flow is such that this value
is returned at line 18 (assume no recovery can be done at this point), satisfying requirements 1
and 2 (the exception is logged and returned to the caller). If ev is still OK at line 9, function
g is called and its return code is saved in ev. In case the call to g returned an exception,
lines 12–15 link an exception to the one received from g. This is done by passing in the old
exception (stored in ev) as the second argument of the LOG call at line 13, while the new
exception (F ERROR) is the first argument. The new exception is stored in ev at line 14 and
will be returned at line 18.

7.3 Reengineering to Structured Exception Handling 127

It is clear that the consistent application of this idiom results in a large amount of ‘boil-
erplate’ code. Furthermore, the manual application of this idiom may be fault prone. In
Chapter 5 we showed –using a static analysis tool– that per 1,000 lines of ASML code, 2
faults occur in the exception handling implementation that might cause a violation of the
requirements.

7.2.3 Tool support for the RCI
The SMELL tool described in detail in Chapter 5 can be used to detect faults in the RCI
exception handling implementation of ASML. SMELL consists of an encoding of the RCI as
a state machine and can detect when the RCI is being violated by the code. As an extension,
SMELL can visualize those pieces of code that are executed on exceptional paths, that is,
paths through the code which are taken in case of an exception. During its execution, SMELL
keeps track of the nodes (in a program dependence graph) that it visited in each of its states.
Subsequently, it delivers these nodes at the end of its execution, and the user can choose to
highlight those nodes in a code browser (Grammatech’s CodeSurfer).

The analysis used in this tool is imprecise, i.e., some of the reported faults may be false
alarms (about 20% in the case study presented in Chapter 5). We checked the reported faults
with an ASML developer to obtain more precise results, fixed the real faults in the code, and
improved the implementation of SMELL based on this feedback.

7.2.4 Renovation of Exception Handling
Chapter 5 showed that the use of the RCI for the implementation of the exception handling
concern is effort intensive and can result in implementation faults. In this chapter we therefore
study the renovation of the RCI using modern language technology, in particular Structured
Exception Handling (SEH) and Aspect-Oriented Programming (AOP). The renovation pro-
cess we will consider consists of two reengineering steps. These steps implement part of the
approach that was described in Chapter 3 (see Figure 3.1).

First, Section 7.3 will describe the reengineering of the RCI code of an ASML compo-
nent. We will semi-automatically eliminate the RCI code from the ASML component using
the ASF+SDF Meta-Environment (van den Brand et al., 2001), and replace it by SEH con-
structs. In this step, the SMELL tool will perform the role of concern verifier. Second,
Section 7.4 will analyze the further reengineering of the ASML component using aspects.
We will analyze how aspects can be extracted, and the benefits that can be expected from
the extraced aspects. We will not consider the aspect weaving and translation phases in this
chapter.

7.3 Reengineering to Structured Exception Handling
Is it technically feasible to replace a return code idiom by structured exception handling?

We consider the reengineering of a single ASML C component that we will refer to as
CC10. Table 7.1 shows the basic size measures of this component. Table 7.2 shows the

128 Renovating Idiomatic Exception Handling

NLOC 11,134
files 12
functions 172

Table 7.1: Key figures for the CC10 component.

ev == OK 765 ev != OK 195
ev = ERR; 485 ev = func(); 386
int ev = OK 157

Table 7.2: Number of constructs in the RCI implementation.

numbers of RCI constructs that are present in the CC10 component. The identifier ev in
this table refers to all possible exception variables that occur, i.e., all exception variables that
are named according to a (manually determined) set of names for exception variables. ev
== OK then represents the conditions that guard code based on the exception state. ev !=
OK are conditions that essentially guard handling code. Conditions that check for a specific
exception state, e.g., ev == MEM ERR do not occur in the CC10 component, and thus we do
not consider those kinds of checks. ev = ERR; are assignment statements that record the
occurrence of an exception. ev = func(); are assignment statements that save exception
states as they are returned by functions. int ev = OK represents declarations of exception
variables (these occur one-to-one with return statements that use only an exception variable).
ev is the count of all other uses (i.e., reads) of an variable.

The objective of the reengineering is to replace the RCI implementation of the exception
handling in the CC10 component by a functionally identical SEH implementation. After the
reengineering we will compare the resulting SEH implementation to the figures in Tables 7.1
and 7.2.

7.3.1 Structured Exception Handling (SEH)
SEH constructs were proposed to alleviate the programmer from the discipline required to
apply idioms like the return code idiom (Goodenough, 1975). Figure 7.2 shows how the RCI
example of Figure 7.1 could be expressed using the SEH constructs provided by the XXL
library (Messier and Viega, 2007). The SEH model described in Lang and Stewart (1998)
categorizes the XXL library as follows:

• Semantics: Termination semantics. The remainder of a scope is skipped after an ex-
ception is raised. The next statement executed is the one syntactically following the
active handling block (if present).

• Representation: An exception is represented by an integer constant.

• Handler determination: Stack unwinding is performed until a matching handler is
found (the C library calls setjmp and longjmp are used).

• Handler scope: Block scope. A handler can be attached to a block of code.

7.3 Reengineering to Structured Exception Handling 129

The following constructs (macros) are provided (we present only a subset here, using
simplified syntax):

TRY { $Block } $Handlers
Specifies a block of code to which $Handlers are bound. Handlers are specified by
CATCH, EXCEPT or FINALLY constructs.

CATCH($Int) { $Block }
Attaches a handler to the occurrence of the exception specified by integer constant
$Int.

EXCEPT { $Block }
Attaches a handler to the occurrence of any exception.

FINALLY { $Block }
Specifies that $Block will be executed whether or not an exception has occurred.

EXCEPTION CODE()
Returns the current exception code (an integer).

1 void f(int a, int b) {
2

3 if (a < 0) {
4 LOG(F_ERROR , OK, "a < 0");
5 THROW(F_ERROR);
6 }
7

8 TRY {
9 g(a);

10 }
11 EXCEPT {
12 LOG(F_ERROR , EXCEPTION_CODE(), ...
13 THROW(F_ERROR);
14 }
15 }

Figure 7.2: Structured exception handling example.

Note that the ev variable that was used in Figure 7.1 has completely disappeared. In-
stead, in Figure 7.2 the exception state is managed by the SEH system. At line 5, a THROW
statement is used to signal the occurrence of an exception. This exception will automatically
propagate up the call stack until it reaches an appropriate handler block. Lines 8–14 show
the definition of a handler block for (all) exceptions that are thrown within the call to g. To
mimic the behavior implemented in Figure 7.1, the exception received from g is retrieved by
the EXCEPTION CODE() macro and linked to a new exception (F ERROR) at line 12. This new
exception is thrown at line 13.

130 Renovating Idiomatic Exception Handling

Note that explicit condition statements such as the one at line 9 in Figure 7.1 are no longer
necessary. The SEH system makes sure that no code is executed except for the handlers that
have been defined for that particular exception. In general, the exceptional control flow is
now handled by the SEH system, relieving the programmer from this task. Therefore, we
expect a small reduction in code size when refactoring the RCI idiom into SEH constructs.
More importantly, the SEH solution will likely have significantly reduced fault proneness
compared to the RCI.

7.3.2 Code Transformations
Implementing the ASML exception handling requirements (see Section 7.2) using SEH con-
structs is straightforward. Requirements 1 and 2 (root exceptions) are dealt with by calling
the logging facility and subsequently throwing an exception every time an exceptional sit-
uation is detected. Requirements 3 and 4 (linked exceptions) are satisfied by wrapping a
function call in a TRY block, and calling the logging facility in an attached EXCEPT block, and
THROW-ing a new exception if appropriate. This solution is shown in Figure 7.2.

The next question is: how do we map the legacy code that uses the RCI to the SEH solu-
tion? The RCI revolves around the use of one (or more) exception variables. The objective of
the reengineering is to completely remove all uses of these variables, and replace them with
SEH constructs where appropriate.

The following five steps are applied to transform legacy RCI code into SEH:

1. Transform assignments,

2. Transform conditions,

3. Transform other uses of error variables,

4. Remove exception variable returns,

5. Remove exception variable declarations.

Transform assignments. Assignments of the results of a function call to an exception vari-
able are no longer necessary since the SEH library will keep track of exceptions.

ev = $FunctionCall; =⇒ $FunctionCall;
The assignment of an (integer) constant to an exception variable is transformed into a

THROW of the same constant.
ev = $Int; =⇒ THROW ($Int);

This step can result in functionally different code in case in the RCI implementation
functional code (in contrast with exceptional code) is executed after an assignment to an
exception variable. Such assignments will be transformed into either THROW statements or
TRY and EXCEPT blocks, changing control flow. Compare the examples in Figures 7.1 and 7.2.
If line 6 is executed in the RCI case, the if statement at line 9 makes sure that the remainder
of the function is not executed. In the SEH case, this happens automatically.

Now consider the case that lines 5 and 6 were swapped in Figure 7.1. Simply transforming
an assignment to an exception variable into a THROW statement results in a problem. Since

7.3 Reengineering to Structured Exception Handling 131

lines 4 and 5 in Figure 7.2 would also be swapped, the THROW would happen before the
logging call. In effect, the required logging call would never be executed in that case because
the THROW statement skips the remainder of the function.

We now consider the general case. The RCI raises exceptions by assigning an integer
constant to an exception variable. An exception is handled by a block of code that has a
condition which checks for the occurrence of the exception. Consider all the execution paths
that exist between an assignment that raises an exception and its possible handlers. If any
function code code (i.e., code that is not part of the RCI) is executed on any of these paths,
then a problem may occur if we translate the assignment into a THROW statement. The THROW
statement will cause the immediate transfer of control to a handler, skipping any code that
would have been executed in the RCI case.

In case of the example it is easy to fix the problem: simply move the logging call before
the THROW statement. Unfortunately this fix does not work in general since code can be
moved only if no data or control depedences will be changed. While reengineering the CC10
component we encountered only cases that were easy to fix, in particular instances of the
logging example.

During the reengineering process, the SMELL tool (Subsection 7.2.3) was used to help
ensure that no functional code is executed on exceptional control-flow paths, which would
give rise to problems if a THROW statement is used to pass control to an exception handler.

Transform conditions. Conditions that check whether an exception has occurred come in
two flavors. First, conditions like ev == OK are meant to prevent the execution of its ‘then’
block in case an exception has occurred. These conditions are no longer needed since this
behavior is automatically provided by the SEH library.

ev == OK =⇒
Second, conditions like ev != OK indicate the start of a handler block, i.e., code that

must be executed in case an exception has occurred. The code in the ‘then’ block of an ev
!= OK condition is put into an EXCEPT statement. A preceding TRY statement then needs to
be wrapped around all the code that can throw exceptions that need to be handled by the
handler. All execution paths that assign a value to the exception variable that reaches the
condition must be included in the TRY statement.

$Code
if (ev != OK) {

$Handler
}

=⇒

TRY { $Code }
EXCEPT { $Handler }

In the CC10 component we did not encounter conditions that check for a specific excep-
tion, i.e., conditions of the form ev == EXCEPTION CONSTANT.

All handlers are bound in a ‘catch-all’ style, and hence are transformed into EXCEPT
blocks.

132 Renovating Idiomatic Exception Handling

Remove exception variable returns. Exceptions are no longer passed to the calling func-
tion through the return value, hence return statements returning the value of an exception
variable can be removed.

return ev; =⇒

Transform other uses of error variables. Exception variables are used (i.e., read) typi-
cally in calls to the logging function, see for example Figure 7.1 line 13. Within a handling
block (e.g., EXCEPT) these uses can be replaced by the EXCEPTION CODE() macro from the
exception library. This macro returns the current exception code, which is an integer value.

In some cases the exception variable is used outside of a handler, where it is not possible
to replace the use by a call to EXCEPTION CODE(). We replaced these uses by the exception
constants (i.e, integer literals) that were implied by the contexts that the uses appeared in. In
the CC10 component it was almost always possible to resolve the exception constant from
the context.

A remaining issue consists of function calls implementing the tracing (crosscutting) con-
cern that we described in detail in Chapter 6. These function calls appear at the start and end
of each function definition to trace its input and output arguments, respectively (not shown
in Figure 7.1. The tracing function call at the end of a function includes the value of the
exception variable that will be returned by the function. In order to remove this use of the
exception variable, we wrap the entire function body in a TRY block, and attach a FINALLY
block containing the tracing call. Within the tracing call, the use of the exception variable
is replaced by a call to EXCEPTION CODE(). A FINALLY block here exactly mimicks the be-
havior of the RCI implementation: tracing code is executed whether or not an exception has
occurred.

Remove exception variable declarations. All uses of the exception variables have now
been eliminated, so finally the declarations of exception variables can be removed as well.

int ev = $Int; =⇒

7.3.3 Tool Support
The reengineering process was supported by several tools. Prior to the reengineering pro-
cess, any known faults in the application of the RCI were removed. These faults were first
detected by our SMELL tool, and manually fixed. This step reduces possible confusion be-
cause of faults encountered during the actual reengineering. In terms of the renovation model
described in Chapter 3 (Figure 3.1), SMELL is used here as an automatic concern (i.e., the
exception handling concern) verification step.

We used the ASF+SDF Meta-Environment (van den Brand et al., 2001) to perform the
actual code transformations. Several features of this environment turn out to be useful during
a reengineering process. First, with an ANSI C grammar (extended with the XXL constructs),
the Meta-Environment editor parses the code and provides precise syntax highlighting. After
every change, the code is reparsed, making it possible to instantly recognize that a modifi-
cation has not resulted in syntactically correct C code. Since the Meta-Environment uses a
generalized LR parsing algorithm (implemented as SGLR (Visser, 1997)), the parsing result

7.3 Reengineering to Structured Exception Handling 133

SEH Implementation

TRY 307 CATCH 0
EXCEPT 189 FINALLY 127
THROW 477

ev == OK 4 ev != OK 5
ev = ERR; 4 ev = func(); 0
int ev = OK 33

Table 7.3: Number of constructs in the SEH implementations.

can be ambiguous. We deal with ambiguities by ignoring them in case they occur in parse
trees that are not of interest (for instance, parameter lists). Otherwise, the code is changed in
a reversible way such that the ambiguities do not occur during code transformation.

Second, within the ASF+SDF Meta-Environment, code transformations can be expressed
as rewrite rules in the Algebraic Specification Formalism (ASF). Using such rewrite rules we
were able to partly automate the transformation steps as outlined in Subsection 7.3.2. Trans-
forming assignments, removing returns and removing declarations (respectively steps 1, 4,
and 5) were automated fully, while transforming conditions and transforming other uses of
exception variables (respectively steps 2 and 3) still required some manual work. Addition-
ally, transforming assignments still required a manual step to verify using the SMELL tool
that no functional code was executed on an exceptional path. Transforming conditions was
fully automated for those conditions that just check whether no exception has occurred, i.e.,
ev == OK, and partly for conditions that check the opposite and start an exception handler,
i.e., ev != OK. The TRY and FINALLY blocks that wrap each function that performs tracing
(and reads the exception variable) were inserted fully automatically in step 3. Still other uses
were transformed manually.

7.3.4 Validation

Actually testing whether functional equivalence holds has not been performed within this
study: testing the CC10 component is an elaborate process that remains future work. Instead,
functional equivalence was checked manually. The Meta-Environment was used to ease the
manual work. Based on an ANSI C grammar, the structured editor of the Meta-Environment
helps to ensure that the transformed code is still syntactically valid C. Alternatively, the level
of validation could be increased by compiling the resulting C code (including the XXL li-
brary).

