Polynomial and tensor invariants and
combinatorial parameters

Alexander Schrijvelm

1. Introduction

In a recent paper, Baldzs Szegedy [8] characterized the ‘edge model’ of graph parameters.
His proof is based on a highly original combination of methods from invariant theory and
real algebraic geometry.

In this paper we widen scope of applications of Szegedy’s method by using a recent
theorem in [7] that characterizes those tensor subalgebras that arise as invariant ring of the
action of some subgroup of the unitary group on the full tensor algebra.

Our key result is Theorem [1. It concerns a contraction-closed graded #-subalgebra A of
the mixed tensor algebra 7', and it gives necessary and sufficient conditions for an algebra
x-homomorphism f : A — R to be extendible to T — R. The majority of the results before
are preparations to prove this theorem, and most of the results after are applications of it
to combinatorial parameters.

In this paper, we use the notation

(1) [n] :={1,...,n}

for any n € N. Moreover, N = {0,1,2,...}.

2. Extending algebra homomorphisms

We prove a theorem on tensors. We first recall some standard notions of tensor theory.
Let V be a (finite- or infinite-dimensional) real inner product space. Denote

(2) T:=T(V):= é VR,
k=0

This is the tensor algebra over V' (cf. [3]).
We denote, for k > 0and A C T,

(3) Ap = ANVEE,

A subalgebra A of T is graded if A = @, Aj.
For any k € N and 7 € Sg, let © — ™ be the linear function Ty — T}, determined by
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(4) (1@ ®@TE)" = Tr1) @+ ® Ty

for z1,...,x2, € V. A graded subalgebra A is called symmetric if 2™ € A for all kK € N,
xr € Ay, and m € S. If A is symmetric, a function f : A — R is called symmetric if
f(z™) = f(x) for all such k,z, 7. Note that each algebra homomorphism f : T — R is
symmetric.

Let k € Nand 1 <7 < j < k. The contraction operator C; j : A, — Aj_2 is the linear
operator determined by

for z1,...,xp € V. (As usual, Z; means that factor z; is left out from the tensor product.)
A graded subalgebra is contraction-closed if it is closed under the contraction operators.
A subalgebra A is nondegenerate if there is no proper subspace W of V such that A C T'(W).
It was proved in [7] that, if V' is n-dimensional, then the nondegenerate contraction-
closed graded subalgebras of T'(V') are precisely the sets that are the invariant ring of some
subgroup of the orthogonal group O(n). This is a basis in our proof. This result implies
that each contraction-closed graded subalgebra of T' is symmetric.
We define a bilinear function (.,.) : T'x T'— T by

k l
(6) (y,Z):ZZ i,k+j y®z

for k,l e Nand y € Ty, z € 1;.

Theorem 1. Let V be a (finite- or infinite-dimensional) real inner product space. Let A
be a contraction-closed graded subalgebra of T := T(V') and let f : A — R be an algebra
homomorphism. Then f can be extended to an algebra homomorphism T — R if and only
if f is symmetric and f((x,z)) > 0 for each x € A.

Proof. Necessity follows directly from the fact that any algebra homomorphism f: 7 — R
is symmetric and satisfies f((z,x)) > 0 for each = € T'. We prove sufficiency.

1. We first assume that V is finite-dimensional, say V = R", and that A is nondegenerate.
Then, by [7], A = T'¢ for some compact subgroup G of the orthogonal group O(n).

Here, for any U € GL(n, R), the function x — 2V is the unique algebra homomorphism
T — T satisfying 2V = Uz for 2 € V. Then for any subgroup G of GL(n,R):

(7) T .= {z e T|zY =z for each U € G}.

Let £ : T — T be the linear function determined by

(8) E(z) i=kIT1 D 2T

TESk



for k € N and z € T. Since f is symmetric, we know fo& = f.

Introduce variables z1, . .., z,. We can identify the set £(7") of all symmetric tensors with
the polynomial algebra R[zy,...,z,], by identifying ey1) @ - -+ ® efq) with the monomial
Ty1) - Ty, for all k and all f: [k] — [n].

Using this identification, the product pg of polynomials p,q € Rlxy,...,x,]| satisfies
pq=&(p®q). Then

(9) §(TY) =Rz, ..., z,]% = R.

Also, f(pq) = f(p)f(q) for all p,q € R, since f(pq) = f({(p@q)) = f(p®q) = f(p)f(q)
Moreover, we have that for any

(10) e =Y BWEE)
i—1 % 3

So by the theorem of Procesi and Schwarz [6], f|r can be extended to an algebra homo-
morphism Rz,...,z,] — R. Then f o gives the required algebra homomorphism on
T.

II. We now consider the general case where V' is not necessarily finite-dimensional. The
following is easy but useful (where Ci2: X @ X ® Y — Y is given by C2(2' @ 2" ® y) =
(z,2")y):

Claim 1. Let X and Y be finite-dimensional real spaces, where X is an inner product
space, and let a € X ® Y. Define

(11) Z = {0172(.7} & a) | x € X}

Thenae X ® Z.

