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In this paper, we present Reo, a paradigm for composition of software components based

on the notion of mobile channels. Reo is a channel-based exogenous coordination model

wherein complex coordinators, called connectors are compositionally built out of simpler

ones. The simplest connectors in Reo are a set of channels with well-defined behavior

supplied by users. Reo can be used as a language for coordination of concurrent

processes, or as a “glue language” for compositional construction of connectors that

orchestrate component instances in a component-based system. The emphasis in Reo is

on connectors and their composition only, not on the entities that connect to,

communicate, and cooperate through these connectors. Each connector in Reo imposes a

specific coordination pattern on the entities (e.g., components) that perform I/O

operations through that connector, without the knowledge of those entities.

Channel composition in Reo is a very powerful mechanism for construction of

connectors. We demonstrate the expressive power of connector composition in Reo

through a number of examples. We show that exogenous coordination patterns that can

be expressed as (meta-level) regular expressions over I/O operations can be composed in

Reo out of a small set of only five primitive channel types.

1. Introduction

Modular design and construction of software involves modules that rather intimately

know and rely on each other’s interfaces and fit together like pieces in a jigsaw puzzle. In

contrast, software components are expected to be more independent of each other and the

specific application environments wherein they are deployed. Because modules can be less

independent of their application environments, the provisions for the required interfacing

among them can be designed into the modules that make up a modular system. However,

if the functionality of each such module is to be supported by a component instead, the

bulk of this interfacing must be left out of the individual components, because provisions

for interfacing of a component depend on the context wherein it is deployed and the other

components that it may interact with. The components that comprise a system, thus,

typically do not exactly fit together as pieces of a jigsaw puzzle: they leave significant

interfacing gaps that must somehow be filled with additional code. Such interfacing code
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is often referred to as “glue code” and is typically highly special purpose and specific.

Simplified programming languages, sometimes called scripting languages, are often used

to write such glue code.

The (scripting) programs that constitute the glue code are inherently no different

than other software. In complex systems, the bulk of the specialized glue code by itself

can grow in its size and rigidity, rendering the system hard to evolve and maintain, in

spite of the fact that this inflexible code wraps and connects reusable, maintainable, and

replaceable components.

An alternative to writing scripts or specialized glue code is to construct the glue code

compositionally, out of primitive connectors. A promising approach in this direction is to

use channels as the primitives out of which such connectors are constructed. Reo defines

the primitive operations that allow composition of channels into complex connectors.

A channel is a point-to-point medium of communication with its own unique identity

and two distinct ends. Channels can be used as the only primitive constructs in com-

munication models for concurrent systems. Like the primitive constructs in other com-

munication models, channels provide the basic temporal and spatial decouplings of the

parties in a communication, which are essential for explicit coordination. Channel-based

communication models are “complete” in the sense that they can easily model the prim-

itives of other communication models (e.g., message passing, shared spaces, or remote

procedure calls). Furthermore, channel-based models have some inherent advantages over

other communication models, especially for concurrent systems that are distributed, mo-

bile, and/or whose architectures and communication topologies dynamically change while

they run:

— Efficiency: Like remote procedure calls and message passing, channel-based models

support point-to-point communication. As such, in contrast to shared data space

models, the intended target of communication is always unique and internally known

to the system. In truly distributed systems, this allows more efficient implementations

of point-to-point models.
— Security: In shared data space models, the data in every communication (if not its

actual information content) is always exposed for everyone to observe and consume.

Furthermore, third parties can, accidentally or intentionally, produce data that look

like, and thus may get co-opted as, the data of some particular communication. In

contrast, point-to-point models shield communication from accidental exposure to or

intentional interference by third parties.
— Architectural Expressiveness: Figure 1 shows examples of the connections among

component instances (represented as boxes) using three different communication mod-

els. In this figure, channels and direct connections are shown as straight lines; the

shared data space is shown as an amorphous blob; and the software bus is shown

as an elongated rectangle. A point-to-point communication model of an application

(Figure 1.a) represents its communication pattern and is highly expressive of its ar-

chitecture: in such a model, it is clear to see which other components or entities can

possibly be affected if a given component or entity is modified or replaced. Models

such as shared data spaces (Figure 1.b) and software buses (Figure 1.c) are not archi-

tecturally expressive because they contain no explicit representation of such relevant
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information as which specific components or entities actually communicates with each

other.