7.3.5 Results

We first observe that the NLOC for the SEH version is 11,200, which is a small increase
compared to the original 11,134. Recall that TRY and FINALLY blocks were wrapped around
each function definition that performs tracing, resulting in an increase of NLOC. A smaller

134 Renovating Idiomatic Exception Handling

decrease was obtained by removing exception variable declarations, return statements, and
guarding conditions.

Table 7.3 shows the number of times the main XXL constructs occur in the reengineered
code. Note that CATCH statements were not used at all. This is due to the fact that in the
CC10 component handlers are never attached to specific exceptions, i.e., EXCEPT can always
be used instead of CATCH. Some TRY statements have no EXCEPT handler. Instead, those TRY
statements only have a FINALLY handler.

The reengineered component no longer contains any RCI code, except in the case of
33 handlers that perform cleanup (among a total of 189 handlers). These cleanup han-
dlers call functions that can throw exceptions as well. To deal with those exceptions, the
cleanup function calls are wrapped in TRY and EXCEPT blocks of their own. From within
those blocks, it is not possible to access the exception value of the (outer) cleanup handler
block. The EXCEPTION CODE() macro will instead return the exception that was raised dur-
ing the cleanup function call. In these cases, an exception variable is still used to make the
outer exception available within the inner handling blocks. In 9 cleanup handlers, these ex-
ception variables are also used within conditions that determine control-flow, resulting in 4
leftover occurrences of ev == OK, 4 of ev = ERR and 5 of ev != OK. Since the XXL library
uses C integers to represent exceptions, the RCI and XXL constructs can be used together
conveniently.

Figure 7.3 shows an example of a cleanup handler that still uses RCI code. At line 2 the
exception active in the outer FINALLY block is assigned to the exception variable ev. If no
exception is active in the FINALLY block (which is executed regardless of the occurrence of
an exception), then EXCEPTION CODE() returns OK (integer value 0). ev is used at line 8 to
check whether an exception had occurred before the mem free at line 5 threw an exception.
If that is not the case, thus ev == OK, then just the exception that occurred during mem free
is handled, otherwise, specific handling is performed for handling two active exceptions.

7.3.6 Discussion
What are the advantages of using exception handling compared to using a return code idiom?

We argue that the main benefit provided by the reengineering from RCI to SEH is the
elimination of almost all ev == OK like conditions. These have become unnecessary because
the SEH constructs automatically provide the desired control flow in case of an exception.
Likewise, exceptions being returned by a function no longer have to be saved explicitly in an
exception variable. Hence the number of ev = func(); statements is 0 in the SEH version.
Programmers have less opportunity to make errors implementing the exceptional control flow
since most of the task is now handled automatically by the SEH library. In Chapter 5 we
showed that the majority of faults (out of a total of 2 faults per 1,000 LOC) occuring in the
RCI implementation are unguarded assignments to the exception variable. In these cases,
exception control flow was not programmed correctly. Such faults can be prevented by using
SEH.

Instead of the manual programming of the exceptional control flow, a programmer using
SEH must insert SEH constructs at the appropriate times. As we saw in our reengineering,
this can actually result in a small increase of code size (11,200 NLOC versus 11,134). It is

7.4 Reengineering to Aspect-Oriented Programming 135

1 FINALLY {
2 int ev = EXCEPTION_CODE();
3

4 TRY {
5 mem_free(&string);
6 }
7 EXCEPT {
8 if (ev == OK) {
9 LOG(MEM_ERR , EXCEPTION_CODE(), "free string failed");

10 THROW(MEM_ERR);
11 }
12 else {
13 /* handle multiple exceptions */
14 }
15 }
16 }

Figure 7.3: A cleanup handler with remaining RCI code.

also not possible to use SEH constructs exclusively in the case of some handlers that perform
cleanup. A use of the return code idiom in such cases is probably acceptable as cleanup
handlers do not constitute a majority (33 out of 189 handlers) and the effects remain localized
within the handlers.

7.4 Reengineering to Aspect-Oriented Programming
What gains can be expected from reengineering SEH code to an aspect-oriented solution?

In general, this is an extremely hard question to answer. There are numerous variables to
consider that either benefit or degrade an aspect-oriented solution of any problem. First, the
target aspect language determines which features are available to factor the idiomatic code
fragments into pointcuts and advice. Second, aspect design determines which idiomatic code
fragments actually will be replaced by advice, and which remain as is. Third, equivalence
criteria may be defined to limit the changes that the reengineering effort will be allowed to
make. Typically, functional (or behavioral) equivalence of the code is required at some level
in order to minimize the risk involved with changing an important system. In practice we
have observed a far stricter equivalence criterion: syntactical equivalence between the old
code and the aspectized code after the aspects have been woven in (in this practical case a
source-to-source aspect weaver was used). Syntactical equivalence may be hard to achieve,
but in some settings regression testing is considered extremely hard as well. ASML, our
industrial partner, is prepared to spend significant effort on obtaining syntactical equivalence
since otherwise they have to spend a great amount on regression testing.

We argue that the topics of aspect languages, aspect design, and equivalence criteria are
not fully separable in the context of a renovation process. They all work together to determine

136 Renovating Idiomatic Exception Handling

the quality of the end result. We will see that by focussing on the topic of equivalence criteria,
we will also uncover some effects of aspect languages and aspect design.

7.4.1 The Tradeoff between Equivalence and Quality

If a strict equivalence criterion is being maintained, there may be consequences for the quality
of the end result of the reengineering, due to the presence of variability (as also discussed in
Chapter 6) in the legacy code. Variability consists in differences between idiomatic code
fragments, and can be accidental (i.e., small differences, mistakes) or essential (i.e., larger
differences, different idiom usages). For instance, three exception handling variations are
shown in Figure 7.4. The differences between the variants are underlined. Variant F1 is an
excerpt of exception handling code for function f. It calls a function a(p) with a pointer
argument and if an exception is raised during that call, the log function is called linking an
F ERROR to the raised exception (obtained by EXCEPTION CODE()), and finally F ERROR is
thrown as an exception. Variant F2 is an excerpt of a different piece of exception handling
code from function f. The only difference between variants F1 and F2 is the log message
provided at line 5.

Variant G is an excerpt of a function g from the same component as f. If performs
the same call to a(p), but the handling code for exceptions coming out of the call to a(p) is
different: f and g throw different exceptions after failure of function a, F ERROR and G ERROR,
respectively.

Suppose variants F1, F2 and G would be reengineered to use an aspect the exception
handling for functions f and g. Ideally, this would result in an aspect consisting of a single
pointcut and attached advice containing the exception handling code. However, the differ-
ences that exist between the variants may be such that it is not be possible to arrive at this
ideal result. Which log message must be provided or which exception must be thrown at the
end both depend on the surrounding function. Unless the aspect language makes the name
of the surrounding function available to an advice, it may not be possible to factor out these
differences such that a single pointcut and advice re-generates the original exception handling
behavior.3 Instead, the aspect would use three pointcuts with matching advice for each vari-
ant. Such a solution would re-generate the original behavior, but be less desirable in terms of
quality (a bigger aspect).

A syntactical equivalence criterion demands that the reengineered code re-generates all
the variations that are present in the legacy code. As we demonstrated in the example above,
this could reduce the quality of an aspect-oriented solution. What would happen if we stepped
down from the strict syntactical equivalence criterion just a little bit? On the one hand, the
difference between the two log messages may really be accidental, i.e., it is caused by a
programmer mistake, and therefore it could be ignored by the equivalence criterion. Variants
F1 and F2 would then be unified in the sense that a single pointcut and advice would be able to
re-generate F1 and F2 according to the relaxed equivalence criterion. On the other hand, the
difference between variants F1 and F2, and variant G, i.e., the exception to be thrown after
handling the exception coming out of a, is of a more essential kind. Unless the exception

3An advice could also use (run-time) reflection in, for example, Java. Arguably, this would be an undesirable
solution.

7.4 Reengineering to Aspect-Oriented Programming 137

handling aspect is assumed to be able to re-generate the correct exceptions, variants F1 and
F2 should not be unified with variant G. We are then left with an aspect consisting of two
pointcuts and advice pairs, one for variants F1 and F2, and one for variant G.

Variant F1:

1 TRY {
2 a(p);
3 }
4 EXCEPT {
5 LOG(F_ERROR , EXCEPTION_CODE(), "exception from a");
6 THROW(F_ERROR);
7 }
8 }

Variant F2:

1 TRY {
2 a(p);
3 }
4 EXCEPT {
5 LOG(F_ERROR , EXCEPTION_CODE(), "received exception from a");
6 THROW(F_ERROR);
7 }
8 }

Variant G:

1 TRY {
2 a(p);
3 }
4 EXCEPT {
5 LOG(G_ERROR , EXCEPTION_CODE(), "received exception from a");
6 THROW(G_ERROR);
7 }
8 }

Figure 7.4: Three exception handling variations.

We are particularly interested in this tradeoff between the strictness of equivalence criteria
on the one hand, and the resulting quality of the aspect-oriented system, on the other. The
variability that exists in the idiomatic exception handling fragments gives rise to this tradeoff,
as we will see. Of course the target aspect language is an important factor, but we consider
language choice out of scope for this chapter. Instead, we consider the (abstract) aspect
language that we describe in Subsection 7.4.2. We will evaluate a number of equivalence
criteria for the reengineering of the SEH version of the CC10 component to an AOP solution.

Note that we did not consider the reengineering of the RCI code to SEH constructs (see
Section 7.3) in terms of equivalence criteria. In that case we were not interested in unifying

138 Renovating Idiomatic Exception Handling

exception handling variations to obtain a solution consisting of fewer fragments. We only
expressed the existing exception handling code in another idiom while maintaining all exist-
ing variations. Therefore, the tradeoff between the strictness of equivalence criteria and the
resulting quality is different from the AOP case that we consider here.

7.4.2 Approach

The two main components of most aspect languages are pointcuts and advice, i.e., respec-
tively where (or when) something should happen, and what should happen at that location (or
time). A simple quality criterion can be based upon these two basic notions. Given a concern,
such as exception handling, the fewer pointcuts and advices required to describe that concern,
the higher is the quality of the aspect-oriented implementation. Here we will never consider
pointcuts and advice separately, and a pointcut will always be associated with exactly one
piece of advice. It thus suffices to consider just the number of pointcuts. We will use this
simple quality criterion to judge the quality of the aspect-oriented solutions that we obtain.

To facilitate the analysis of the reengineering of the SEH solution to an AOP solution, we
will also make the following assumptions: The AOP solution replicates the behavior of the
SEH solution according to a well-defined equivalence criterion. Most importantly, the set of
locations at which exception handling occurs in the SEH solution remains unchanged in the
AOP solution. The equivalence criterion may only be relaxed to allow changes in the handler
code that occurs at these locations. In our evaluation the equivalence criterion will be relaxed
in a step-wise fashion to investigate the effect it has on the expected quality of the end result.

We also implicitely assume that it is always possible to actually move a piece of exception
handling code to an aspect. Any accesses by advice to local variables or other contextual
information are assumed to be resolved by the aspect weaver. Alternatively, we can assume
that enabling transformations are performed to expose the necessary context (Binkley et al.,
2006).

The AOP implementation will consist of pointcuts and advice. A pointcut captures a
number of joinpoints that each identify a location in the source code at which exception
handling occurs. A pointcut is then associated with an advice that contains the actual handling
code. In this chapter joinpoints are considered to be of the static kind. That is, the joinpoints
we consider here can be identified in the source text. In contrast, dynamic joinpoints, which
represent events in the system’s execution, are not considered.

Concretely, the following mapping is made from SEH constructs to pointcuts and advice:

• A TRY block maps to a joinpoint. The code within the block of the TRY identifies the
joinpoint.

• All the handlers, i.e., EXCEPT, CATCH, and FINALLY blocks that occur together with a
TRY form the advice that is associated with a pointcut that contains the TRY joinpoint.

For now, we have allowed joinpoints to be coincide with blocks of arbitrary code, such
that all TRY blocks can be considered as joinpoints. Current aspect languages are far more
restricted. We will later limit our set of joinpoints to a more realistic set. However, enabling
transformations can be performed to expose joinpoints for arbitrary blocks of code: the code

7.4 Reengineering to Aspect-Oriented Programming 139

occurring in a TRY block can be refactored into a function and replaced by a call to the new
function, which is typically available as a joinpoint in most aspect languages.

A trivial AOP solution can now be defined. It consists of a pointcut for each single join-
point, i.e. TRY block, and an associated advice that consists of the handling code belonging to
that TRY block. This implementation clearly satisfies the requirement that its behavior equals
the SEH implementation. However, no real improvement is offered by this implementation,
since all handling code is merely moved into an aspect as separate advices. We will use this
implementation as a base line upon which to improve.

The following defines an AOP implementation more formally:

Aspect = {〈Pointcut1,Advice1〉,〈Pointcut2,Advice2〉, . . .}

Pointcut = {Joinpoint1,Joinpoint2, . . .}

The trivial AOP implementation described above consists of 307 〈Pointcut,Advice〉 pairs for
the 307 TRY blocks that occur in the SEH implementation (see Table 7.3).

We will now merge 〈Pointcut,Advice〉 pairs to try and arrive at more beneficial AOP im-
plementations merging as the equivalence criterion is relaxed. Binkley et al. (2006) propose
a similar process called pointcut abstraction. As mentioned before, the total set of joinpoints
will remain constant during this process, i.e., the set of locations where handling code is wo-
ven in will not change. Pointcuts and advices can be merged if both the pointcuts and the
advice are considered equivalent according to the criterion.

We define the merge operation for two 〈Pointcut,Advice〉 pairs as follows:

merge(〈Pointcut1,Advice1〉,〈Pointcut2,Advice2〉)
=

〈Pointcut1∪Pointcut2,Advice1〉

In words, the pair obtained by merging two pairs consists of the union of both pointcuts, and
one of the advices (which are considered equivalent by the criterion).

7.4.3 Equivalence Criteria
Intuitively, two pointcut–advice pairs can be merged if those pairs perform equivalent han-
dling at an equivalent location in the source code. We identify a number of interesting equiva-
lence criteria that capture this intuition for both joinpoints and advices. First, many joinpoints
in the CC10 component turn out to be either function calls (a TRY wrapping just a function
call) or complete function bodies (a TRY wrapping a complete function body). The latter are
referred to as function execution joinpoints in AOP terminology. We base two equivalence
criteria on function call and execution joinpoints.

• Call same + exec. Two joinpoints are equivalent if they both call the same function, or
they both are the body of the same function (execution).

• Call any + exec. Two joinpoints are equivalent if they both call any function, or they
both are the body of the same function (execution).

140 Renovating Idiomatic Exception Handling

Second, for advices we identify the following equivalence criteria:

• Syntax. Two advices are equivalent if the Abstract Syntax Trees (ASTs) of the two
advices are identical. Effectively, syntactical equivalence is the same as textual equiv-
alence disregarding white space and comments.

• Syntax + EH. Two advices are equivalent if they are syntactically equivalent while also
disregarding the arguments of calls to the LOG and THROW macros (see Figure 7.2).
It is assumed that these arguments can be generated correctly by the exception handling
aspect.

• Syntax + EH + Trace. Two advices are equivalent if they are equivalent according
to Syntax + EH, while also ignoring the arguments of any tracing calls. This crite-
rion assumes that a separate tracing aspects correctly generates the tracing calls at the
beginning and end of each function. These tracing calls were discussed before in Sub-
section 7.3.2 and Chapter 6. Currently, such a tracing aspect is being implemented at
ASML.