Proof. Let m = dim Z. Let eq,...,e, form a basis of Y such that eq,..., e, form a basis
of Z. We can write a = Y. | z; ® ¢; for some z1,...,2, € X. Suppose z; # 0 for some
7 > m. Then

(12) Cia(r; ®a) = Z<3§'j,$7j>€i

=1

belongs to Z. As (z;,x;) # 0, this contradicts the condition on ey, ..., ep. O

We have to show that there exists h € V* such that for each k € N and each y € Ay:

(13) fly) = n¥(y),

where the linear function h®* : T, — R is determined by



(14) Rk (21 @ - @ xp) := h(x1) - - h(x)

for z1,...,zp € V.
For each y € T3, let Cy be the column space of y, considering y as matrix in End(V).
So

(15) Cy:=A{yv|veV}

where yv denotes the product of matrix y and vector v. Now for each y, z € T, we have
Cy=Cyyrand Cy+ C, = Cy,r, . 7. Hence the union of the Cy over y € Ay is a subspace
W of V. Then

(16) ACT(W).
To see this, choose y € Ay, for some k. It suffices to show by symmetry that
(17) yc Vel oW

(This follows from the fact (cf. [3] Section 1.14) that (X' @ V)N (X ®Y’) = X' ® Y’ for
any linear spaces X' C X and Y/ CY.)

Let U be a finite-dimensional subspace of V such that y € U®*. Now let X := V®k~1
and Y := U. By Claim[1, it suffices to show that Cj2(w ® y) € W for each w € X. But
this follows from the fact that C 2(w ® y) belongs to the column space of C12(y ®y) € As.
This proves (16).

Since any h € W* can be extended to h € V* such that h = hly, (16) implies that we
can assume that W = V.

Choose a (not necessarily orthonormal) basis B of V. Consider any b € B. By definition
of W, there exists a y, € A and v, € V such that b = yyv,. We can normalize b such that
F(ypyy Jog oy < 1.

For any finite subset B’ of B, define

(18) Hp = {hlg | h € V*,&,h®(y) = f(y) for each y € AN T(lin.hull(B’)) and
|h(b)] <1 for each b € B}.

Then
(19) Hp # 0.
For let U be a finite-dimensional subspace of V' such that y, € U ® U for each b € B’ (this

implies B’ C U). By part I of this proof, there exists an h € U* such that @,h%*(y) = f(y)
for each y € ANT(U). Then for any b € B’, by Cauchy-Schwarz:

(20) |h(b)] = [h(ysos)| < \/(h @ h)(ysyd )\/vive = \/ Fuyy )aJvg ve < 1.



Therefore, define h € V* by: h(b) := h(b) if b € B' and h(b) := 0 if b € B\ B’. Then
h € Hp:, proving (19).

Since Hg/p» € Hp/NHpgn, the intersection of any finite number of sets H g/ is nonempty.
Hence, as Hj is compact by Tychonoff’s theorem, the intersection of all Hp/ is nonempty.
Any h in this intersection is as required by the theorem. |

3. Structured hypergraphs

Let S be a (finite or infinite) collection of finite sets. For each S € S, let I's be a group of
permutations of S. Call functions ¢, defined on S equivalent if 1) = ¢ o for some 7 € I'g.
Let [¢] denote the equivalence class of ¢.

Let V' be a finite set. A structured subset of V' (of type S) is an equivalence class of
functions ¢ : S — V for some S € S.

A structured hypergraph is a pair H = (VH, EH), where VH is a finite set and FH is
a finite multiset of structured subsets of V H. The elements of VH and EH are called the
vertices and edges of H respectively. The set of edges in EH of type S is denoted by EgH.

Let H be the collection of isomorphism classes of structured hypergraphs. Then H is
a semigroup, taking disjoint union as multiplication. A quantum structured hypergraph is
a formal R-linear combination of structured hypergraphs. The quantum structured hyper-
graphs then form the semigroup algebra QH of the semigroup H.

Let H be a structured hypergraph and let ® and ¥ be two distinct edges of H of the
same type, S say. For any ¢ € ® and ¢ € U, let Hy 4 be the structured hypergraph obtained
from H by deleting edges ® and ¥ and identifying ¢(s) and 1(s) for each s € S. Define,
for any ®, ¥ € FH, the quantum structured hypergraph Hg |,s; by

|®| |t Z Hy. if ® and VU are of the same type,

(21) Hp g = HED HET

0 otherwise.
We denote
(22> Ho, w,,. 0,9, = ( o <H<I>1,‘111) T )<1>k7‘1/k'

For any H,J € ‘H and k € N, define

(23) MH,T)= Y (HDey,w,.. 009,

where @1, ..., P, range over distinct edges of H and Wy, ...,V range over distinct edges
of J. This can be extended to a bilinear form A\, : OQH x OH — QH.

Let n € N, and let a : (Jg[n]® — R be such that a|[n]® is I's-invariant, for each S € S.
Define a function f, : QH — R by



) = Y ] aws

x:VH—[n] PEEH

Here ayoq is the common value of a(x o ¢) for ¢ € ®. (As a is I'-invariant, a(x o ¢) is
independent of the choice of ¢ € .)

Let Ko and K7 be the hypergraphs with no edges and 0 and 1 vertex, respectively. We
call a collection H of structured hypergraphs closed if it contains K is closed under taking
disjoint unions and under the operation H — Hy, for H € H and ¢ € ® € EgH and
eV e EgH, for any S € S.

We call a function f : H — R multiplicative if f(Ko) =1 and f(HJ) = f(H)f(J) for
all H,J € H. We call f reflection positive if f(A(H,H)) > 0 for each k € N and each
H e OH.

For each S € S, let Dg be the structured hypergraph with VDg = S and EDg =
{T's,Ts}.