— Anonymity: Anonymous communication means that the parties involved in a com-

munication need not necessarily know each other. In contrast to remote procedure

calls or message passing models, channel-based models can support the anonymous

communication which is one of the hallmarks of shared data space models.

(b) Shared Data Space (c) Software Bus(a) peer−to−peer
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Fig. 1. Architectural expressiveness

The characteristics of channel-based models are attractive from the point of view

of coordination. Dataflow models, Kahn networks (Kahn, 1974), and Petri-nets can be

viewed as specialized channel-based models that incorporate certain basic constructs for

primitive coordination. IWIM (Arbab, 1996; Katis et al., 2000) is an example of a more

elaborate coordination model based on channels, and Manifold (Bonsangue et al., 2000)

is an incarnation of IWIM as a real coordination programming language that supports

dynamic reconfiguration of Kahn network topologies.

A common strand running through these models is a notion that is called “exogenous

coordination” in IWIM (Arbab, 1998). This is the concept of “coordination from outside”

the entities whose actions are coordinated. Exogenous coordination is already present,

albeit in a primitive form, in dataflow models: unbeknownst to a node, its internal ac-

tivity is coordinated (or, in this primitive instance, merely synchronized) with the rest

of the network by the virtue of the input/output operations that it performs. IWIM and

Manifold allow much more sophisticated exogenous coordination of active entities in a

system.

In this paper we describe Reo, a channel-based model for exogenous coordination intro-

duced in (Arbab and Mavaddat, 2002). The name Reo is pronounced “rhe-oh” and comes

from the Greek word ρεω which means “[I] flow” (as water in streams and channels). In

plain English text, ρεω is best transcribed as Reo.

Our work on Reo builds upon the IWIM model of coordination and the coordination

language Manifold, and extends our earlier work on components. In (Arbab et al., 2000a)

a language for dynamic networks of components is introduced, and in (de Boer and Bon-

sangue, 2000) a compositional semantics for its asynchronous subset is given. A formal

model for component-based systems is presented in (Arbab et al., 2000b), together with a

formal-logic-based component interface description language that conveys the observable

semantics of components, a formal system for deriving the semantics of a composite sys-

tem out of the semantics of its constituent components, and the conditions under which

this derivation system is sound and complete. A concrete incarnation of mobile channels
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to support our formal model for component-based systems is presented in (Scholten,

2001). Generalization of data-flow networks for describing dynamically reconfigurable or

mobile networks has also been studied in (Broy, 1995) and (Grosu and Stoelen, 1996) for

a different notion of observables using the model of stream functions.

Reo is based on a calculus of channels wherein complex connectors are constructed

through composition of simpler ones, the simplest connectors being an arbitrary set of

channels with well-defined behavior. Reo can be used as the “glue code” in Compo-

nent Based Software Engineering, where a system is compositionally constructed out

of components that interact and cooperate with each other anonymously through Reo

connectors.

The rest of this paper is organized as follows. The basic concepts of components,

connectors, channels, etc. are introduced in Section 2. What Reo expects from channels

is described in Section 3. Most of the channel operations defined in Section 3 are not to

be used in the (instances of) components directly; they are low-level operations that are

used internally by Reo to define its higher-level operations on connectors. Connectors

and channel composition are discussed in Section 4. Patterns and channel types are

described in Sections 5 and 6, respectively. Sections 7, 8, and 9 provide an insight into the

operational semantics of Reo with hints of its actual implementation. Section 10 contains

a number of examples of simple connectors constructed out of channels. In Section 11 the

expressiveness of the compositional paradigm of Reo is demonstrated through a number

of more complex connectors that can be used to implement any coordination pattern

that can be expressed as a regular expression over channel input/output operations. In

contrast to the informal operational semantics described in Sections 7, 8, and 9, Section 12

contains an overview of a particularly interesting formal coalgebraic semantics for Reo.