7.4.4 Results
The CC10 component that was reengineered to SEH in Section 7.3 is considered again here,
in particular, we consider its SEH version. The TRY statements, and the associated handlers
were extracted automatically (using the ASF+SDF Meta-Environment) to form the trivial
aspect solution that was described above. In this section we will obtain several results by
(automatically) merging pointcuts under a number of different equivalence criteria. We will
consider two sets of joinpoints. First, the set of joinpoints we consider in the CC10 com-
ponent, i.e., all TRY blocks. Second, the set of those joinpoints that are function calls or
executions, i.e., all TRY blocks that wrap just a function call or an entire function body. Func-
tion call joinpoints are of the form:

TRY {
$FunctionCall;

}
$Handlers

while function execution joinpoints occur in the following context:

$FunctionSignature {
TRY {

$Body
}
$Handlers

}

where $Body represents the actual joinpoint. As we will see, most (262 out of 307) joinpoints
are either function call or execution joinpoints. This set represent a realistic set of joinpoints
in the sense that function call and execution joinpoints are typically available in real aspect
languages.

7.4 Reengineering to Aspect-Oriented Programming 141

For both sets, we start with the trivial aspect solution that consists of a pointcut for
each single joinpoint (and its advice). The merging process is applied until all possible
〈Pointcut,Advice〉 pairs are merged.

Arbitrary joinpoints. Table 7.4 shows the effect of merging the pointcuts under the various
equivalence criteria. In the tables, the criteria for advices (horizontal) are represented in a
cumulative shorthand, i.e, ‘+EH’ refers to the equivalence criterion ‘syntax+EH’, and ‘+trace’
refers to ‘syntax+EH+trace.’ The top part of Table 7.4 shows how many pointcuts remain of
the initial 307 pointcuts. Thus, 130 pointcuts remain after merging under the ‘call same+exec’
and ‘syntax+EH’ equivalence criteria.

Recall that a joinpoint represents a location in the source code where exception handling
code occurs, i.e., a TRY statement. We can thus conclude that for 130 locations where ex-
ception handling occurs, that joinpoint is unique, or if there exists an equivalent joinpoint,
the handling at the other joinpoint is different according to ‘syntax+EH.’ As the equivalence
criteria are relaxed, the number of pointcuts remaining decreases. 62 pointcuts remain in case
the most relaxed equivalence criteria are used, i.e., ‘call any+exec’ and ‘syntax+EH+trace.’

The bottom part of Table 7.4 shows the minimum, median, and maximum number of
joinpoints that occur in the merged pointcuts. As the median value is 1 in all cases, pointcuts
tend to consists of only 1 joinpoint.

Number of pointcuts for 307 joinpoints

advices→ syntax +EH +trace
joinpoints ↓
call same + exec 206 130 88
call any + exec 206 104 62

Minimum, median, and maximum number of joinpoints in pointcuts

advices→ syntax +EH +trace
joinpoints ↓
call same + exec 1, 1, 60 1, 1, 60 1, 1, 113
call any + exec 1, 1, 60 1, 1, 68 1, 1, 113

Table 7.4: Results for arbitrary joinpoints.

Function call and execution joinpoints. The same merging process as before is applied to
these joinpoints. Table 7.5 shows the results. 17 pointcuts are required to capture all exception
handling occurrences in case of the most relaxed equivalence criteria ‘call any+exec’ and
‘syntax+EH+trace.’ The median number of joinpoints in pointcuts is still 1 except when
advices are considered equivalent under ‘syntax+EH+trace,’ where the median value is 2.

142 Renovating Idiomatic Exception Handling

Note that the reduction in number of pointcuts does not change when considering only
function call and execution joinpoints. The top parts of Tables 7.4 and 7.5 are equivalent if
we add the difference between the number of joinpoints considered (307−262 = 45) to the
numbers in the top part of Table 7.4. We can therefore conclude that only joinpoints of type
function call or execution could actually be merged under the equivalence criteria used here.

Number of pointcuts for 262 joinpoints

advices→ syntax +EH +trace
joinpoints ↓
call same + exec 161 85 43
call any + exec 161 59 17

Minimum, median, and maximum number of joinpoints in pointcuts

advices→ syntax +EH +trace
joinpoints ↓
call same + exec 1, 1, 60 1, 1, 60 1, 2, 113
call any + exec 1, 1, 60 1, 1, 68 1, 2, 113

Table 7.5: Results for function call and execution joinpoints.

7.5 Discussion
It is clear that relaxing the equivalence criteria has a significant effect on the number of
pointcuts needed to include all exception handling joinpoints. The best results are obtained
when merging under the most relaxed equivalence criteria, i.e., ‘call any+exec’ and ‘syn-
tax+EH+trace.’ We will discuss four pointcuts of particular interest, and some general re-
sults. First, the following interesting pointcuts are found under the ‘call any+exec’ and ‘syn-
tax+EH+trace’ criteria.

1. The top pointcut consists of 113 joinpoints. These are the function execution joinpoints
representing the TRY and FINALLY blocks that wrap an entire function body. Their pur-
pose is only to execute tracing code whether an exception has occurred or not. In other
words, those FINALLY blocks consist of just a tracing call. Note that this pointcut only
appeared on top by considering the ‘syntax+EH+trace’ equivalence criterion, which
assumes that a suitable tracing aspect generates the arguments of the tracing calls.

2. Pointcut number 2 consists of 68 joinpoints that are calls to memory allocation, and
de-allocation functions that have syntactically equivalent handling. In fact, the same
pointcut appears under all stricter equivalence criteria with 60 joinpoints. These are
all the memory allocation function calls. The deallocation function calls with similar
handling are added to the pointcut when relaxing to ‘call any+exec.’

7.5 Discussion 143

3. The third pointcut has 39 joinpoints that represent function calls to various functions.
These calls have similar handling, though not syntactically equivalent. Only when the
exception handling aspect is presumed to be able to fill in the LOG and THROW macros
can these handlers be considered equivalent (i.e., under ‘+EH’).

4. The fourth pointcut again consists of memory de-allocation function calls. In these
13 cases, more elaborate handling is performed that includes cleanup and possible
handling of exceptions that arise during cleanup.

5. until 11. These pointcuts contain only a small number of joinpoints and are not dis-
cussed separately. Pointcuts of rank lower than 11 contain only 1 joinpoint.

The first pointcut raises an important issue: (crosscutting) concerns may be interdepen-
dent, and thus one must be careful when reengineering either of them into aspects. In fact,
the interdependence between the exception handling and tracing aspects was already exposed
during the reengineering of the RCI to SEH. The occurrence of exceptions causes control to
skip the remainder of a function unless the exception is caught and handled. It turned out that
tracing functionality at the end of functions had to be moved into FINALLY handlers in order
to mimic the RCI implementation.

This move may have eased our analysis here. Inspection of the merging results earlier
on showed many separate joinpoints that had only a FINALLY advice. These turned out to
consist of only tracing code. Since ASML is actually implementing a tracing aspect that can
regenerate the original (idiomatic) tracing situation to a large degree, the ‘+trace’ equivalence
criteria seemed to be an obvious addition. We thus conclude that the benefits expected from
the reengineering of one concern may be dependent on the proper aspectization of other con-
cerns. The interdependence of exception handling and tracing would have caused worse re-
sults for the aspectization of exception handling would a tracing aspect not have been present.

Table 7.4 shows the merging results for all joinpoints, including joinpoints that represent
arbitrary pieces of code. Aspect weavers are typically not expected to weave at such join-
points. The results in Table 7.5 are limited to function call and execution joinpoints and are
hence considered more applicable to real aspect weaving. The difference between these sets
of joinpoints is a set of 45 joinpoints that are never merged into other pointcuts. These join-
points, and their associated advices, represent unique exception handling that should not be
implemented as an aspect.

Figure 7.5 gives an idea of the relative effects of the equivalence criteria. It shows the
cumulative number of joinpoints included by the biggest n pointcuts. Pointcuts of size 1 are
not shown, but ultimately all pointcuts considered together include 100% of the joinpoints.
The straight ticked line at 85% represents the maximum percentage that can realistically
be expected of an aspect-based solution. The remaining 15% are neither function call nor
execution joinpoints.

Under the most strict equivalence criteria that make no assumptions about the tracing or
exception handling aspects, many (54) pointcuts are required to include a reasonable percent-
age (say 50%) of joinpoints (line with boxes). If we relax the equivalence criteria to ‘+EH’,
only 3 pointcuts are required to reach 50% (line with crosses). Recall that ‘+EH’ means that
it is assumed that the exception handling aspect is capable of generating the arguments of LOG

144 Renovating Idiomatic Exception Handling

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J
o

in
p

o
in

ts
 i
n

c
lu

d
e

d
 (

%
)

First n pointcuts

call any+exec and syntax+EH+trace
call any+exec and syntax+EH

call any+exec and syntax
Maximum for function call and execution joinpoints

Figure 7.5: Percentage of joinpoints included in the first 19 pointcuts, under different equiv-
alence criteria.

and THROW macros based on context, and thus those arguments can be ignored, which can re-
sult in more pointcuts being merged. Relaxing further to ‘+trace’ improves the situation even
more: 3 pointcuts cover more than 70% of joinpoints (line with circles).

Considering the analysis of the results, the question now arises whether exception han-
dling would benefit from an AOP implementation. Clearly, not if one would naively move
exception handlers into an aspect while merging the syntactically equivalent handlers. One
would be left with an aspect consisting of 206 pointcuts and pieces of advice (see Table 7.4).
However, the expected benefits can be improved by taking into account specifics of the current
exception handling implementation. The LOG and THROW macros can probably be provided
with their arguments by the aspect (assuming the aspect language exposes the necessary con-
text). As a consequence more handlers can be merged, resulting in fewer pointcuts. Similarly,
assuming the presence of a tracing aspect further had the effect of further reducing the number
of pointcuts.

However, there appear to be parts of the exception handling code that will not benefit
from aspect-orientation according to our analysis. 15% of the joinpoints, i.e., TRY blocks, are
not of the common function call or execution type, and hence cannot be moved easily into an
aspect. Also, since these joinpoints were never merged into other pointcuts, they represent
unique handling code or handling code that occurs within a unique context.

7.6 Related Work 145

7.5.1 Limitations

We assumed in our analysis that handling code may not be changed beyond what the (strict)
equivalence criteria allow. One could argue that a realistic reengineering project could prob-
ably unify large fragments of code in an ad-hoc fashion. However, our experiences with
ASML developers planning such a reengineering project, are that changes performed at a
large scale (100 to 1,000 KLOC) are considered very risky and must be controlled as much
as possible. In that setting, strict equivalence criteria seem a suitable means of analyzing
expected benefits.

The analysis performed here should be interpreted as an upper bound, in the sense that
actual reengineering efforts may be complicated by weaver limitations. We assumed that all
fragments of exception handling code could be moved into an aspect, and that references to
context are automatically resolved by the weaver. References to local variables, however, can
not be resolved by current weavers. We also saw before that some fragments of exception
handling code do not map onto function call or execution joinpoints. Therefore, some frag-
ments of exception handling code may not be easily moveable to an aspect in reality. Again,
enabling transformations could alleviate this problem.

7.5.2 Future Work

Chapter 6 proposes a method, based on formal concept analysis (FCA), to explore the vari-
ations present in a (crosscutting) concern. The analysis presented here, based on the equiv-
alence criteria, is closely related. The FCA approach provides an overview (a lattice) of the
differences and commonalities of a concern. In that approach, equivalence criteria remain
fixed, and hence their effects cannot be judged. It would therefore be interesting to combine
both approaches, obtaining different lattices for different equivalence criteria.

7.6 Related Work
Reengineering exception handling. Adams and de Schutter (2007) propose an AOP solu-
tion for the exception handling idiom of the same component that was studied in this chapter.
They demonstrate how a new kind of joinpoint that is based on continuations can be used
to express the exception handling idiom using aspects. Furthermore, their proposal includes
annotations that allow developers to specify alternate behavior.

Mortensen and Ghosh (2007) demonstrate how to refactor a return code idiom in C++.
They identify several exception handling strategies, which are essentially variations upon the
‘standard’ return code idiom, and define separate aspects for each of them.

Several studies by Filho et al. focus on the refactoring of exception handling code in Java
programs to aspects, which are provided by AspectJ (Kiczales et al., 1997). In Filho et al.
(2007) the authors propose a categorization of exception handling code that helps judging
whether a refactoring to aspects is worthwhile. They demonstrate that a refactoring that
takes the recommendations made by their categorization into account results in systems of
a higher quality compared to bluntly refactoring all exception handling code to aspects. A
categorization approach like theirs could probably guide C reengineering projects as well.

146 Renovating Idiomatic Exception Handling

Earlier work discusses their lessons learned during the aspectization of the exception handling
code of four Java applications (Filho et al., 2006). They conclude that the aspectization of
exception handling code in applications may not always results in solutions of higher quality.

Lippert and Videira Lopes (2000) studied the reengineering of exception handling code
in a Java application framework (JWAM) to AspectJ. They conclude that the aspect-oriented
solution they obtained offers benefits in terms of reuse, evolvability and readability.

Robillard and Murphy (2003) study the flow of exceptions through Java programs using
a static analysis tool. Such a tool would be extremely valuable during the reengineering
projects described in this chapter. In particular, any changes in the exception flows would
need to be brought to the attention of the reengineer.

Reverse engineering. Several specialized reverse engineering approaches are related to our
work. Aspect mining attempts to discover opportunities for the use of aspects in existing
(legacy) software. These techniques are typically more generic in nature than our work, i.e.,
they do not focus specifically on one concern (like exception handling), but instead they try
to find aspects for all kinds of functionality. Three such techniques are discussed by Ceccato
et al. (2006).

Clone detection techniques search source code for the occurrence of code clones, i.e.,
fragments of code that are very similar or even identical. Code clones can indicate opportu-
nities for reengineering, as is shown by Baxter et al. (1998). Their approach finds clones that
can be factored into a function, and subsequently replaces those clones by a call to the newly
defined function. Our merging process for pointcuts (see Section 7.4) can be seen as a form
of clone detection in the sense that we also search for equivalent code fragments among the
advices in the exception handling aspect. However, we are also interested in deriving new
equivalence criteria, and hence require insight into the differences between code fragments,
which is not typically covered by clone detection techniques.

7.7 Conclusion
This chapter analyzed the step-wise reengineering of a small C component (11,134 NLOC)
of a large-scale embedded system using SEH and AOP.

Replacing the RCI by SEH. The idiomatic implementation of the exception handling in
this component was reengineered to an implementation that uses SEH constructs. This chap-
ter showed that it is possible to almost completely eliminate the legacy idiom usage using
SEH constructs, at the expense of a slight increase (0.6%) in code size. The main benefit of
the SEH implementation is argued to be that the programmer’s task of maintaining excep-
tional control flow has become simpler. Using the RCI exception control flow is programmed
manually by inserting many explicit checks. The reengineered component does no longer
contain such explicit checks (with a few exceptions).

Aspects for Exception Handling. This chapter presented an analysis of the expected ben-
efits of reengineering SEH code to AOP. We found that reengineering exception handling

7.7 Conclusion 147

idioms using aspects may not result in great benefits. The benefits were shown to depend
on the desired level of equivalence between the SEH and AOP implementations. We ob-
served that the (industrial) context in which reengineering processes are performed can fix
the desired level of equivalence using strict equivalence criteria.

We found that strict equivalence criteria, e.g. those that demand syntactical equivalence,
will result in unfavorable aspect-oriented implementations of exception handling. How-
ever, we also found that relaxing the equivalence criteria can increase the benefits offered
by aspect-oriented implementations. The analysis showed that the benefits also depend on
the availability of aspects for other concerns such as tracing, and on features of the exception
handling aspect itself.

This chapter provided quantitative data on the effect of various equivalence criteria on the
expected benefits of the use of aspects. In particular, we found that 15% of the SEH code in
the studied component is probably not suitable for implementation as an aspect.