Theorem 2. Let H be a closed collection of structured hypergraphs containing Ki and
Dg for each S € §. Let f : H — R andn € N. Then f = f, for some I'-invariant
a: Us[n}s — R if and only if f(K1) =n and f is multiplicative and reflection positive.

Proof. Let U denote the collection of equivalence classes of functions in (Jgcg[n]®. For
each u € U, introduce a varable z,,. For each H € H, define p,(H) € R[z,, | u € U] by

(25) pn(H) = Z H Tyod-

x:VH—[n] PEEH

So fo(H) = pn(H)(a) (the evaluation of the polynomial p,(H) at a).
We first observe that for any H € ‘H and uq,...,ur € U:

(26) dil e d’lc,ltkpn(H) = Z Z H Tyod,

x:VH—[n] ®1, 2, €EH Qe EH\{®1,...,P}
Virxo®;=u;

where ®1,..., ® range over distinct elements of £ H. Moreover, for any H € H and distinct
P, Uq,..., P,V € FH:

k
(27) pa(Hoywy o) = Y (H X o @i\_1> 1T Txod-

:VH—[n] i=1 PeEH\{®1,Y,...,D;,¥
w?cxoéizxz% i €EEH\{®1,91,....05, ¥}

Indeed, we may assume that for each ¢, ®;,V; : S; — V H for some 5; € S. Now fix some
¢; € ®; and ¢; € ¥;, for each i. Then

k
(28) H‘1>1,\Ill,...,‘1>k,‘11k = <H|FSZ|_1) Z qu’on',qb” ------
i=1

mi€lg



(29) po(Har o) = L5 Y pu(Hyrongr) =
mel's

ITs| ™! Z Z H Tyod =

mels x:VH—[nl ®ecEH\{®' ®"}
x0¢/om=x0g¢'"

ITs| ™! Z Z H Tyod =

x:VH—[n] m€lg SecEH\{9',9"}
xo¢!or=xo0¢!

Z |Xo(1>/|_1 H Tyod-

e PR\ (307)

The latter follows from the fact that for each x : VH — [n], the number of 7 € I'g with
xo ¢ om=yxo¢"isequal to |I's||x o ®|~!. This proves (27).
It implies for any H, J € H:

(30) poe(H, D) = Y pal(H D)oy, 0,0,) =

> X (ﬁmo@irl) I s T o =

OeEH\{®1,...,® VeEN\{U1,..., U
Ui,.,. U €EJ  m:VJ—[n] EEH\{®:1 w} €B\ w}

Viixo®;=no¥,

S (Hu) () (i),

UL,y U, €U \i=1

Now necessity in the theorem follows directly. Trivially, f, is multiplicative. Moreover,

reflection positivity of f, follows from (30), as f,(H) is the evaluation of the polynomial
pn(H) at a.

We next show sufficiency. We can trivially extend p, to an algebra homomorphism
OH — Rz, | u € U]. Next we can ‘pull back’ f:

Claim 1. There is an algebra homomorphism f : po(QH) — R such that f = f o py,.

Proof. For this we must show that for any H € QH: if p,(H) = 0 then f(H) = 0. By (30),
we know that for any H € QH:

(31) if pp(H) = 0 then p,(A\x(H,J)) =0 for each k € N and J € QH.

For any H € H, with edges of types Si,..., Sk say, each monomial occurring in p,(H) is a
product

(32) Tloa] " Tlay)

where a; € [n]% for i = 1,...,k. So in proving that p,(H) = 0 implies f(H) = 0, we



can assume that all hypergraphs occurring in H have edges of the same series of types,
S1,...,SE say. Now we prove p,(H) = 0 = f(H) = 0 by induction on k, the case k =0
being trivial, as f(K1) =n = pp(1).

As M\ (H, H) has no edges, it is a linear combination of hypergraphs with no edges, i.e.,
of powers of K. Since f(K1) =n = p,(K1), it follows that

(33> f()‘k(Hv H)) :pn()‘k(Hﬂ H)) =0,

by (31), as p,(H) = 0. Hence, by the reflection positivity of f, f(\x(H,J)) = 0 for each
J € QH. Now define

k

(34) J =[] Ds.

i=1

Now the sum making \;(H, J) can be decomposed according to the set I of factors Dg, for
which both edges are linked with H and the set L of factors Dg, for which no edges are
linked with H (necessarily |I| = |L|). This gives

(35) Me(H, J) = Z arLHy H Dg;,

I,LC[k] jJjeL
INL=0,|I|=|L|

where a7 7, is a natural number, with ay j, # 0 if I = L = (), and where

(36) Hy = gy (H, ][ Ds))-
el

So M\o(H, Kp) is a linear combination of A\x(H,J) and Hj HjEL Dg; with I, L nonempty
disjoint subsets of [k] with |I| = |L|. Note that A\o(H, Ky) = H. By reflection positivity,
FOW(H, 1)) = 0,

Moreover, f(Hj) = 0 for each nonempty I. This follows by the induction hypothesis

on k, since each structured hypergraph occuring in the quantum structured hypergraph H;
has k — 2|I| < k edges, and since p,(Hy) =0, by (31), as p,(H) = 0. So f(H) = 0. O

Let V be a linear space spanned by the linearly independent vectors b, for v € U. Let
T = T(V). For each H € H and for each linear order ®1,..., P, of the edges of H, let
TH.®,...®, be the following tensor in V&*:

k

(37) T = ) Txo®;-
x:VH—[n] i=1

Let A be the linear space spanned by these tensors. Then A is a contraction-closed graded
subalgebra of T. Let £ : T — R[z, | u € U] be the symmetrization operator. As f is



reflection positive, we know that fo &((x,z)) > 0 for each = € A.
Hence by Theorem|1, fo& can be extended to an algebra homomorphism 7" — R. Define

(38) aq = f(xa))
for each o € | J7[n]T. This gives the required function a. |

We cannot delete the condition that each Dg belongs to H: Let & := {[2]} and let
g = {id[Q]}. Let H be the collection of structured hypergraphs H such that V H is split
into two sets U and W, such that each ¢ € & € FEH has ¢(1) € U and such that for each
w € W there is precisely one ® € FH such that ¢(2) = w for ¢ € ®. Define f(H) := 2/WI.
Then f is multiplicative and reflection positive and f(K1) = 1, but there is no a : [1]> — R
such that f = f,.