Finally, a summary of our conclusions and future work is presented in Section 13.

2. Basic Concepts

Reo is a coordination model and as such has very little to say about the computational

entities whose activities it coordinates. These entities can be fragments or modules of

sequential code, passive or active objects, threads, processes, agents, or software compo-

nents. Without loss of generality, we refer to these entities as component instances in Reo.

From the point of view of Reo, a system consists of a number of component instances

executing at one or more locations, communicating through connectors that coordinate

their activities. This is shown in Figure 2, where component instances are represented

as boxes, channels as straight lines, and connectors are delineated by dashed lines. Each

connector in Reo is, in turn, constructed compositionally out of simpler connectors,

which are ultimately composed out of channels. This is why each dashed closed curve

representing a connector in Figure 2 contains only a set of channels connected together

in a specific topology.

A component instance, p, is a non-empty set of active entities (e.g., processes,

agents, threads, actors, etc.) whose only means of communication with the entities out-

side of this set is through input/output operations that they perform on a (dynamic) set

of channel ends that are connected to p. The communication among the active entities
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Fig. 2. Components and connectors

inside a component instance, and the mechanisms used for this communication, are of no

interest. Likewise, Reo is oblivious to the synchronization, mutual exclusion, and coordi-

nation that may have to take place among the active entities inside a component instance

for their proper utilization of the channel ends that are connected to that component in-

stance. All these details are internal to a component instance and, thus, irrelevant. What

is relevant is only the inter-component-instance communication which takes place exclu-

sively through channels that comprise Reo connectors. Indeed, the constituents inside a

component instance may themselves be other component instances that are connected

by Reo connectors.

A component is a software implementation whose instances can be executed on physi-

cal or logical devices. Thus, a component is an abstract type that describes the properties

of its instances.

A physical or logical device where an active entity executes is called a location. Ex-

amples of a location include a Java virtual machine; a multi-threaded Unix process; a

machine, e.g., as identified by an IP address; etc. A component instance may itself be

distributed, in the sense that its constituents may be executing at different locations (in

which case, this too is an internal detail of the component instance to which Reo is obliv-

ious). Nevertheless, there is always a unique location associated with every (distributed)

component instance, indicating where that component instance is (nominally) located.

There can be zero or more component instances executing at a given location, and com-

ponent instances may migrate from one location to another while they execute (mobility).

As far as Reo is concerned, the significance of a location is that inter-component commu-

nication may be cheaper among component instances that reside at the same location.

The only primitive medium of communication between two component instances is a

channel, which represents an atomic connector in Reo. A channel has its own unique

identity. Channels are dynamically created in Reo and they are automatically garbage

collected; i.e., they are not explicitly destroyed.

A channel itself has no direction, but each channel in Reo has exactly two directed

ends, with their own identities, through which components refer to and manipulate that

channel and the data it carries. There are two types of channel ends: sources and sinks.

A source channel end accepts data into its channel. A sink channel end dispenses data

out of its channel. A channel end that is known to a component instance can be used by

any of the active entities inside that component instance in Reo operations.
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Channels are used in Reo exclusively to transfer data using input/output operations

performed on their ends (specifically, observe that channels do not support “message

passing” with the “method-call” semantics). A subset of Reo operations (e.g., the in-

put/output operations) can be performed by (an entity inside) a component instance on

a channel end, only if the channel end is connected to that component instance. The

identity of a channel-end may be known to zero or more component instances, but each

channel end can be connected to at most one component instance at any given time. The

connection of a channel end to a component instance is a logical notion that is indepen-

dent of the locations of the channel end and the component instance. The active entities

inside a component instance that shares the same location with one of its connected chan-

nel ends may be able to more efficiently manipulate that channel end, but co-location

(of component instances and their connected channel ends) is not a prerequisite for any

such operation.