148 Renovating Idiomatic Exception Handling

Chapter 8

Conclusion

This thesis is concluded by a summary and evaluation of the research contributions made
while trying to answer the research questions. We also discuss the use of the industry-as-
laboratory research method (Potts, 1993) by reviewing challenges we encountered during the
research project, recommendations for future projects, and expected industrial results.

8.1 Contributions and Evaluation

Research Question 1
Can idiomatic crosscutting concerns be identified automatically? In particular,
are clone detection tools suitable for this purpose?

Chapter 2 compared the results of three clone detection tools (Bauhaus’ ccdiml, CCFinder,
and Komondoor’s PDG-DUP) to the annotated source code of five crosscutting concerns. It
turned out that all three clone detectors can identify good aspect candidates. However, the
recall and precision measures varied strongly for the different crosscutting concerns. Partly,
this is due to the clone detection tools not being designed with this particular purpose in
mind, and the fact that some crosscutting concern code simply is not cloned. Also, the clone
detection technique (e.g., similar subtrees in ASTs) that a clone detector implements turned
out to be a significant factor. The three clone detectors obtained different levels of recall and
precision for most crosscutting concerns (similar recall and precision levels were obtained
for exception handling and tracing).

A problem not solved here is that other code (i.e., not crosscutting code) can also be
cloned. In Chapter 2 the reference body of crosscutting concern code is used to filter irrelevant
clones. In a real aspect mining scenario such a reference body could be missing, since aspect
mining is tasked with actually identifying crosscutting concerns. Therefore, the real aspect
mining performance of clone detection tools for aspect mining cannot be judged fully based
on the results of Chapter 2.

However, since the results do show the level of cloning within known crosscutting con-
cerns, conclusions can be drawn about the best possible aspect mining performance that can

150 Conclusion

be expected of the studied clone detection tools. On the one hand, Chapter 2 showed that
none of the three clone detection results is able to identify exception handling code well.
This result carries over to aspect mining (using one of the three clone detectors), which can
therefore not be expected to find good aspects for exception handling. On the other hand,
the parameter checking concern (called NULL-value checking in Chapter 2), and to a lesser
extent the tracing concern, are identified well enough by all three clone detection results.

Research Question 2

Is it possible to renovate idiomatic crosscutting concerns? What are the chal-
lenges for an automatic approach?

Renovation Approach. In Chapter 3 we proposed a systematic approach to renovation
of idiomatic crosscutting concerns using aspects. This approach is based on a concern (or
idiom) verification tool that processes legacy source code and reports on adherence to the
idiom. Applications and violations of the idiom are reported by the tool such that subsequent
phases can use those data. Idiom violations that are clearly faults may need to be fixed, while
minor violations may need to be retained. Figure 8.1 (repeated from Chapter 3) shows an
overview of the approach.

Figure 8.1: An overview of Chapter 3’s renovation approach.

Idiom applications ultimately need to be eliminated (i.e., removed) from the legacy source
code and replaced by an aspect-oriented implementation. Aspects are extracted (by reverse
engineering) from the list of idiom applications (and minor violations), and ultimately woven
back into the source code by an aspect weaver. In addition to the use of aspects, Chapter 3
proposed the use of domain-specific aspect languages that are particularly suited for the ex-
pression of a specific crosscutting concern. The domain-specific aspects are then translated
into a general purpose aspect language and woven by a general purpose weaver. In this ap-
proach the weaving technology of the general purpose aspect language is reused. Chapter 3

8.1 Contributions and Evaluation 151

demonstrated this approach by means of PCSL, a domain specific aspect language for the
parameter checking concern.

It turned out in Chapters 5 and 6 that violations to the idiom (e.g., faults, variations,
or inconsistencies) can be expected to occur frequently (see also the discussion below for
Reseach Question 3). This situation had not been appreciated fully at the beginning of the
research project when the approach described in Chapter 3 was defined. In hindsight, a
variability exploration tool such as the one presented in Chapter 6 would need to be included
in our renovation approach. Such a tool is needed to obtain a clear picture of the number of
idiom violations that are present in the legacy system. In Section 8.2 we further discuss the
consequences of idiom violations on the renovation process.

Tool interoperability. Chapter 4 proposed a solution, source-based mappings (SBMs), to
linking existing analysis and transformation tools such that parts of the renovation process can
be automated. In particular, Chapter 4 focused on the situation in which tools have different
schema’s of the source code that they process.1 For the implementation of the various steps
described in Figure 8.1 we were interested in reusing as many existing tools as possible. For
instance, we implemented many analysis tools (including the idiom verification tool SMELL
described in Chapter 5) as plugins for Grammatech’s CodeSurfer, a commercial program
analysis toolkit (Anderson et al., 2003; CodeSurfer, 2007).

CodeSurfer is an industrial strength tool, that is, it can process source code at the scale
required for real renovation projects and has adequate documentation and support. Like many
tools in its class, it uses fixed and sometimes proprietary source code schema’s that cannot be
changed by a user. Proprietary schema’s can furthermore deny a user an accurate correspon-
dence between schema elements and source code. Nonetheless, tools such as CodeSurfer
represent many years of research and development, and thus we felt justified to expend effort
to make such tools useable within our research project.

Tools using proprietary schema’s are not the only contributing factor to this problem.
Source code schema’s (public or proprietary) can represent very delicate specifications of
source code structure (or semantics), and can be the result of years of work (e.g., context-
free grammars for programming languages like C that can be used in a renovation setting).
They can also be geared toward a particular purpose, such as either analysis or transforma-
tion (Cordy and Vinju, 2006). In those cases it is undesirable to change the schema just
to accommodate tool interoperability. We conclude that a means to cope with different,
immutable, source code schema’s is a requirement for renovation projects that seek to use
existing, industrial strength, tools for their purpose.

Unfortunately it is not always possible to accurately transfer results between tools that
use different schema’s. However, SBMs can be used under certain conditions pertaining to
the accuracy of the correspondence between source code and schema elements of the tool.
Chapter 4 described two applications of SBMs that are linked to work described in other
chapters. First, the elimination of idiom applications for parameter checking (see Chapter 3)
was facilitated by an SBM. In that setting, an idiom verification tool (a CodeSurfer plugin)
first processed the source code and identified idiom applications (and violations). The idiom
applications were annotated in the source code itself, such that ASF+SDF (van den Brand

1Cordy and Vinju (2006) also discuss this situation.

152 Conclusion

Crosscutting Concern Chapter(s)

Parameter checking 2, 3

Tracing 2, 6

Exception handling 2, 5, 7

Table 8.1: Crosscutting concerns studied in this thesis.

et al., 2001) could perform the actual elimination later on. Second, insertion of annotations
to facilitate aspect weaving was done similarly. Code analysis results (in this case, parameter
usage information) were stored inside annotations that were attached to function signatures
in the source code. Finally, the extraction of the interesting parts of the tracing idiom in
Chapter 6 was facilitated using SBMs.

Research Question 3

Are idiomatic crosscutting concerns sources of implementation faults or incon-
sistencies?

Both faults and inconsistencies appear to be associated with idiomatic crosscutting con-
cerns. First, Chapter 5 showed a fault rate of 2.1 faults per KLOC2 in the ASML exception
handling code. This fault rate was discovered by means of an automatic bug finding tool
(SMELL) that is based on a specific fault model for the ASML exception handling idiom.
Many of these faults could be prevented by adopting a better idiom or programming lan-
guage. Second, Chapter 6 exposed an unexpected number of variations of inconsistencies
in the ASML tracing crosscutting concern. The idiomatic fragments of code that implement
tracing appear cloned, but actually constitute non-trivial variations. These variations present
a challenge for renovation efforts, since the question arises whether they should not retained,
or whether they should replaced by a generic implementation. This challenge is discussed
further in Section 8.2.

Research Question 4

What are the benefits offered by renovating idiomatic crosscutting concerns us-
ing aspects?

Table 8.1 shows a list of the three crosscutting concerns that were studied in detail in
this thesis. We will now discuss the benefits and limitations we observed while considering
aspect-oriented implementations of those crosscutting concerns.

21,000 lines of code.

8.1 Contributions and Evaluation 153

Parameter checking. Chapter 2 showed that parameter checking code is often duplicated,
and can be captured in a relatively small number of clone classes. An aspect-oriented solution
will potentially eliminate much of the duplication parameter checking code, as demonstrated
by the results for obtained using the PCSL domain-specific language (see Chapter 3). Another
potential benefit is obtained as a result of localizing parameter checking code in a (domain-
specific, e.g., PCSL) aspect. The aspect allows for increased uniformity of the parameter
checks since a smaller number of fragments of parameter checking code will need to be
maintained. However, this turns out to be a mixed blessing. Making the parameter checking
code more uniform could also remove variations that turn out to be relevant, and is therefore
a risky process. The aspect language will need to accommodate variations such that the
introduction of aspects will not necessarily eliminate variations, but allows them to be unified
later on. The PCSL language has limited support for variations by allowing annotations to
switch off checking for specific parameters.

Unexpectedly, the aspect-oriented solutions obtained using PCSL and AspectC do not
reduce code size for all the components that were considered in Chapter 3. Code size changes
instead ranged from -86% to +173%. These results are explained by the different levels of
variation that occur within each component. The PCSL language was not capable of dealing
effectively with all variations, or else the code size reductions would have been more uniform.

Tracing. Similar as for the parameter checking concern, we observed significant duplica-
tion in tracing code. However, the level of duplication was not as high as for parameter
checking. Again, variations and inconsistencies seem to be present. Chapter 6 studied the
variations and inconsistencies of the tracing concern in detail, trying to answer the question
whether tracing could still be usefully expressed as an aspect. In a case studied (performed
at ASML) related to Chapter 6, we encountered a very strict requirement of the renovation
process: the renovated tracing code had to be textually identical to the legacy code at compile
time after all code transformations had been applied (Chapter 7 provided further discussion
of this phenomenon). The FCA method presented in Chapter 6 fulfills a pressing need in the
context of such a strict requirement. The question is: Would a renovation using aspects still
offer an improvement, given that all variations must be (textually) retained? Using the FCA
method, one can reach an answer by inspecting the resulting concept lattices. Chapter 6 fur-
thermore concluded that obtaining a beneficial aspect-oriented solution for tracing would be
difficult due to lacking language support. Much effort would need to be spend on developing
a sufficiently generic aspect language that can cope with the variations and inconsistencies of
the legacy tracing implementation.

Exception Handling. Of the crosscutting concerns studied, exception handling contains
the least duplication (as observed in Chapter 2). Chapter 5 also showed that the idiom used
for exception handling at ASML is also fault prone. The question raised by the presence of
these faults is whether a renovation process should fix them prior to introducing an aspect-
oriented solution. On the one hand, additional risk will emerge by fixing these faults since
legacy systems are in operation, and other processes may depend on even the faults of the
legacy system’s implementation. On the other hand, faulty exception handling code may be
hard to be reengineer since it may be unclear what the code was supposed to do in the first

154 Conclusion

place. Chapter 5 presented a tool (SMELL) that is capable of finding faults in the ASML
exception handling code, providing renovators and developers with awareness of potential
problems in the code. They will then need to decide upon a strategy of coping with the actual
faults during their activities.

Chapter 7 demonstrated a renovation effort for the exception handling concern in an
ASML component. Faults were first discovered by the SMELL tool and eliminated man-
ually. Then, the code was transformed from the ASML return-code idiom (described in detail
in Chapters 5 and 7) to the more modern try/catch idiom. A very slight increase in code size
(0.5%) was observed as a result of this renovation, but almost all statements that idiomati-
cally implemented exceptional control flow could be eliminated. In Chapter 5 we showed
that the majority of faults in the exception handling implementation regard the exceptional
control flow, and therefore a reduction of fault proneness can be expected of the renovated
component using the try/catch idiom. The next step in the renovation process consisted of
analyzing the benefits aspects would offer for the exception handling implementation. It
turned out that 15% of the exception handling code could be considered unique in the sense
that either the handling code, or the context in which it appears, is not repeated within the
legacy component. An aspect-oriented solution for this fraction of exception handling code is
not beneficial. The remaining 85% exception handling code could increasingly benefit from
the use of aspects given that the legacy and aspect-oriented implementations are allowed to
diverge. Chapter 7 showed how much the expected benefits could increase by allowing for
more divergence.

8.2 Synthesis
Idiomatic implementation of crosscutting concerns is associated with idiom violations, as we
saw in Chapters 5 and 6. A renovation process will benefit from knowing the number and
nature of idiom violations that occur in a legacy system because of three important related
factors that could be considered external (i.e., given) to the renovation process: equivalence
criteria, system quality and language technology. We will now discuss the factors in turn:

Equivalence criteria. Equivalence criteria capture the level of equivalence that a renova-
tion process is expected to maintain between the legacy system and the renovated system. An
example equivalence criterion is the successful execution of a regression test suite. As we dis-
cussed above, in the context of ASML we encountered a very strict equivalence criterion: the
source code has to be textually identical at compile time after all code transformations have
been applied. This strict equivalence criterion is a realistic example that occurred during our
research at ASML.

A strict equivalence criterion could require that idiom violations are retained by a reno-
vation process. Conversely, idiom violations can becomes less troublesome if a more relaxed
equivalence criterion is adopted. Chapter 7 showed the influence different equivalence crite-
ria have on the renovated system.

System quality. The end result of a renovation process should be a superior system. As
we saw in Chapters 3, 6, and 7, idiom violations can limit the improvements that are offered

8.2 Synthesis 155

Figure 8.2: Tradeoff for dealing with idiom violations during renovation.

by the renovated system. Expecting smaller quality improvements could be a means to cope
with many idiom violations.

Language technology. The language used to implement the renovated system may limit
its capability to deal with the idiom violations that must be retained from the legacy system.
For instance, in aspect-oriented programming, a pattern language is typically used to specify
pointcuts. The expressiveness of this pattern language determines how well exceptions to
the aspect can be expressed. Alternatively, annotations of the base code are a means of
specifying exceptions to an aspect’s pointcuts. In Chapter 3, the PCSL language demonstrated
how a domain-specific language could concisely express a crosscutting concern while still
allowing for exceptions by allowing them to be specified explicitly. The introduction of new
language technology by a renovation process is not always desirable, however, since the costs
of personnel training, and embedding in existing processes can be high.

The way a renovation process chooses to deal with idiom violations is subject to a tradeoff
between these three factors as depicted in Figure 8.2. The tradeoff consists in choosing
which of three factors are ‘sacrificed’ in order to successfully complete a renovation process
in the presence of idiom violations. Sacrificing equivalence implies adopting more relaxed
equivalence criteria, i.e., allowing for more differences between the legacy and renovated
system. Idiom violation may then become less of a problem since they no longer need to be
retained. Sacrificing quality implies lowering expectations of the quality improvement the
renovation process is going to offer. For instance, as we saw in Chapter 7 a larger number
of aspects could be used to capture all idiom violations. Finally, sacrificing in the area of
language technology entails spending effort to extend the language used, and coping with

156 Conclusion

consequences like language adoption and programmer training.
In order to make an informed choice with respect to this tradeoff, a renovation process

needs to be aware of the idiom violations that occur in a legacy system. A toolkit that provides
insight into the violations made to an idiom is therefore called for. In Chapter 6 we already
presented a tool that gives an overview of idiom violations. This tool could be combined
with the analysis presented in Chapter 7 to gain insight into the effects on system quality of
equivalence criteria that a renovation process may consider using. Furthermore, the analysis
should be extended to allow for the evaluation of the benefits of adding new language features.

8.3 Extrapolations
The research presented in this thesis was performed in the specific industrial context provided
by ASML. We discuss here how the results of thesis can be extrapolated to different contexts.