Let C} and 0_}4 be the undirected and directed circuit, respectively, with k vertices.

Theorem 3. Let H be a closed collection of structured hypergraphs containing Cy for all
k>1, or Cy for allk > 1. Let f: H — R be multiplicative and reflection positive. Then
K1 € H and f(Ky) is a nonnegative integer.

Proof. First assume that H contains Cj, for all k. Then Ky € H, as K1 = (C1)4, for some
¢,1. We prove that f(K7) is a nonnegative integer. Suppose not. Then there exists an
m € N such that (f(frfl)) < 0.

For each m € S,,, let G; be the graph with vertex set [m]| and edges {i,7(i)} for
i=1,...,m. Then

(39) Z sgn(m)sgn(p)G-G, =
T,pESm
> sen(m)sgn(p) > > (GG sorts, =
7-|-7p€Sm Pq,..., PmeEEGr ¢1€Pq,..., PmEPmM

V,...,UmEEG) 1€V ,...,dmE¥m

Z sgn(m)sgn(p) Z Z K;(¢17¢1:-~~7¢k7¢k)

T,pESm ®1,...,PmEEGT $1€P,..., PmEPm
W,..., Ym€EG), ¥1€¥y,..., YmE¥m

for some (1,91, ..., dm, ¥m) € N. Now for each z € R one has

(40) Z sgn(m)sgn(p) Z Z T BhR) — (T

ﬂ,pGSm DPq,.. PmeEGr ¢1€Pq,..., PmEPmM
Uy, U €EEGp %] €], hm €Wy

for some positive constant ¢ (independent of x).
To see this we can assume x € N (as both sides are polynomials). Then

(41) Z sgn(7)sgn(p) Z Z 2T (P11 br )

Tr,pGSm Dq,.ny PmEEGr $1€P1,..., PmEPM
Wi, Ym€e€EGp ¢¥1€¥,..., YmE¥m



> sen(msen(p) D > [{x :[m] — [z] | Vi € [m] and j €
m,pESm Pq,..., PMEEGr ¢1E€P,..., PmEPmM
U, . Um€EG) 1€V ],...,pmE¥m

2] x(6:(4)) = X (Wi ()} =
SN sen(msen(p) Y. H(01, ... byt €

x:[m]—[z] 7,0ESm ®,...,Pm EEEGH
U1,...,.¥mEEG)
Oy XUy X X Py, x U, | Vi€ [m] and 5 € [2] : x(¢i(4)) = x(¥i(4))}H.

Consider now some x : [m] — [z] such that x(i) = x(j) for two distinct 4, j € [m]. Let o be
the permutation (i,j). Then for 7 and 7 o o, the third summations have the same value,
but sgn(moo) = —sgn(m). So then the sum is 0. Hence we can restrict ourselves to injective
functions x : [m] — [z]. Then the sum is (?)m! times the value for taking x : [m] — [m]
being the identity. Then ¢; and v; can be restricted to those with ¢; = v;. Hence G = G,,.
So (41) is equal to

(42) (Zym! Z sgn(m)sgn(p)m!2™ = m'QZMZ Z sgn(m))* = c(%).

T,pESm TESm
Gr=Gp Gr=G

This proves (40).
It follows with (39) that

(43) 0 < f( Z sgn(m)sgn(p)G-G)) = c(f(ﬁl)) <0,

T,pESm

a contradiction.
The case that Cy € 'H for all k is proved similarly. |

4. Hypergraphs

We now start with deriving more specific combinatorial applications of Theorems[2 and [3.
A hypergraph is a pair H = (VH, EH), where V H is a finite set and EH is a finite multisets
of submultisets of V. H. Let ‘H denote the collection of hypergraphs.

Consider any n € N and any symmetric ¢ : (J,ey[n]" — R. Define a hypergraph param-
eter f. by

(44) feH):== > ] ()

¢:VH—[n|e€EH

Here we take for ¢(e) the multiset {¢(v) | v € e}, ordered arbitrarily. We characterize which
functions f are equal to f. for some c.

The disjoint union of hypergraphs H and H’ is obtained by first making V H and V H’
disjoint (by renaming the vertices) and then taking (VHUV H', EHUEH'), where EHUEH'
is multiset union (taking multiplicities into account).

For Hi,Hy € 'H and k € N, we make a multiset ‘71]31, 1, of hypergraphs as follows.

10



Let H be the disjoint union of Hi and Hs. For distinct eq1,...,e; € EH; and distinct
fi,-.., fx € EHy such that |e;| = |fi| for @ = 1,...,k and for bijections m; : e; — f;, let
H(ey, f1,71,...,€k, fx, 7x) be the hypergraph obtained from H by, for each i = 1,...,k,
deleting e; and f; and for each u € e; identifying u and m;(u). (This might mean repeated
identification if e or f has multiple elements.) Then

(45) jﬁh,Hg :={H(ey, f1,m1,... €k, f&,Tx) | distinct ey, ..., ex € EHy, distinct fi,..., fx €
EHo, bijections 7; : e; — fi}.

Define the H x ‘H matrix My, by

(46) (Myp)my = Y, f(H)

k
HeJTg, m,

for Hy, Hy € H.

We also define a matrix Nyy. A k-labeled hypergraph is a pair (H,u) of a hypergraph
H and an element u of VH®. Let H}, be the collection of k-labeled hypergraphs. For two
k-labeled hypergraphs (H,u) and (J, w), the hypergraph (H,u)-(J, w) is obtained by taking
the disjoint union of H and J, and next identifying w; and w;, for i = 1,..., k. Then Ny
is the Hjy x Hj; matrix defined by

(47) (N ) (), (J0) 2= f((H, ) - (J,w))

for (H,u), (J,w) € H.
Call f: ' H — R multiplicative if f(Ko) =1 and f(H) = f(H1)f(Hz) if H is the disjoint
union of Hy and Ho.

Theorem 4. Let f: H — R. Then the following are equivalent:

(48) (i) f = fe for some n € N and some symmetric function ¢ : |J,en[n]* — R,
(ii) f 4s multiplicative and My, is positive semidefinite for each k € N,
(ili) f is multiplicative and Ny, is positive semidefinite for each k € N.

Proof. The implications (i)==-(iii)==(ii) are direct. Note that H(e1, f1,71,...e€g, f&, k)
is a special case of the K vertex identifying operation for K = 3% | |e;| where |e;| denotes
the cardinality of the hyperedge e;. So My is a sum of matrices Ny i which is positive
semidefinite because each Ny ¢ is positive semidefinite.

The implication (ii)==(i) follows from Theorems[2/and (3] by taking

(49) S :={[m] | m € N}
and setting I, to be the symmetric group on [m]. |

We next consider the uniqueness of ¢. We note that the algebra A is equal to T(V)G

11



where G is the group of transformations of R[xy,...,z4] permuting the variables. (So
|G| =d!.)
For any symmetric ¢ : |J,[n]" — R and any 7 € S, define ¢™ : | J,[n]" — R by

(50) (9) = c(mo @)

for any ¢ € |J,[d]".

Theorem 5. Let ¢,b : |J,[d]* — R be symmetric functions. Then f. = f, if and only if
b= c" for somemw € Sy.

Proof. Sufficiency being direct, we show necessity. For each t € N, let A’ be the contraction-
closed tensor subalgebra spanned by the zp for partitions P of X,, for those n with n; <t
for all 7. So

(51) At c TV,

where V' is the set of polynomials in Rz1,...,z4] of total degree t. Let m =Y _, d".
Then A = T(V*)%, where Sy acts on V by permuting variables.

Since f. = f4, we know that for each p € P[V!]% one has p(c) = p(d). Hence b|V! =
c™|V for some m € Sy. As G is finite, this implies that b = ¢™ for some 7 € Sy. |

5. Undirected graphs — vertex model

Similar results hold for graphs instead of hypergraphs. A graph is a pair G = (VG, EG),
where VG is a finite set and EG is a finite multisets of unordered pairs {u,v} from VG,
possible taken as multiset, where v = v (a loop). The pair {u,v} we sometimes denote by
uv. Let G denote the collection of graphs. As graphs are hypergraphs, terminology and
notation introduced for hypergraphs in Section |4 applies also to graphs.

Consider any n € N and a symmetric function ¢ : [n]? — R. (So ¢ can be considered as
symmetric matrix.) Define a graph parameter f. by

(52) @ i= > I elew), o(v)).

¢:VG—[n)| wweEG

We characterize which graph functions f are equal to f. for some c.
For f:G — R and k € N, define the G x G matrix My, by

(53) (Myk)6162 1= Lgegt, . /(G
for Gl, G2 eqg.
We also define a matrix Ny¢y. A k-labeled graph is a pair (G,u) of a graph G and an

element u of VG*. Let Gj, be the collection of k-labeled graphs. For two k-labeled graphs
(G,u) and (J,w), the graph (G, u) - (J,w) is obtained by taking the disjoint union of G and
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J, and next identifying u; and w;, for ¢ = 1,...,k. Then Ny is the G x Gy matrix defined
by

(54) (N1k) (@) (gw) = FU(Gyu) - (J,w)

for (G,u), (J,w) € Gy.
Call f: G — R multiplicative if f(Ky) =1 and f(G) = f(G1)f(G2) if G is the disjoint
union of G and Gs.

Theorem 6. Let f: G — R. Then the following are equivalent:

(55) (i) f = f. for some n € N and some symmetric function c : [n]> — R,
(ii) f s multiplicative and My, is positive semidefinite for each k € N,
(iii) f 4s multiplicative and Ny, is positive semidefinite for each k € N.

Proof. Similar to Theorem [4, by taking S = {{1,2}} with |S| = 2 and I'g the symmetric
group on S. |

An interesting question is how this theorem relates to the following theorem of Freedman,
Lovész, and Schrijver [2]. For any function a : [n] — R4 and any symmetric function
c: [n]? = R, define a function f,.:G — R by

(56) faclG) = > (H a<¢<v>>) ( 11 c<¢<u>,¢<v>>>

P VG—[n] \veVG weEG

for any undirected graph G. (So f. = f1., where 1 denotes the all-one vector.)