• The use of idioms, i.e., idiomatic implementation, is a common practice in software
engineering. Idioms appear in the form of architecture patterns (Buschmann et al.,
1996) or design patterns (Gamma et al., 1995), coding conventions and templates. We
have shown that applying such idiomatic practices in an industrial setting can result in
implementations that frequently violate the idioms used. This observation can probably
be repeated for numerous other software systems that employ idioms.

• The SMELL tool presented in Chapter 5 is a means of improving upon the practice
of idiomatic implementation. The tool is capable of finding implementation faults
and can thus be integrated with an idiomatic practice to reduce the fault proneness of
the resulting implementation. SMELL is geared specifically for the ASML exception
handling idiom, but the general technique used to implement SMELL is not. The Metal
language developed by Engler et al. (2000) could be used to specify similar tools for
other idioms. Furthermore, CodeSurfer (2007) and its sibling application CodeSonar
are both extensible program analysis toolkit that allow for the rapid development of
idiom checker tools like SMELL.

• Chapter 6 demonstrated a generic method to explore idiom violations in legacy source
code. This method is based on formal concept analysis, which can be applied in many
contexts. However, it is required that relevant objects and attributes are identified
within the context in order to obtain meaningful results. Significant knowledge of
the idiom that is being studied is required to initialize this method, but interpretation of
the results is based on generic properties of formal concept analysis that are not limited
to the ASML context. This method is currently being applied to explore the variability
in another crosscutting concern: contract enforcement in the Pidgin3 instant messenger
client.

• Renovation processes typically consist of separate analysis and transformation phases
that must use the results of one another. The source-based mapping approach that
was developed in Chapter 4 provides a semi-generic solution to the problem of linking

3Formally known as GAIM.

8.4 Industry as Laboratory 157

separate analysis and transformation tools together. The current implementation of this
approach, called SCATR, is limited to a specific transformation tool, i.e., the ASF+SDF
Meta Environment (van den Brand et al., 2001), but generically supports any analysis
tool that is capable of generating SCATR’s format.

• Exception handling is a concern in any industrial software system. Chapter 7 provides
evidence that using aspects for exception handling in legacy systems cannot be ex-
pected to result in great benefits. These results tie in with other evidence presented
within the aspect-oriented programming community (Filho et al., 2007; Lippert and
Videira Lopes, 2000).

8.4 Industry as Laboratory

8.4.1 Research Approach

The work in this thesis has been carried out as part of Ideals: a research project initiated by
the Embedded System Institute in Eindhoven, that closely collaborates with ASML as the
industrial partner. Idiomatic crosscutting concerns were studied at different levels within the
project, ranging from modeling to source code levels. All research within the project was
performed on a case study basis, in the industry-as-laboratory style that was proposed by
Potts (1993). This style of research entailed close integration of research and industry goals
and ways-of-working.

Generation of hypotheses occurred either within the company or the research team. Start-
ing from a hypothesis an initial feasibility study (or proof of concept) was defined to test the
basic soundness of the idea. This initial study was performed using relevant artifacts, e.g.,
source code, models, documentation, from within the company. If successful, a follow-up
case study (or transfer project) was started. The objective of such a case study was to apply
the research idea in practice. During such a study collaboration with the company was ex-
tensive. The steps followed are roughly: advocacy of the idea, resource planning, design and
implementation, and embedding in the company way-of-working. All steps required input
from both the company and the research team.

Both feasibility studies and case studies were shared with the research community as soon
as possible. The planning of either study type contained a target forum (e.g., conference or
journal), which typically occurred either during or near the end of the actual study. Especially
case studies could run for longer periods of time, which allowed for multiple interactions with
the research community during the study.

The work presented here consisted of both kinds of studies. For instance, the study into
automatic bug finding in error handling code (Chapter 5) has passed the feasibility study
phase and is currently being defined as a technology transfer project within the company.
The goal of this project is to implement the functionality offered by the SMELL prototype
in the ASML development process. Chapters 3 and 4 studied the feasibility of renovation
of idiomatic crosscutting concerns, and formed the basis of the case study reported on in
Chapter 6. In the near future we expect such renovations to be carried out for the ASML
tracing concern.

158 Conclusion

8.4.2 Challenges and Recommendations
Some of the challenges described by Potts (1993) have surfaced during our project. The
main challenge Potts mentions, an overemphasis on the short term, has been found to be
only a minor problem. Our experience was that the most serious challenge occurs at the
level of prioritization of company resources. Companies are bound by market deadlines, and
can change priorities even during running projects. However, the research project had been
defined up front such that state-of-the-art research topics could be investigated. Nonetheless,
case studies still remained challenging activities. The company and the research teams were
closely integrated during case studies, and care had to be taken to keep the focus on research
goals.

Second, technology transfer turned out to be an activity that demanded (at least) as much
effort as scientific study itself. Both the research team and the company had to invest in order
to successfully transfer results. Furthermore, significant effort had to be expended in order to
prepare the road ahead for the research team. An extremely important task consisted of ex-
ploring the company in order to find a problem owner, i.e., a person responsible for handling
a certain problem, within the company that would actually be interested in adopting a solution
devised in research. Problem owners do not tend to line up at the desks of the researchers
by themselves. They typically have a working solution to their problem, which may be sub-
optimal in the eyes of the research team but which the company considers good-enough for
the time being. Significant effort is required to convince problem owners otherwise. Fur-
thermore, advocacy of the researched solution is a prerequisite for further adoption of the
solution within a company. Both exploration and advocacy are tasks that require specialists
that are capable of talking with both the research team and the company.

Third, company concerns with respect to privacy limited the degree of disclosure that the
research team could assume. Each publication was processed in order to check for unwanted
disclosure. Despite these concerns, aggregate results, or sanitized examples of artifacts such
as code examples, have been shared with the research community. These data still represented
artifacts and measurements of real software engineering activities. In the context of the soft-
ware engineering research discipline, it is imperative that as much real data is accumulated in
the public domain.

Finally, the lack of scientific control mentioned by Potts is a reality. A company like
ASML is a sprawling hub of activity, which continuously changes project goals, staffing,
and priorities. Performing controlled research within the context of such a company is a
daunting task. However, companies like ASML constitute reality for the software engineering
research discipline. It is in this industrial context that one can find the processes that software
engineering research aims at studying and improving. The software engineering research
discipline should ultimately develop a method that provides researchers with solid ground
within the marshlands of industry.

Bibliography

B. Adams and K. de Schutter. An aspect for idiom-based exception handling: (using
local continuation join points, join point properties, annotations and type parameters).
In Proceedings of the 5th Software-Engineering Properties of Languages and Aspect
Technologies Workshop (SPLAT’07), New York, NY, USA, 2007. ACM Press. URL
http://doi.acm.org/10.1145/1233843.1233844.

B. Adams and T. Tourwé. Aspect-Orientation in C: Express Yourself. Appeared at the
Workshop on Software-engineering Properties of Languages for Aspect Technologies
(SPLAT’05), co-located with the 4th International Conference on Aspect-Oriented Soft-
ware Development (AOSD’05), March 2005.

E. N. Adams. Optimizing preventive service of software products. IBM Journal of Research
and Development, 28(1):2–14, 1984.

P. Anderson, T. W. Reps, T. Teitelbaum, and M. Zarins. Tool support for fine-grained software
inspection. IEEE Software, 20(4):42–50, 2003.

R. S. Arnold. Software Reengineering. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1993. ISBN 0818632712.

AspectC++. Website, September 2007. URL http://www.aspectc.org.

Aspect-oriented C. Website, September 2007. URL http://www.aspectc.net.

L. Aversano, L. Cerulo, and M. D. Penta. How clones are maintained: An empirical study.
In Proceedings of the 11th European Conference on Software Maintenance and Reengi-
neering (CSMR’07), pages 81–90, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2802-3.

B. S. Baker. On finding duplication and near-duplication in large software systems. In Second
Working Conference on Reverse Engineering (WCRE’95), pages 86–95. IEEE Computer
Society Press, July 1995.

M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and K. Kontogiannis. Advanced clone-
analysis to support object-oriented system refactoring. In Proceedings of the Seventh
Working Conference on Reverse Engineering (WCRE’00), pages 98–107. IEEE Computer
Society Press, November 2000.

160 BIBLIOGRAPHY

T. Ball and S. K. Rajamani. The slam project: debugging system software via static anal-
ysis. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–3. ACM, January 2002.

E. L. A. Baniassad, G. C. Murphy, C. Schwanninger, and M. Kircher. Managing crosscut-
ting concerns during software evolution tasks: an inquisitive study. In Proceedings of the
1st International Conference on Aspect-oriented Software Development (AOSD’02), pages
120–126, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-469-X.

Project Bauhaus. Website, September 2007. URL http://www.bauhaus-stuttgart.de.

I. D. Baxter. Design maintenance systems. Communications of the ACM, 35(4):73–89, 1992.
ISSN 0001-0782.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proceedings of the International Conference on Software Maintenance
(ICSM’98), pages 368–377. IEEE Computer Society Press, November 1998.

J. A. Bergstra and P. Klint. The discrete time TOOLBUS — a software coordination archi-
tecture. Science of Computer Programming, 31(2-3):205–229, 1998.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Automated refactoring of
object oriented code into aspects. In 21st IEEE International Conference on Software
Maintenance (ICSM 2005), pages 27–36. IEEE Computer Society, 2005.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Tool-supported refactoring of
existing object-oriented code into aspects. IEEE Transactions on Software Engineering,
32(9):698–717, 2006.

B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

M. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient annotated terms.
Software: Practice and Experience, 30(3):259–291, 2000a.

M. van den Brand, M. P. A. Sellink, and C. Verhoef. Generation of components for software
renovation factories from context-free grammars. Science of Computer Programming, 36
(2-3):209–266, 2000b.

M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: A component-based language development environment.
In R. Wilhelm, editor, Proceedings of Compiler Construction (CC ’01), volume 2027 of
Lecture Notes in Computer Science, pages 365–370. Springer-Verlag, 2001.

M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16. a language and
toolset for program transformation. Science of Computer Programming, 2007. To appear.

S. Breu and J. Krinke. Aspect mining using event traces. In Proceedings of the 19th IEEE
International Conference on Automated Software Engineering (ASE’04), pages 310–315.
IEEE Computer Society, September 2004.

BIBLIOGRAPHY 161

M. L. Brodie and M. Stonebraker. Migrating Legacy Systems: Gateways, Interfaces, and the
Incremental Approach. Morgan Kaufmann, 1995. ISBN 1-55860-330-1.

M. Bruntink. Aspect mining using clone class metrics. In Proceedings of the 1st Workshop
on Aspect Reverse Engineering (WARE’04), number SEN-E0502 in CWI technical reports,
pages 23–27, November 2005.

M. Bruntink. Linking analysis and transformations tools with source-based mappings. In
Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Ma-
nipulation (SCAM), pages 107–116. IEEE Computer Society Press, September 2006.

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An evaluation of clone detec-
tion techniques for identifying crosscutting concerns. In Proceedings of the 20th IEEE In-
ternational Conference on Software Maintenance (ICSM’04), pages 200–209. IEEE Com-
puter Society Press, September 2004a.

M. Bruntink, A. van Deursen, and T. Tourwé. An initial experiment in reverse engineering as-
pects. In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04),
pages 306–307. IEEE Computer Society, 2004b.

M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé. Simple crosscutting concerns are
not so simple – analysing variability in large-scale idioms-based implementations. In Pro-
ceedings of the Sixth International Conference on Aspect-Oriented Software Development
(AOSD’07), pages 199–211. ACM Press, March 2007.

M. Bruntink, A. van Deursen, and T. Tourwé. Isolating idiomatic crosscutting concerns.
In Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 37–46. IEEE Computer Society Press, September 2005a.

M. Bruntink, A. van Deursen, and T. Tourwé. Discovering faults in idiom-based exception
handling. In Proceedings of the 28th International Conference on Software Engineering
(ICSE’06), pages 242–251. ACM Press, May 2006.

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the use of clone detection
for identifying cross cutting concern code. IEEE Transactions on Software Engineering,
31(10):804–818, October 2005b.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture: A System of Patterns. Wiley series in Software design patterns. John
Wiley & Sons, 1996.

M. Bush. Improving software quality: the use of formal inspections at the jpl. In Proceedings
of the International Conference on Software Engineering, pages 196–199. IEEE Computer
Society, 1990.

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic program-
ming errors. Software: Practice and Experience, 30(7):775–802, 2000.

162 BIBLIOGRAPHY

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A qualitative anal-
ysis of three aspect mining techniques. In Proceedings of the International Workshop on
Program Comprehension (IWPC’05), pages 13–22. IEEE Computer Society Press, May
2005.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwe. Applying and
combining three different aspect mining techniques. Software Quality Journal, 3(14):209–
231, September 2006.

H. Chen and D. Wagner. Mops: an infrastructure for examining security properties of soft-
ware. In ACM Conference on Computer and Communications Security, pages 235–244.
ACM, November 2002.

E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A taxonomy.
IEEE Software, 7(1):13–17, 1990. ISSN 0740-7459.

F. Christian. Exception handling and tolerance of software faults, chapter 4, pages 81–107.
John Wiley & Sons, 1995.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the modularity
of path-specific customization in operating system code. In Proceedings of the Joint Euro-
pean Software Engineering Conference (ESEC’01) and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE’01), pages 88–98. ACM
Press, June 2001.

CodeSurfer. Website, September 2007. URL http://www.grammatech.com.

A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proceedings of the 3rd
international conference on Aspect-oriented software development (AOSD’04), pages 56–
65, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-842-3.

A. Colyer, A. Rashid, and G. Blair. On the separation of concerns in program families.
Technical report, Computing Department, Lancaster University, 2004.

J. Coplien. Advanced C++: Programming Styles and Idioms. Addison-Wesley, 1991.

J. R. Cordy. Generalized selective XML markup of source code using agile parsing. In Pro-
ceedings of the 11th International Workshop on Program Comprehension (IWPC), pages
144–153. IEEE Computer Society, May 2003.

J. R. Cordy. The TXL source transformation language. Science of Computer Programming,
61(3):190–210, 2006. ISSN 0167-6423.

J. R. Cordy, K. A. Schneider, T. R. Dean, and A. J. Malton. HSML: Design directed source
code hot spots. In Proceedings of the 9th International Workshop on Program Compre-
hension (IWPC), pages 145–156. IEEE Computer Society, May 2001.

BIBLIOGRAPHY 163

J. R. Cordy and J. J. Vinju. How to make a bridge between transformation and analysis
technologies? In J. R. Cordy, R. Lämmel, and A. Winter, editors, Transformation Tech-
niques in Software Engineering, number 5161 in Dagstuhl Seminar Proceedings, Schloss
Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum (IBFI).
URL http://drops.dagstuhl.de/opus/volltexte/2006/426.

M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 57–68. ACM, May 2002.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns. Morgan
Kaufmann, 2003.

A. van Deursen. De software-evolutieparadox. Technische Universiteit Delft, 23 februari
2005. Inaugural Lecture.

A. van Deursen, P. Klint, and C. Verhoef. Research issues in the renovation of legacy systems.
In Proceedings of the Second Internationsl Conference on Fundamental Approaches to
Software Engineering (FASE ’99), volume 1577 of Lecture Notes In Computer Science,
pages 1–21, London, UK, 1999. Springer-Verlag. ISBN 3-540-65718-5.

A. van Deursen and T. Kuipers. Building documentation generators. In Proceedings of
the International Conference on Software Maintenance (ICSM’99), pages 40–49. IEEE
Computer Society, 1999a.

A. van Deursen and T. Kuipers. Identifying objects using cluster and concept analysis. In
Proceedings of the 1999 International Conference on Software Engineering (ICSE 1999),
pages 246–255. ACM Press, 1999b.