Consider any function f : G — R. Let N t,k be the submatrix of Ny induced by the
k-labeled graphs (G, u) where the vertices in u are distinct. Then Freedman, Lovész, and
Schrijver [2] proved that for each n € N:

(57) f = fa. for some a : [n] — Ry and some symmetric ¢ : [n]> — R if and only if
Jf(Ko) = 1 and Ny, is positive semidefinite and has rank at most n¥, for each
keN.

The uniqueness of ¢ in Theorem 6 can be dealt with in a way similar to Theorem 5. For
any symmetric ¢ : [d]> — R and any 7 € Sy, define ¢ : [d]?> — R by

(58) "(¢) :=c(mo @)

for any k and ¢ € [d]?. In other words, c™(¢) = ¢(N] ¢N,), if we consider ¢ as d x d matrix,
where N is the permutation matrix corresponding to .

Theorem 7. Let c,b: [d]> — R be symmetric functions. Then f. = fy if and only if b = c™
for some ™ € Sy.
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Proof. Similar to the proof of Theorem [5 (in fact easier, since the underlying space V is
finite-dimensional). |

6. Undirected graphs — edge model

We now derive the theorem of Szegedy [8]. Again, let G denote the collection of (undirected)
graphs, where a graph may contain loops and multiple edges, and also ‘pointless’ loops (loops
without a vertex). The ‘duals’ are the hypergraphs H = (VH, EH) such that each vertex
v € VH is in precisely two edges. This gives a reduction to the results of Section [4] but
there are some complications.

Let ¢ : Upenld]® — R be a symmetric function, for some d € N. Define f.: G — R by

(59) (@)= > [ eev)),

¢:EG—[d|veVG

where §(v) takes multiplicities into account, and where ¢(d(v)) is arbitrarily ordered. We
characterize which functions f : G — R are equal to f. for some c.

For G1,G2 € G and k € N, we make a multiset ICg?’GQ of graphs as follows. Let G be the
disjoint union of G; and G3. Choose distinct uq, ..., ur € VG and distinct vy, ...,vp € VH
and choose for each i a bijection ; : dg(u;) — dg(v;) (if any). Let J be the graph obtained
from GH by deleting uq, ..., u; making for each i and each e = uu; € dg(u;) a new edge
connecting v and v, where vv; = m;(e). Then IC(C?H is the multiset of all graphs J obtained
in this way (taking multiplicities into account). Define the G x G matrix M 1k by

(60) (Myr)a =2 jexc I (J)

for G,H € G.

Consider some k € N. A k-exit graph is a pair (G, u) of an undirected graph G and an
element u € VG* such that the u; are distinct vertices, each of degree 1. Let Gj, denote the
collection of k-exit graphs.

If (G,u) and (J, w) are k-exit graphs, then the undirected graph (G, u)-(J, w) is obtained
by taking the disjoint union of G and J, and, for each i = 1,..., k, deleting with u; and w;
and the edges incident with them, and adding a new edge connecting the neighbours of u;
and w;.

For f: G — R, define the Gy x Gy matrix Ny by

(61) (N k) (@) 1wy = FU(Gu) - (J,w))
for (G,v),(G',v") € Gx. A function f : G — R is called multiplicative if f(Ky) = 1 and
f(GUG) = f(G)f(G) for disjoint graphs G and G'.

The equivalence of (i) and (iii) in the following theorem is the theorem of Szegedy [8].

Theorem 8. For any f : G — R, the following are equivalent:
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(62) (1) f = fe for somen €N and c:J,en[n]' — R,
(ii) f 4s multiplicative and My, is positive semidefinite for each k € N.
iii) f is multiplicative and Ny, is positive semidefinite for each n € N.
f7

Proof. Similar to Theorem [4. We take S as in Theorem |4, and restrict H to the class
of hypergraphs such that each vertex is in precisely two edges. This gives a collection of
structured hypergraphs satisfying the conditions of Theorem [3. Interchanging the roles of
vertices and edges gives the embedded graphs. |

We finally consider the uniqueness of ¢. We note that (by Weyl’s First Fundamental
Theorem) the algebra A defined in the proof of Theorem [2/is equal to T'(V)%, where G is
the orthogonal group O(d).

For any U € O(d), define ¢V : [d]?> — R by

(63) (¢) = c(UTgU),

considering ¢ as symmetric matrix in R?¢. The following theorem extends a theorem of
Szegedy [8].

Theorem 9. Let ¢,b : |J,[d]* — R be symmetric functions. Then f. = fy if and only if
b=cY for some U € O(d).

Proof. Sufficiency being direct, we show necessity. Since f. = f4, we know that for each
p € P[V]Y one has p(c) = p(d). This implies that b = ¢V for some U € O(d). |

7. Directed graphs

A directed graph is a pair D = (VD,ED), where VD is a finite set and ED is a finite
multisets of ordered pairs (u,v) from VD, possible with u = v (a loop). Let D denote the
collection of directed graphs.

For any function ¢ : [d]> — R (for some d), define f.: D — R by

(64) fo(D):= > I o), o)

¢:VD—[d] e=(u,v)€EED

for D € D. We characterize the functions f : D — R for which f = f. for some real-valued
c.