A. van Deursen, M. Marin, and L. Moonen. A systematic aspect-oriented refactoring and
testing strategy, and its application to jhotdraw. Technical Report SEN-R0507, Centrum
voor Wiskunde en Informatica, 2005.

A. van Deursen, S. Woods, and A. Quilici. Program plan recognition for year 2000 tools. In
Proceedings 4th Working Conference on ReverseEngineering; WCRE’97, pages 124–133.
IEEE Computer Society, 1997.

S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In Proceedings of the International Conference on Software Maintenance
(ICSM’99), pages 109–118. IEEE Computer Society Press, 1999.

P. Durr, G. Gulesir, L. Bergmans, M. Aksit, and R. van Engelen. Applying AOP in
an industrial context. URL http://trese.cs.utwente.nl/publications/files/
0407BPAOSD2006.pdf. Appeared at the Workshop on Best Practices in Applying Aspect-
Oriented Software Development (BPAOSD’06), co-located with the 5th International Con-
ference on Aspect-Oriented Software Development (AOSD’06), 2006.

M. Dyer. The cleanroom approach to quality software development. In Proceedings of the
18th International Computer Measurement Group Conference, pages 1201–1212. Com-
puter Measurement Group, 1992.

164 BIBLIOGRAPHY

J. Ebert, K. Kontogiannis, and J. Mylopoulos, editors. Dagstuhl Seminar Interoperabil-
ity of Reengineering Tools, Schloss Dagstuhl, Germany, January 2001. Internationales
Begegnungs- und Forschungszentrum (IBFI).

M. Eichberg, M. Mezini, T. Schfer, C. Beringer, and K. M. Hamel. Enforcing system–
wide properties. In Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC’04), pages 158–167. IEEE Computer Society, April 2004.

E. van Emden and L. Moonen. Java quality assurance by detecting code smells. In Proceed-
ings of the 9th Working Conference on Reverse Engineering (WCRE ’02), pages 97–. IEEE
Computer Society, November 2002.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In Proceedings of the Fourth Symposium on Op-
erating Systems Design and Implementation (OSDI), pages 1–16, San Diego, CA, October
2000. Usenix.

R. Ettinger and M. Verbaere. Untangling: A slice extraction refactoring. In Proceedings of
the 3rd International Conference on Aspect-Oriented Software Development, pages 93–
101. ACM Press, March 2004.

R. Fanta and R. Václav. Removing clones from the code. Journal of Software Maintenance:
Research and Practice, 11(4):223–243, July/August 1999.

N. E. Fenton and S. L. Pfleeger. Software Metrics: A rigorous and Practical Approach. PWS
Publishing Company, second edition, 1997.

R. Ferenc and Á. Beszédes. Data exchange with the columbus schema for C++. In Pro-
ceedings of the 6th European Conference on Software Maintenance and Reengineering
(CSMR), pages 59–66. IEEE Computer Society, March 2002.

F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia, and C. M. F. Rubira. Excep-
tions and aspects: the devil is in the details. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 152–162. ACM
Press, 2006.

F. C. Filho, A. Garcia, and C. M. F. Rubira. Extracting error handling to aspects: A cookbook.
In Proceedings of the International Conference on Software Maintenance (ICSM’07),
pages 134–143. IEEE Computer Society, October 2007.

R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and oblivi-
ousness. Technical Report 01.12, Research Institute for Advanced Computer Science, May
2001. Workshop on Advanced Separation of Concerns, OOPSLA 2000.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for java. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 234–245. ACM, 2002.

C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott. Robustness testing of java server
applications. IEEE Transactions on Software Engineering, 31(4):292 – 311, 2005.

BIBLIOGRAPHY 165

R. P. Gabriel. Patterns of Software: Tales from the Software Community. Oxford University
Press, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer-
Verlag, 1999.

N. H. Gehani. Exceptional C or C with exceptions. Software Practice and Experience, 22
(10):827–848, 1992. ISSN 0038-0644.

J. B. Goodenough. Exception handling: issues and a proposed notation. Commununications
of the ACM, 18(12):683–696, 1975. ISSN 0001-0782.

W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map metaphor in a tool for soft-
ware evolution. In Proceedings of the International Conference on Software Engineering
(ICSE’01), pages 265–274. IEEE Computer Society Press, March 2001.

S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented software. In
4th Annual International Conference on Object-Oriented and Internet-based Technolo-
gies,Concepts, and Applications for a Networked World (Net.ObjectDays), pages 19–35.
Springer Verlag, 2003.

J. Hannemann and G. Kiczales. Overcoming the prevalent decomposition in legacy code.
URL http://www.cs.ubc.ca/˜jan/amt. Appeared at the Workshop on Advanced Sep-
aration of Concerns, co-located with the 23rd International Conference on Software Engi-
neering (ICSE’01), May 2001.

R. Holt. Structural manipulations of software architecture using tarski relational algebra. In
Proceedings of the 5th Working Conference on Reverse Engineering (WCRE’98), pages
210–219. IEEE Computer Society, October 1998.

R. C. Holt, A. E. Hassan, B. Laguë, S. Lapierre, and C. Leduc. E/R schema for the da-
trix C/C++/Java exchange format. In Proceedings of the Seventh Working Conference
on Reverse Engineering (WCRE’00), pages 284–286. IEEE Computer Society, November
2000a.

R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a standard exchange format. In Pro-
ceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00), pages
162–171. IEEE Computer Society, November 2000b.

D. Jin and J. R. Cordy. Ontology-based software analysis and reengineering tool integration:
The OASIS service-sharing methodology. In Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 613–616. IEEE Computer Soci-
ety, September 2005.

J. Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of the
IBM Centre for Advanced Studies Conference (CASCON’93), pages 171–183. IBM Press,
October 1993.

166 BIBLIOGRAPHY

S. Johnson. Lint, a C program checker. Technical Report 65, Bell Laboratories, Dec. 1977.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):645–670, July 2002.

C. Kapser and M. W. Godfrey. “Cloning considered harmful” considered harmful. In Pro-
ceedings of the 13th Working Conference on Reverse Engineering (WCRE 2006), pages
19–28, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2719-1.

Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated support for program
refactoring using invariants. In Proceedings of the International Conference on Software
Maintenance (ICSM’01), pages 736–743. IEEE Computer Society, 2001.

A. Kellens, K. Mens, and P. Tonella. A survey of automated code-level aspect mining tech-
niques. Transactions on Aspect-Oriented Software Development, 4:145–164, 2007.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the Europeen Conference on Object-
Oriented Programming (ECOOP), volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer-Verlag, 1997.

M. Kim, L. Bergman, T. A. Lau, and D. Notkin. An ethnographic study of copy and paste
programming practices in OOPL. In Proceedings of the International Symposium on Em-
pirical Software Engineering (ISESE’04), pages 83–92. IEEE Computer Society Press,
August 2004.

M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical study of code clone ge-
nealogies. In Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/SIGSOFT FSE), pages 187–196. ACM Press, September 2005.

B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang. Towards an ontology of software main-
tenance. Journal of Software Maintenance, 11(6):365–389, 1999. ISSN 1040-550X.

R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In
Proceedings of the 8th International Symposium on Static Analysis (SAS’01), volume 2126
of Lecture Notes In Computer Science, pages 40–56. Springer-Verlag, July 2001.

J. Kort and R. Lämmel. Parse-tree annotations meet re-engineering concerns. In Proceed-
ings of the 3rd IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM), pages 161–170. IEEE Computer Society, 2003.

R. Koschke, E. Merlo, and A. Walenstein, editors. Duplication, Redundancy, and Similarity
in Software, number 06301 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany,
2007. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI). URL
http://drops.dagstuhl.de/opus/volltexte/2007/972.

BIBLIOGRAPHY 167

J. Krinke. Identifying similar code with program dependence graphs. In Proceedings of the
Eight Working Conference On Reverse Engineering (WCRE’01), pages 301–109. IEEE
Computer Society Press, 2001.

J. Lang and D. B. Stewart. A study of the applicability of existing exception-handling tech-
niques to component-based real-time software technology. ACM Transactions on Pro-
gramming Languages and Systems, 20(2):274 – 301, 1998.

P. A. Lee. Exception handling in C programs. Software: Practice and Experience, 13(5):
389–405, 1983.

M. Lehman and L. Belady. Program Evolution: Processes of Software Change. Academic
Press, London, 1985. ISBN 0-12-442440-6.

T. Lethbridge, S. Tichelaar, and E. Plödereder. The dagstuhl middle metamodel: A schema
for reverse engineering. Electronic Notes in Theoretical Computer Science, 94:7–18, 2004.

C. Lindig. Fast concept analysis. In Working with Conceptual Structures - Contributions to
ICCS 2000, pages 152–161. Shaker Verlag, August 2000.

C. Lindig and G. Snelting. Assessing modular structure of legacy code based on mathemat-
ical concept analysis. In Proceedings of the 19th International Conference on Software
Engineering, pages 349–359. ACM Press, 1997.

J.-L. Lions. Ariane 5 flight 501 failure. Technical report, ESA/CNES, 1996.

M. Lippert and C. Videira Lopes. A study on exception detection and handling using aspect-
oriented programming. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE), pages 418–427. IEEE Computer Society, 2000.

B. Littlewood. Dependability assessment of software-based systems: state of the art. In
Proceedings of the International Conference on Software Engineering, pages 6–7. ACM
Press, 2005. ISBN 1-59593-963-2.

A. J. Malton, K. A. Schneider, J. R. Cordy, T. R. Dean, D. Cousineau, and J. Reynolds.
Processing software source text in automated design recovery and transformation. In Pro-
ceedings of the 9th International Workshop on Program Comprehension (IWPC), pages
127–134. IEEE Computer Society, May 2001.

A. Marcus and J. I. Maletic. Identification of high-level concept clones in source code. In
Proceedings of the 16th IEEE International Conference on Automated Software Engineer-
ing (ASE’01), pages 107–114. IEEE Computer Society, November 2001.

M. Marin, A. van Deursen, and L. Moonen. Identifying crosscutting concerns using fan-in
analysis. ACM Transactions on Softare Engineering and Methodology, 2006. To appear.

R. Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis, University
of Timisoara, 2002.

168 BIBLIOGRAPHY

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function
clones in a software system using metrics. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM’96), pages 244–254. IEEE Computer Society Press,
November 1996.

M. Messier and J. Viega. XXL. Website, October 2007. URL http://www.zork.org/xxl.

G. Mishne and M. de Rijke. Source code retrieval using conceptual similarity. In Proceedings
of the 2004 Conference on Computer Assisted Information Retrieval (RIAO’04), pages
539–554, Paris, April 2004. C.I.D.

M. P. Monteiro and J. M. Fernandes. Refactoring a Java code base to AspectJ: An illus-
trative example. In Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM 2005), pages 17–26. IEEE Computer Society, 2005.

L. Moonen. Generating robust parsers using island grammars. In Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE), pages 13–22. IEEE Computer So-
ciety, October 2001.

M. Mortensen and S. Ghosh. Refactoring idiomatic exception handling in C++: Throw-
ing and catching exceptions with aspects. URL http://aosd.net/2007/program/
industry/I2-RefactoringExceptionsC++.pdf. Appeared at the industry track of
the 6th International Conference on Aspect-Oriented Software Development (AOSD’07),
March 2007.

H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse engineering approach
to subsystem structure identification. Journal of Software Maintenance: Research and
Practice, 5(4):181–204, December 1993.

G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hannemann, and W. Leong. Design
recommendations for concern elaboration tools. In R. E. Filman, T. Elrad, S. Clarke,
and M. Akşit, editors, Aspect-Oriented Software Development, pages 507–530. Addison-
Wesley, Boston, 2005. ISBN 0-321-21976-7.

G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. Separating features in source
code: An exploratory study. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 275–284. IEEE Computer Society, 2001.

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A pragmatic
approach to model checking real code. In Proceedings of the 5th symposium on Operating
systems design and implementation (OSDI’02), pages 75 – 88. USENIX Association, 2002.

S. Paul and A. Prakash. A framework for source code search using program patterns. IEEE
Transactions on Software Engineering, 20(6):463–475, 1994.

C. Potts. Software-engineering research revisited. IEEE Software, 10(5):19–28, 1993. ISSN
0740-7459.

BIBLIOGRAPHY 169

J. F. Power and B. A. Malloy. Program annotation in XML: A parse-tree based approach.
In Proceedings of the 9th Working Conference on Reverse Engineering (WCRE), pages
190–198. IEEE Computer Society, October 2002.

J. M. Purtilo and J. R. Callahan. Parse tree annotations. Communications of the ACM, 32
(12):1467–1477, 1989.

M. Rieger, S. Ducasse, and G. Golomingi. Tool support for refactoring duplicated OO
code. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP’99), pages 177–178, Germany, June 1999. Springer.

E. S. Roberts. Implementing exceptions in C. Technical Report 40, Digital Systems Research
Center, 1989.

M. Robillard and G. C. Murphy. Regaining control of exception handling. Technical Report
TR-99-14, Department of Computer Science, University of British Columbia, 1999.

M. P. Robillard and G. C. Murphy. Static analysis to support the evolution of exception
structure in object-oriented systems. ACM Transactions on Software Engineering and
Methodology, 12(2):191–221, 2003. ISSN 1049-331X.

F. van Rysselberghe and S. Demeyer. Reconstruction of successful software evolution using
clone detection. In Proceedings of the Sixth International Workshop on Principles of Soft-
ware Evolution (IWPSE’03), pages 126–130. IEEE Computer Society Press, September
2003.

F. van Rysselberghe and S. Demeyer. Evaluating clone detection techniques from a refactor-
ing perspective. In Proceedings of the 9th IEEE International Conference on Automated
Software Engineering (ASE’04), pages 336–339. IEEE Computer Society Press, Septem-
ber 2004.

M. P. A. Sellink and C. Verhoef. Scaffolding for software renovation. In Proceedings of the
Conference on Software Maintenance and Reengineering (CSMR), pages 161–172. IEEE
Computer Society, February 2000.

D. Shepherd, E. Gibson, and L. L. Pollock. Design and evaluation of an automated aspect
mining tool. In Proceedings of the International Conference on Software Engineering
Research and Practice (SERP’04), pages 601–607. CSREA Press, June 2004.

M. Siff and T. W. Reps. Identifying modules via concept analysis. In Proceedings of the
International Conference on Software Maintenance (ICSM 1997), pages 170–179. IEEE
Computer Society, 1997.

S. Sinha and M. J. Harrold. Criteria for testing exception-handling constructs in java pro-
grams. In Proceedings of the International Conference on Software Maintenance, pages
265–. IEEE Computer Society, 1999.

D. B. Smith, H. A. Mller, and S. R. Tilley. The year 2000 problem: Issues and implications.
Technical Report CMU/SEI-97-TR-002, Software Engineering Institute, 1997.

170 BIBLIOGRAPHY

R. T. Snodgrass and K. Shannon. Supporting flexible and efficient tool integration. In Ad-
vanced Programming Environments, Proceedings of an International Workshop, Lecture
Notes in Computer Science, pages 290–313. Springer, June 1986.

E. Soloway, R. Lampert, S. Letovsky, D. Littman, and J. Pinto. Designing documentation to
compensate for delocalized plans. Communications of the ACM, 31(11):1259–1267, 1988.

P. Tarr, H. Ossher, W. Harrison, and S. M. J. Sutton. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference
on Software engineering (ICSE’99), pages 107–119. IEEE Computer Society Press, May
1999.

P. Tonella and M. Ceccato. Aspect mining through the formal concept analysis of execution
traces. In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE
2004), pages 112–121. IEEE Computer Society, 2004.

T. Tourwé and K. Mens. Mining aspectual views using formal concept analysis. In Pro-
ceedings of the 4th International Workshop on Source Code Analysis and Manipulation
(SCAM’04), pages 97 – 106. IEEE Computer Society, September 2004. ISBN 0-7695-
2144-4.