For D;,Dy € D and k € N, we make a multiset J 51’ p, Of hypergraphs as follows.
Let D be the disjoint union of Dy and D,. For distinct eq,...,ep € ED; and distinct
fiy--o fx € EDg, let D(ey, fi,..., ek, fr) be the hypergraph obtained from D by, for each
i =1,...,k, deleting e; and f; and identifying the tails of ¢; and f;, and identifying the
heads of e; and f;. Then

(65) JghDQ := {D(e1, f1,-.-, €k, fr) | for distinct eq,...,ex € ED; and distinct
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fl;---,fk € EDQ}

For f:D — R and k € N, define the D x D matrix My by
(66) (Myx)p1,02 = Yopegp, ,, (D)

for Gl, G2 eqg.

We also define a matrix Nyj. A k-labeled directed graph is a pair (D, u) of a graph D
and an element u of V.D*. Let Dy, be the collection of k-labeled directed graphs. For two
k-labeled directed graphs (D, u) and (J,w), the directed graph (D, u) - (J,w) is obtained by
taking the disjoint union of D and J, and next identifying u; and w;, for ¢ = 1,..., k. Then
Ny i is the Dy x Dy, matrix defined by

(67) (Nf1)(Dow),(Jw) = (D) - (J,w))

for (D, u), (J,w) € D.
Call f: D — R multiplicative if f(Ky) =1 and f(D) = f(D1)f(D2) if D is the disjoint
union of D and Ds.

Theorem 10. Let f : D — R. Then the following are equivalent:

(68) (i) f = f. for some d € N and some function c : [n]> — R,
(ii) f s multiplicative and My, is positive semidefinite for each k € N,
(iii) f 4s multiplicative and Ny, is positive semidefinite for each k € N.

Proof. The proof is similar to that of Theorem [4l In this case, S := {{1,2}} and I'(; 5
consists only of the identity permutation on {1, 2}. |

The uniqueness of ¢ in Theorem [10 can be dealt with in a way similar to Theorem [5.
For any c: [d]? — R and any 7 € Sy, define ¢™ : [d]? — R by

(69) "(¢) :=c(mo @)

for any k and ¢ € [d]?. In other words, ¢"(¢) = c(M] $M,), if we consider ¢ as d x d
matrix, where M is the permutation matrix corresponding to .

Theorem 11. Let ¢,b: [d]> — R. Then f.= fy if and only if b = c™ for some 7™ € Sy.

Proof. Similar to the proof of Theorem [5/ (in fact easier, since the underlying space V is
finite-dimensional). |

Theorem 10 relate to a result of Lovasz and Schrijver [5], although the precise relation
is unclear. For any function a : [d] — R4 and any function ¢ : [d]? — R, let f,.: D — R be
defined by
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(70) faeD):= > (H a(¢<v>>)< 11 c<¢<u),¢<v>)>

¢:VD—[d] \weVD uwwelD

for any directed graph D. (So f. = f1,.)

Consider any function f : D — R. For any n, let M tn be the submatrix of My,
induced by the rows and columns indexed by n-vertex-labeled directed graphs (G, v) where
all vertices in v are distinct. Then Lovéasz and Schrijver [5] proved that for each d € N:

(71) Let f : D — R. Then f = f,. for some a : [d] — Ry and some c: [d]?> — R if
and only if f(K¢y) =1 and My, is positive semidefinite and has rank at most d",
for each n € N.

8. Graphs embedded on surfaces

We next derive a characterization for parameters of graphs embedded on an oriented surface.
Consider pairs (G, 1), where G is an undirected graph and v is an embedding of G onto an
oriented surface. (Here a surface may be a disjoint union of connected surfaces.)

Call two embeddings equivalent if for each vertex v, the edges incident with v leave
v in the same clockwise cyclic order in the two embeddings. So an equivalence class is
determined by the clockwise cyclic orders of the edges leaving the vertices. Each equivalence
class contains a unique cellularly embedded graph — unique op to homeomorphisms.

Therefore, we define an cellularly embedded graph as a pair (G,7), where ~ assigns to
each vertex v of G a cyclic order of the edges incident with v. Let G™ denote the collection
of cellularly embedded graphs.

Choose d € N. Call ¢ : (Jcnld]¥ — R cyclic, if for each k, one has c¢(¢ o (1,2,...,k)) =
c(¢) for each k and each ¢ € [d]*. Here (1,2,...,k) denotes, as usual, the cyclic permutation
of [k] bringing i to ¢ + 1 mod k, for each i.

Define f, : G — R by

(72) foGy)y = > ] eleo(6(v)),

¢:EG—[d] vEV G

where we take any linear order on ¢(v) which induces the cyclic order v,. We characterize
which functions f : G*™ — R are equal to f. for some real-valued cyclic c.

For G1,G5 € G and t € N, we make a multiset K&,Gz of cellularly embedded graphs
as follows. Let G be the disjoint union of G; and G9. For any distinct uy,...,ur € VG1 and
wi,...,w, € VGe and bijections m; : §(u;) — 6(w;) for i = 1,..., k, each maintaining the
cyclic order, let G(uy,wy,m,. .., u,, wg, T;) be the graph obtained by for each i = 1,...,k
and each e € §(u;), making a new edge connecting the vertex incident with e unequal to u;
and the vertex incident with 7(e) unequal to w;. Then

(73) Kayao = {G(ur,w,m1,. .., up, wg, ) | distinet wug,...,u, € VG, distinct
w1, ..., wx € VGa, bijections 7; : 6(u;) — 6(w;) maintaining the cyclic order}.
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Define the Ge™P x Gemb matrix M ¢ by

(19 (Mp)ene: = Saexg, o, C)

for G1,G2 € G.