T. Tourwé and T. Mens. Identifying refactoring opportunities using logic meta programming.
In Proceedings of the 7th European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 91 – 100. IEEE Computer Society, 2003.

W. N. Toy. Fault-tolerant design of local ess processors. In Proceedings of IEEE, pages
1126–1145. IEEE Computer Society, 1982.

C. van Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition edition, 1979.

N. P. Veerman. Revitalizing modifiability of legacy assets. Journal of Software Maintenance,
16(4-5):219–254, 2004.

J. J. Vinju. Analysis and Transformation of Source Code by Parsing and Rewriting. PhD
thesis, University of Amsterdam, 2005.

E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming Re-
search Group, University of Amsterdam, July 1997. URL http://ftp.science.uva.
nl/pub/programming-research/reports/1997/P9707.p%s.Z.

A. Walenstein. Problems creating task-relevant clone detection reference data. In Proceed-
ings of the Tenth Working Conference on Reverse Engineering (WCRE’03), pages 285–294.
IEEE Computer Society Press, November 2003.

A. Walenstein and A. Lakhotia. Clone detector evaluation can be improved: Ideas from
information retrieval. URL http://citeseer.ist.psu.edu/761253.html. Appeared
at the 2nd International Workshop on the Detection of Software Clones (IWDSC’03), held
in conjunction with the 10th Working Conference on Reverse Engineering (WCRE’03),
November 2003.

BIBLIOGRAPHY 171

M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357,
July 1984.

L. M. Wills. Automated Program Recognition by Graph Parsing. PhD thesis, MIT, 1992.

H. Winroth. Exception handling in ANSI C. Technical Report ISRN KTH NA/P–93/15–SE,
Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, Sweden, 1993.

J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using model checking to find serious
file system errors. In 6th Symposium on Operating System Design and Implementation,
pages 273–288. USENIX Association, 2004.

A. Zaidman, B. Adams, K. De Schutter, S. Demeyer, G. Hoffman, and B. De Ruyck. Re-
gaining lost knowledge through dynamic analysis and aspect orientation - an industrial
experience report. In Proceedings of the 10th European Conference on Software Mainte-
nance and Reengineering (CSMR), pages 91–102. IEEE Computer Society, 2006.

C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In Pro-
ceedings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03), pages 130–139. ACM, March 2003.

C. Zhang and H.-A. Jacobsen. PRISM is research in aSpect mining. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA, pages 20–21, Boston, MA, 2004. ACM.

172 BIBLIOGRAPHY

Summary

This thesis investigates the phenomenon of idiomatic crosscutting concerns in embedded
software systems. In particular, we consider the renovation of idiomatic crosscutting concerns
using Aspect-Oriented Programming (AOP).

Crosscutting concerns are phenomena that are present in almost any (embedded) software
system. They arise if the implementation of a concern –a requirement or design decision–
does not fit neatly into the modular decomposition of a software system. A crosscutting
concern cannot be confined to a single modular unit and therefore becomes scattered across
the system and tangled with other concerns. This thesis focuses on the specific class of
idiomatic crosscutting concerns, which are crosscutting concerns that are idiomatic in the
sense that they are implemented manually by applying an idiom, resulting in many similar
pieces of source code.

The approach taken is that of renovation, i.e., a step-wise improvement process aimed at
easing the evolution of legacy software systems. The legacy software system that is studied
in this thesis is the (embedded) control software of an ASML wafer scanner, a device used in
the manufacturing process of integrated circuits. This software system consists of 15 million
lines of C code. We study whether the use of AOP is beneficial compared to the idiomatic
style of implementation used in the ASML software system.

In systems developed without AOP, code implementing a crosscutting concern may be
spread over many different parts of a system. Identifying such code automatically (aspect
mining) could be of great help during maintenance of the system. In Chapter 2, we evaluate
the suitability of clone detection as a technique for the identification of crosscutting concerns.
To that end, we manually identify five crosscutting concerns in the ASML C system, and
analyze to what extent clone detection is capable of finding them.

Chapter 3 reports on our experience in automatically renovating the crosscutting con-
cerns of the ASML C system using AOP. We present a systematic approach for isolating
crosscutting concerns, and illustrate this approach by zooming in on one particular crosscut-
ting concern: parameter checking. Additionally, we compare the legacy solution to the AOP
solution, and discuss advantages as well as disadvantages of both in terms of selected quality
attributes. Our results show that automated renovation is technically feasible, and that adopt-
ing an AOP approach for parameter checking can lead to significant improvements in source
code quality, if carefully designed and managed.

Automatic renovation requires a source code analysis and transformation infrastructure
to be carried out. In the case studies presented in this thesis different technologies are used
to support various renovation tasks. Chapter 4 therefore discusses an approach to linking

174 Summary

separate analysis and transformation tools, such that analysis results can be used to guide
transformations. The approach consists of two phases. First, the analysis tool maps its re-
sults to relevant locations in the source code. Second, a mapping in the reverse direction
is performed: the analysis results expressed as source positions and data are mapped to the
abstractions used in the transformation tool. We discuss a prototype implementation of this
approach in detail, and present the results of two applications within the context of the ASML
C system.

Idiomatic implementation is a manual and repetitive task. Crosscutting concerns, if im-
plemented idiomatically, may therefore be particularly fault prone. In Chapter 5 we analyze
the exception handling idiom of the ASML C system. Like many systems implemented in
classic programming languages (e.g, C), the ASML system uses the popular return-code id-
iom for dealing with exceptions. Our goal is to evaluate the fault-proneness of this idiom,
and we therefore present a characterization of the idiom, a fault model accompanied by an
analysis tool, and empirical data. Our findings show that the idiom is indeed fault prone, but
that a simple solution can lead to significant improvements.

Chapter 6 describes a method for studying idioms-based implementations of crosscutting
concerns, and our experiences with it in the context of the ASML C system. In particular, we
analyze a seemingly simple concern, tracing, and show that it exhibits significant variability,
despite the use of a prescribed idiom. We discuss the consequences of this variability in terms
of how AOP could help prevent it, how it can paralyze (automated) renovation efforts, and
which AOP language features are required in order to obtain precise and concise aspects.
Additionally, we elaborate on the representativeness of our results and on the usefulness of
our proposed method.

Some legacy programming languages, e.g., C, do not provide adequate support for ex-
ception handling. As a result, users of these legacy programming languages often imple-
ment exception handling by applying an idiom. An idiomatic style of implementation has
a number of drawbacks: applying idioms can be fault prone and requires significant effort.
Modern programming languages provide support for Structured Exception Handling (SEH)
that makes idioms largely obsolete. Additionally, AOP is believed to further reduce the effort
of implementing exception handling. Chapter 7 investigates the gains that can be achieved
by re-engineering the idiomatic exception handling of an ASML C component to these mod-
ern techniques. First, we re-engineer the legacy component such that its exception handling
idioms are almost completely replaced by SEH constructs. Second, we show that the use
of AOP for exception handling can be beneficial, even though the benefits are limited by
inconsistencies in the legacy implementation.

The research presented in this thesis was performed in the context of ASML. The results
can be generalized as follows:

• We have shown that applying idioms in an industrial setting can result in implementa-
tions that frequently violate the idioms used. This observation can probably be repeated
for numerous other software systems that employ idioms. (Chapters 5, 6, and 7)

• The SMELL tool presented in Chapter 5 is a means of improving upon the practice
of idiomatic implementation. SMELL is geared specifically for the ASML exception
handling idiom, but the general technique used to implement SMELL is not and can be
applied in different contexts. The Metal language could be used to specify similar tools

175

for other idioms. Furthermore, CodeSurfer and its sibling application CodeSonar are
both extensible program analysis toolkit that allow for the rapid development of idiom
checker tools like SMELL.

• Chapter 6 demonstrated a generic method to explore idiom violations in legacy source
code. This method is based on formal concept analysis, which can be applied in many
contexts. Significant knowledge of the idiom that is being studied is required to ini-
tialize this method, but interpretation of the results is based on generic properties of
formal concept analysis that are not limited to the ASML context.

• Renovation processes typically consist of separate analysis and transformation phases
that must use the results of one another. The source-based mapping approach that
was developed in Chapter 4 provides a semi-generic solution to the problem of link-
ing separate analysis and transformation tools together. The current implementation
of this approach, called SCATR, is limited to a specific transformation tool, i.e., the
ASF+SDF Meta Environment, but generically supports any analysis tool that is capa-
ble of generating SCATR’s format.

• Exception handling is a concern in any industrial software system. Chapter 7 shows
the limits of using aspects for exception handling in a case study at ASML. This case
study provides evidence that using aspects for exception handling cannot be expected
to result in great benefits. These results match other evidence presented within the
aspect-oriented programming community.

176 Summary

Samenvatting

Dit proefschrift onderzoekt idiomatische crosscutting concerns die voorkomen in embedded
softwaresystemen. In het bijzonder beschouwt het proefschrift de renovatie van idiomatische
crosscutting concerns met behulp van aspect-georiënteerd programmeren (AOP).

Crosscutting concerns komen voor in bijna elk (embedded) softwaresysteem. Ze ontstaan
als de implementatie van een bepaalde functie van een softwaresysteem niet netjes past bin-
nen de modulaire structuur van het systeem. Het gevolg is dat de functie op verschillende
plaatsen in het systeem moet worden geı̈mplementeerd. Dit leidt tot een versnipperde imple-
mentatie die bovendien vervlochten kan raken met de implementatie van andere functies. Als
bij de implementatie bovendien gebruik is gemaakt van een idioom spreek ik van een idioma-
tisch crosscutting concern. Het gebruik van een idioom heeft tot gevolg dat de implementatie
bestaat uit meerdere, sterk gelijkende, stukjes programmacode. Deze stukjes programmaco-
de zijn versnipperd over de modulestructuur van het softwaresysteem, en kunnen vervlochten
zijn met andere stukjes programmacode.

De aanpak die in het proefschrift wordt gebruikt gaat uit van een renovatieproces dat
als doel heeft om de evolutie van bestaande softwaresystemen makkelijker te maken. In het
bijzonder beschouw ik het controlesysteem van een ASML wafer scanner, een apparaat dat
ingezet wordt bij de productie van chips. Een wafer scanner bevat een immens softwaresys-
teem dat bestaat uit ruwweg 15 miljoen regels programmacode. Mijn onderzoek richt zich
op de vraag of het softwaresysteem van een wafer scanner verbeterd kan worden door het
gebruik van idiomen te vervangen door het gebruik van AOP. Het gebruik van idiomen ken-
merkt zich door het relatief veel voorkomen van gelijkvormige stukjes programmacode, die
zijn geproduceerd aan de hand van een voorschrift (het idioom).

In softwaresystemen die geen gebruik maken van AOP kan het voorkomen dat de imple-
mentatie van crosscutting concerns versnipperd is geraakt. Het onderhoud van crosscutting
concerns kan hierdoor worden bemoeilijkt. Als de versnipperde programmacode van een
crosscutting concern automatisch zou kunnen worden aangewezen, dan zou daarmee de taak
van onderhoud verlicht kunnen worden. In hoofdstuk 2 evalueer ik in welke mate dat doel zou
kunnen worden bereikt door het gebruik van drie automatische duplicatie-detectietechnieken.
Met de hand worden vijf crosscutting concerns aangeduid in de programmacode, die vervol-
gens vergeleken worden met de resultaten van de automatische duplicatie-detectietechnieken.
Uit deze vergelijking blijkt dan in welke mate de automatische duplicatie-detectietechnieken
in staat zijn om crosscutting concerns zelfstandig aan te wijzen.

Hoofdstuk 3 beschrijft de ervaringen die zijn opgedaan bij het automatisch renoveren
van crosscutting concerns in het ASML softwaresysteem. Hierbij is steeds gekeken naar een

178 Samenvatting

alternatief voor de huidige implementatie, waarbij het alternatief gebruik maakt van AOP.
Er wordt eerst een systematische aanpak beschreven, die daarna wordt geı̈llustreerd aan de
hand van een concreet crosscutting concern: de controle van parameters. De alternatieve
implementatie die gebruikt maakt van AOP wordt vervolgens vergeleken met de oude imple-
mentatie. Hiervoor worden een aantal bekende kwaliteitsmaten ingezet. De resultaten laten
zien dat het technisch haalbaar is om automatische renovatie in te zetten, en dat met behulp
van AOP significante verbeteringen kunnen worden behaald. Er blijkt echter ook dat het
nodig is om eerst een geschikt ontwerp te maken, en zorgvuldig met AOP om te gaan.

Het automatisch renoveren van programmacode veronderstelt een infrastructuur die in
staat is om programmacode te analyseren en te transformeren. In de case studies die in dit
proefschrift gepresenteerd worden zijn daarvoor verscheidene analyse- en transformatietools
gebruikt. De ervaring leert dat het noodzakelijk is om analyseresultaten te kunnen overdra-
gen aan de transformatietools, zodat die vervolgens de analyseresultaten kunnen gebruiken.
In hoofdstuk 4 bespreek ik daarom hoe ik de gebruikte analyse- en transformatietools kop-
pel, zodanig dat uitwisseling van resultaten mogelijk is. Hiervoor wordt de volgende aanpak
gebruikt: Eerst wijst het analysetool die plekken in de programmacode aan die relevant zijn
voor de analyseresultaten. De analyseresultaten worden vervolgens op die plekken ingevoegd
in de programmacode. Tenslotte leest het transformatietool de programmacode weer in, en
koppelt de analyseresultaten aan de abstracties die relevant zijn voor de uit te voeren trans-
formaties. In hoofdstuk 4 wordt een prototype besproken dat deze aanpak implementeert,
gevolgd door een tweetal demonstraties van de toepassing van dit prototype op het ASML
softwaresysteem.

De implementatie van crosscutting concerns met behulp van idiomen is repetitief, hand-
matig, werk. Het zou dus kunnen voorkomen dat implementaties van idiomatische crosscut-
ting concerns bijzonder veel defecten bevatten. In hoofdstuk 5 wordt het foutafhandelingsme-
chanisme van het ASML softwaresysteem beschouwd. Dit mechanisme is geı̈mplementeerd
met behulp van het zogenaamde return-code idioom, dat veel voorkomt in softwaresystemen
die in oudere programmeertalen, zoals C, beschreven zijn. Het doel in dit hoofdstuk is om de
de dichtheid van defecten te bepalen in het foutafhandelingsmechanisme van het ASML soft-
waresysteem. Daartoe wordt het return-code idioom eerst beschreven, en worden defecten
die mogelijk kunnen optreden bij het toepassen van het idioom vastgelegd in een defectmo-
del. Het defectmodel vormt de basis voor een tool dat in staat is de defecten te vinden in
het foutafhandelingsmechanisme. Dit tool wordt toegepast op de programmacode ten einde
de dichtheid van defecten te bepalen. De verkregen meetresultaten laten zien dat de dicht-
heid van defecten, zoals verwacht, hoog is. Tenslotte beschouwt hoofdstuk 5 een simpele
oplossing die significante verbetering kan bieden.

In hoofdstuk 6 beschrijf ik een methode waarmee idiomatische crosscutting concerns
kunnen worden bestudeerd, en de ervaringen die zijn opgedaan met deze methode tijdens
de uitgevoerde cases voor het ASML softwaresysteem. In het bijzonder wordt er ingegaan
op het crosscutting concern dat verantwoordelijk is voor het traceren van de executie van
de software (tracing). Dit schijnbaar eenvoudige crosscutting concern blijkt significant veel
variatie te bevatten, ondanks dat er een idioom is voorgeschreven aan de programmeurs. Ik
bespreek hoe de waargenomen variatie een probleem vormt voor automatische renovatie,
hoe AOP mogelijk dit soort variatie kan voorkomen, en welke eigenschappen een AOP-taal
zou moeten bezitten ten einde een wenselijk alternatief mogelijk te maken. Tenslotte wordt

179

verder ingegaan op de bruikbaarheid van de gekozen methode, en de representativiteit van de
behaalde resultaten.