Consider some k € N. A k-exit cellularly embedded graph is a pair (G,u) of cellularlly
embedded graph G and an element v € VG* such that the u; are distinct vertices, each of
degree 1. Let ggmb denote the collection of k-exit cellularly embedded graphs.

If (G, u) and (J,w) are k-exit cellularly embedded graphs, then the cellularly embedded
graph (G,u) - (J,w) is obtained by taking the disjoint union of G and .J, and, for each
i=1,...,k, deleting u; and w; and the edges incident with them, and adding a new edge
connecting the neighbours of u; and w;.

For f: G — R, define the Q,‘;mb X Q,’imb matrix My, by

(75) (M k) (G, () = F(Gu) - (J,w))

for (G,u), (G',w) € GomP.
A function f : G — R is called multiplicative if f(Ky) = 1 and f(GUG") = f(G)f(G)
for disjoint cellularly embedded graphs G' and G’.

Theorem 12. For any f : G — R, the following are equivalent:

(76) (i) f = fe for some d € N and some cyclic ¢ : yen[d)* — R,
(ii) f s multiplicative and My, is positive semidefinite for each n € N,
(ili) f is multiplicative and Ny, is positive semidefinite for each n € N.

Proof. Similar to Theorem 8. We take for S := {[m] | m € N} and for m € N, I';,,| consists
of all cyclic permutations of [m]|. Moreover, H consists of all structured hypergraphs such
that each vertex is in precisely two edges. Interchanging the roles of vertices and edges
gives the embedded graphs. |

One may show, similar to above:

Theorem 13. Let c,b: U, cnl[d]" — R be cyclic. Then fo(G) = f,(G) for each cellularly
embedded graph G if and only b = cV for some U € O(d).

Proof. Similar to above. |

9. Rooted forests

Another application of the theorem is inspired by the work of Kreimer [4] and Connes and
Kreimer [1] on the Hopf algebra of rooted trees as applied to renormalization in quantum
field theory.
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A rooted forest F is a directed graph with cycles such that each vertex is entered by at
most one edge. The vertices not entered by any edges are called the roots of F'. The set of
vertices entered by one edge and not left by any edge are called the tails of F'. The sets of
roots and tails of F' are denoted by F' and T'F, respectively. For any tail ¢, let P, be the
sequence of vertices of the unique path starting in a root and ending in ¢, while deleting ¢
from P,. (The physical interpretation is that the tails are vertices of a Feynman graph, and
the nontail vertices are renormalization fragments of the Feynman graph. Then P, gives
the sequence of fragments containing t.)

Consider any n € N and a symmetric function ¢ : (J;[n]" — R. Define a rooted forest
parameter f. by

(77) fo(Fy=">_ ] ele(P)).

¢:VF\TF—[n]teTF

We characterize which graph functions f are equal to f. for some c.

If t and u are distinct tails of a rooted forest F' with |P;| = |P,|, let F}, be rooted forest
obtained as follows. Write P, = (v1,...,vy) and P, = (w1,...,wy,). Identify the paths
P, U {t} and P, U {u}. Delete ¢t and u, and delete all arcs that are not on any other path
from root to tail than P, (= P,). (this might mean that some vertices on this path now
become roots, without outgoing edges.)

For forests F' and J and k € N, let

(78) Tty = {F D)ty ...t | distinet ¢y, 4 € TF, distinct ug, ..., up, € TJ}.

Let F denote the collection of rooted forests. For f : F — R and k € N, define the
F x F matrix My, by

(79) (Myk)rg = Ygegy , F(G)

for F,J € F.

We also define a matrix Ny . A k-labeled rooted forest is a pair (F,u) of a rooted forest
F and an element u of TF*. Let F;, be the collection of k-labeled rooted forests. Then N ok
is the Fj x Fj matrix defined by

(80) (Nyr) (P, (da0) 7= FUET )y wr g or,)

for (F,u), (J,w) € Fy.
Call f: F — R multiplicative if f(Ko) =1 and f(F) = f(F1)f(F») if F is the disjoint
union of F; and Fs.

Theorem 14. Let f : F — R. Then the following are equivalent:
(81) (i) f = fc for some n € N and some symmetric function ¢ : | J,[n]" — R,

ii 1s multiplicative and My is positive semidefinite for each k € N,
f7
(iii) f is multiplicative and Ny, is positive semidefinite for each k € N.
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Proof. Similar to Theorem [4. We take S := {[m] | m € N} and let ', consist only of the
identity permutation. Moreover, H consists of all structured hypergraphs H such that for
any two edges ®, ¥ of H and ¢ € ®, ¢ € ¥, say of types [m] and [p] respectively, one has
that if ¢(i) = ¥ (j) for some i € [m] and j € [p], then i = j and ¢(i') = ¢ (¢') for i =1,... 4.

Any rooted forest F' gives such a structured hypergraph H, as follows. Let VH :=
VF\TF. For each t € TF, we make an edge of H: let m be the length (= number
of edges) of the (unique) path from a root to t. Define ¢y : [m] — V H by setting, for
i=1,...,m, ¢(i) to be the ith vertex along this path. (So ¢:(1) is a root and R¢.(m) is
the one but last vertex of the path.) Let ®; := {¢;}. Finally define FH := {®; | t € TF}.

The hypergraph constructed this way belongs to H, and conversely, each H € H comes
in this way from a rooted forest. |
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