Sommige oudere programmeertalen, zoals C, leveren onvoldoende ondersteuning voor
de implementatie van foutafhandelingsmechanismes. Het gevolg daarvan is dat gebruikers
van zulke oude programmeertalen terugvallen op het gebruik van een idioom, zoals bijvoor-
beeld het return-code idioom. Het gebruik van idiomen heeft als nadeel dat er gemakkelijk
fouten mee gemaakt kunnen worden, en dat het een arbeidsintensieve praktijk is. Moderne
programmeertalen bevatten daarom vaak een vorm van structured exception handling (SEH),
dat het gebruik van idiomen grotendeels onnodig maakt. Daarnaast zou het gebruik van AOP
voordelen bieden voor de implementatie van foutafhandelingsmechanismes. In hoofdstuk 7
onderzoek ik de voordelen van deze beide technieken voor het foutafhandelingsmechanis-
me van het ASML softwaresysteem. Er wordt hierbij uitgegaan van de renovatie van een
bestaande softwarecomponent, die stapsgewijs herschreven wordt. Eerst laat ik zien dat het
mogelijk is om het oude idioom bijna geheel te vervangen door SEH. Daarna toon ik aan dat
het gebruik van AOP ook voordelen kan bieden voor de implementatie van foutafhandelings-
mechanismes. Er blijkt echter ook dat inconsistenties die voorkomen in het gebruik van het
oude idioom de voordelen van AOP kunnen begrenzen.

Het onderzoek dat in dit proefschrift beschreven wordt heeft plaatsgevonden in de context
van ASML. Desalniettemin stel ik de volgende generalisaties van de resultaten voor:

• Er is meerdere malen gebleken dat het toepassen van idiomen op industriële schaal kan
leiden tot frequente schendingen van de voorgeschreven idiomen. Het is zeer waar-
schijnlijk dat dit ook voorkomt bij andere (industriële) softwaresystemen. (Hoofdstuk-
ken 5, 6, en 7)

• Het tool SMELL dat wordt beschreven in hoofdstuk 5 zou kunnen worden ingezet om
het gebruik van idiomen tot minder defecten te laten leiden. Hoewel SMELL is toege-
spitst op het foutafhandelingsmechanisme van ASML zou de onderliggende techniek
ook in andere contexten kunnen worden toegepast. De taal Metal zou bijvoorbeeld
geschikt zijn om dergelijke tools te maken. Daarnaast bieden de uitbreidbare tools
CodeSurfer en CodeSonar de mogelijkheid om snel tools als SMELL te ontwikkelen.

• Hoofdstuk 6 beschouwt een algemene methode om idioomschendig-en in bestaande
programmacode in kaart te brengen. Deze methode is gebaseerde op (formele) con-
ceptanalyse, en is voor de interpretatie van de resultaten niet strikt afhankelijk van
specifieke kenmerken van ASML. De toepassing van deze methode op een ander idi-
oom (binnen een andere context) vereist wel dat er veel kennis over het idioom wordt
gebruikt om voldoende gegevens te verzamelen.

• Automatische renovatieprocessen bestaan typisch uit losstaande analyse- en transfor-
matietools die moeten samenwerken. In hoofdstuk 4 wordt een mogelijke overdracht
van gegevens tussen zulke tools beschreven. Het huidige prototype dat deze koppeling
implementeert, genaamd SCATR, kan worden ingezet voor elk analysetool dat in staat
is gegevens in SCATR’s formaat te genereren. Op dit moment kan SCATR echter alleen
omgaan met één enkel transformatietool, namelijk de ASF+SDF Meta-omgeving.

180 Samenvatting

• Foutafhandelingsmechanismes komen voor in elk (industriëel) softwaresysteem. De
resultaten in hoofdstuk 7 wijzen erop dat het gebruik van AOP voor de implementa-
tie van foutafhandelingsmechanismes kan leiden tot verbeteringen, maar ook dat deze
verbeteringen sterk beperkt zijn. Deze waarnemingen zijn in overeenstemming met het
werk van andere onderzoekers naar het gebruik van AOP.

Curriculum Vitae

Full name
Magiel Bruntink

Date of birth
February 6, 1980

Place of birth
Delfzijl, the Netherlands

Nationality
Dutch

Education
October 2003 — March 2008

PhD student (AiO) at the Centrum Wiskunde & Informatica (CWI), Amsterdam, under
the supervision of prof. dr. Arie van Deursen and prof. dr. Paul Klint. The research
conducted during this period was done in the context of the Ideals research project, in
cooperation with ASML and the Embedded Systems Institute in Eindhoven.

September 1998 — Augustus 2003
MSc and BSc degrees (both cum laude) in Computer Science, specialized in Softwa-
re Engineering, at the University of Amsterdam. The MSc phase was completed by
an internship at the Software Improvement Group, Amsterdam. The results of this
internship were published in an international journal.

The first year of the BSc consisted of the Bèta-Gamma Propaedeusis programme at the
University of Amsterdam. The Bèta-Gamma Propaedeusis is an interdisciplinary pro-
gramme which offers the student a combination of natural- and social science courses.
The major field of study during this first year was computer science, while the minor
field of study consisted of economics. The first year examination (propedeuse) was
passed cum laude in August 1999. For obtaining outstanding results during the first
year of study, the “Civi Propedeuseprijs” was awarded.

182 Curriculum Vitae

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimen-
tal aspects. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Faculty
of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Leg-
acy Software Systems. Faculty of Natural Scien-
ces, Mathematics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in Process Al-
gebra. Faculty of Natural Sciences, Mathema-
tics, and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:
Algorithms and Complexity. Faculty of Mathe-
matics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of
Probabilistic, Real-time and Parametric Systems.
Faculty of Science, Mathematics and Computer
Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences,
UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and
Cost-Optimality in Model Checking of Timed and
Hybrid Systems. Faculty of Science, Mathema-
tics and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pac-
king. Faculty of Mathematics and Natural Scien-
ces, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathema-
tics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for
Process Algebra. Faculty of Natural Scien-
ces, Mathematics, and Computer Science, UvA.
2002-11

J.I. den Hartog. Probabilistic Extensions of Se-
mantical Models. Faculty of Sciences, Divisi-
on of Mathematics and Computer Science, VUA.
2002-12

L. Moonen. Exploring Software Systems. Facul-
ty of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Com-
putation to Constraint Satisfaction and Data Mi-
ning. Faculty of Mathematics and Natural Scien-
ces, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Fa-
culty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-
niques for component composition and construc-
tion. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed
Source Code Representations. Faculty of Natural
Sciences, Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty
of Mathematics and Natural Sciences, UL. 2003-
04

T.A.C. Willemse. Semantics and Verification in
Process Algebras with Data and Timing. Facul-
ty of Mathematics and Computer Science, TU/e.
2003-05

S.V. Nedea. Analysis and Simulations of Cataly-
tic Reactions. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Terti-
ary Storage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annotati-
on – CoMPAs. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics
of Object-based Software: a Foundational Ap-
proach. Faculty of Electrical Engineering, Ma-
thematics & Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal
Approach to the Modeling of Collaboration Bet-
ween System Components. Faculty of Mathema-
tics and Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Ap-
proach to Software Components. Faculty of Ma-
thematics and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the
Differencing Method. Faculty of Mathematics
and Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and
Their Use in Interactive Theorem Proving. Facul-
ty of Mathematics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Computing –
Splicing and Membrane systems. Faculty of Ma-
thematics and Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty
of Mathematics and Natural Sciences, UL. 2004-
04

Y. Qian. Data Synchronization and Browsing
for Home Environments. Faculty of Mathematics
and Computer Science and Faculty of Industrial
Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and
Probabilistic Specification Formats. Faculty of
Sciences, Division of Mathematics and Compu-
ter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis:
a Type-Theoretical Formalization and Applicati-
ons. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargai-
ning Games: An Evolutionary Investigation of
Fundamentals, Strategies, and Business Appli-
cations. Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection Techniques
for the Automated Testing of Reactive Systems.
Faculty of Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Re-
presentations, Algorithms and Proofs. Faculty
of Science, Mathematics and Computer Science,
RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of
Mathematics and Computer Science, UU. 2004-
11

I.C.M. Flinsenberg. Route Planning Algorithms
for Car Navigation. Faculty of Mathematics and
Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Pro-
cessing Using Conditionally Guaranteed Bud-
gets. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Sys-
tems. Faculty of Sciences, Division of Mathema-
tics and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Econo-
mics. Faculty of Technology Management, TU/e.
2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimati-
on Using a Single Base Station. Faculty of Ma-
thematics and Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Ve-
rified Distribution. Faculty of Sciences, Divisi-
on of Mathematics and Computer Science, VUA.
2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents. Fa-
culty of Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Pre-
diction of Quality Attributes for Component-
Based Software Architectures. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Facul-
ty of Mathematics and Computer Science, TU/e.
2004-20

N.J.M. van den Nieuwelaar. Supervisory Ma-
chine Control by Predictive-Reactive Scheduling.
Faculty of Mechanical Engineering, TU/e. 2004-
21

E. Ábrahám. An Assertional Proof System for
Multithreaded Java -Theory and Tool Support-
. Faculty of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Remodeling in
Bone Tissue. Faculty of Biomedical Engineering,
TU/e. 2005-02

C.N. Chong. Experiments in Rights Control -
Expression and Enforcement. Faculty of Electri-
cal Engineering, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of Lock-free Pa-
rallel Algorithms. Faculty of Mathematics and
Computing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis
of Internet Applications. Faculty of Mathematics
and Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architec-
ting - A Systematic Approach to Developing
Future-Proof System Architectures. Faculty of
Mathematics and Computing Sciences, TU/e.
2005-06

G. Lenzini. Integration of Analysis Techni-
ques in Security and Fault-Tolerance. Faculty of
Electrical Engineering, Mathematics & Compu-
ter Science, UT. 2005-07

I. Kurtev. Adaptability of Model Transformati-
ons. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -
Lower Bounds and Network Reliability. Faculty
of Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equali-
ty Logic with Uninterpreted Functions. Facul-
ty of Mathematics and Computer Science, TU/e.
2005-10

A.M.L. Liekens. Evolution of Finite Populations
in Dynamic Environments. Faculty of Biomedi-
cal Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Pro-
gramming: Classification and Symbolic Regres-
sion. Faculty of Mathematics and Natural Scien-
ces, UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages.
Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hy-
brid Systems using Simulation Relations. Faculty
of Science, Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Structural Operatio-
nal Semantics. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabi-
listic Systems. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of
pi-Calculus Processes with Replication. Faculty
of Mathematics and Natural Sciences, UL. 2005-
17

P. Zoeteweij. Composing Constraint Solvers.
Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of Sour-
ce Code by Parsing and Rewriting. Faculty of
Natural Sciences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and Re-
plication of Processes with Data. Faculty of Sci-
ences, Division of Mathematics and Computer
Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Faculty
of Science, UU. 2005-21

Y.W. Law. Key management and link-layer secu-
rity of wireless sensor networks: energy-efficient
attack and defense. Faculty of Electrical Engi-
neering, Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional Software De-
ployment Model. Faculty of Science, UU. 2006-
01

R.J. Corin. Analysis Models for Security Proto-
cols. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complexi-
ty of Evolving Systems. Faculty of Science, UU.
2006-03

K.L. Man and R.R.H. Schiffelers. Formal Spe-
cification and Analysis of Hybrid Systems. Fa-
culty of Mathematics and Computer Science and
Faculty of Mechanical Engineering, TU/e. 2006-
04

M. Kyas. Verifying OCL Specifications of UML
Models: Tool Support and Compositionality. Fa-
culty of Mathematics and Natural Sciences, UL.
2006-05

M. Hendriks. Model Checking Timed Automata
- Techniques and Applications. Faculty of Sci-
ence, Mathematics and Computer Science, RU.
2006-06

J. Ketema. Böhm-Like Trees for Rewriting. Fa-
culty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs. Faculty
of Science, Mathematics and Computer Science,
RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Si-
mulations. Faculty of Biomedical Engineering,
TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data. Fa-
culty of Mathematics and Natural Sciences, UL.
2006-10

G. Russello. Separation and Adaptation of Con-
cerns in a Shared Data Space. Faculty of Mathe-
matics and Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and
Probabilistic Choices. Faculty of Science, Ma-
thematics and Computer Science, RU. 2006-12

B. Badban. Verification techniques for Extensi-
ons of Equality Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2006-13

A.J. Mooij. Constructive formal methods and
protocol standardization. Faculty of Mathema-
tics and Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hybrid
Systems. Faculty of Electrical Engineering, Ma-
thematics & Computer Science, UT. 2006-15

M.E. Warnier. Language Based Security for Ja-
va and JML. Faculty of Science, Mathematics
and Computer Science, RU. 2006-16

V. Sundramoorthy. At Home In Service Disco-
very. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed Auto-
mata Models. Faculty of Science, Mathematics
and Computer Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface Speci-
fications. Faculty of Mathematics and Computer
Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and Verifi-
cation of Security Protocols. Faculty of Mathe-
matics and Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for Exo-
genous Coordination of Distributed Systems: Se-
mantics, Implementation and Composition. Fa-
culty of Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous Software
Systems. Faculty of Natural Sciences, Mathema-
tics, and Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfigurable
Network-on-Chip for streaming DSP applicati-
ons. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on Modeling for
Early Detection of Abnormalities in Locally Au-
tonomous Distributed Systems. Faculty of Ma-
thematics and Computing Sciences, RUG. 2007-
03

T.D. Vu. Semantics and Applications of Process
and Program Algebra. Faculty of Natural Scien-
ces, Mathematics, and Computer Science, UvA.
2007-04

L. Brandán Briones. Theories for Model-based
Testing: Real-time and Coverage. Faculty of

Electrical Engineering, Mathematics & Compu-
ter Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Pre-
sentation. Faculty of Science, Mathematics and
Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geometric
Data Structures. Faculty of Mathematics and
Computer Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transition Systems
and Markov Chains. Faculty of Mathematics and
Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data. Fa-
culty of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.
Faculty of Science, Mathematics and Computer
Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in Soft-
ware Development Processes. Faculty of Electri-
cal Engineering, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test plans for Com-
plex Manufacturing Systems. Faculty of Mecha-
nical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and Op-
timising System Behaviour in Time. Faculty of
Sciences, Division of Mathematics and Compu-
ter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving the Qua-
lity of Modeling: A Series of Empirical Stu-
dies about the UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-based Configura-
tion, Integration and Delivery. Faculty of Natu-
ral Sciences, Mathematics, and Computer Scien-
ce,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of Softwa-
re Architecturest. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science Delft
University of Technology. 2007-16

A.H.J.Mathijssen. Logical Calculi for Reaso-
ning with Binding. Faculty of Mathematics and
Computer Science, TU/e. 2007-17

D. Jarnikov. QoS framework for Video Strea-
ming in Home Networks. Faculty of Mathematics
and Computer Science, TU/e. 2007-18

M. A. Abam. New Data Structures and Algo-
rithms for Mobile Data. Faculty of Mathematics
and Computer Science, TU/e. 2007-19

W.Pieters. La Volonté Machinale: Understan-
ding the Electronic Voting Controversy. Faculty
of Science, Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automaton Proofs in
PVS. Faculty of Science, Mathematics and Com-
puter Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic Crosscut-
ting Concerns in Embedded Systems. Faculty of
Electrical Engineering, Mathematics, and Com-
puter Science, Delft University of Technology.
2008-03