Both components and channels are assumed to be mobile in Reo. A component in-

stance may move from one location to another during its lifetime. When this happens,

the channel ends connected to this component instance remain connected, preserving the

topology of channel connections. Furthermore, a channel end connected to a component

instance may be moved by the active entities inside that component instance to another

location, perhaps to enhance the efficiency of subsequent operations on this channel end,

still preserving the topology of channel connections. Irrespective of locations, a chan-

nel end connected to a component instance may be disconnected from that component

instance, and connected to another component instance. This, of course, dynamically

changes the topology of channel connections in the system.

3. Primitive Channel Operations

The set of primitive operations on channels and channel ends in Reo is summarized in

Table 1. The names of all these operations begin with an underscore because they are to

be used internally by Reo only: (the active entities inside) component instances are not

allowed to perform these operations directly.

The first column in Table 1 gives the syntax of the operations. Italics denote meta-

symbols. Square brackets are meta-symbols that indicate optional parameters. The ar-

gument chantype designates a channel type, e.g., one of the identifiers that appear in

Tables 6 and 7.

— The parameter loc identifies a location.

— The parameter e stands for a channel-end-value, which is either a source or a sink

end of a channel.

— The optional parameter t indicates a time-out value greater than or equal to 0. When

no time-out is specified for an operation, it defaults to ∞. An operation returns with a

result that indicates failure if it does not succeed within its specified time-out period.

— The parameter conds is a channel wait condition expression described in Section 3.6.

— The parameter inp is a sink of a channel, from which data items can be obtained.

— The parameter outp is the source of a channel, into which data items can be written.
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Operation Con. Description

create(chantype) - Creates a channel of type chantype and returns the iden-
tifiers of its two channel ends.

forget(e) N changes e such that it no longer refers to the channel end
it designates.

move(e, loc) Y moves e to the location loc.
connect([t,] e) N Connects the specified channel end, e, to the component

instance that contains the active entity that performs this

operation.
disconnect(e) N Disconnects the specified channel end from the component

instance that contains the active entity that performs this
operation.

wait([t,] conds) N Suspends the active entity that performs this operation,
waiting for the conditions specified in conds to become
true for the specified channel ends.

read([t,] inp[, v[, pat]]) Y Suspends the active entity that performs this operation,
waiting for a value that can match with pat, to become
available for reading from the sink channel end inp into
the variable v. The read operation is non-destructive: the
value is copied from the channel into the variable, but the
original remains intact.

take([t,] inp[, v[, pat]]) Y This is the destructive variant of read: the channel loses
the value that is read.

write([t,] outp, v) Y Suspends the active entity that performs this operation,
until it succeeds to write the value of the variable v to the
source channel end outp.

Table 1. Primitive channel operations

— The parameter v is a variable from/into which a data item is to be transferred

into/from the specified channel end.

— The parameter pat is a pattern (see Section 5) that must match with a data item for

it to be transferable to v.

The second column in Table 1 indicates whether or not a connection between the com-

ponent instance and the channel end involved in an operation is a prerequisite for the

operation. Clearly, this is irrelevant for the create operation. The operations forget,

connect, disconnect, and the conditions in wait can specify any channel end irre-

spective of whether or not it is connected to the component instance involved. The move

and the I/O operations read, write, and take, on the other hand, fail if the active

entities that perform them reside in component instances that are not connected to the

channel ends involved in these operations.

Every channel type in Reo must support the primitive operations in Table 1, with a

“reasonable variation” of the semantics for each operation as described below. We allow

“reasonable variations” in the precise semantics of these primitives because we wish to

allow for such varieties of channels as “read-only” channels, “immutable” channels, and

“lossy channels” each of which may require slight deviations in the exact semantics of

how some of these operations are supported. For instance, a read-only channel may not

support the destructive effect of take, an immutable channel may not allow destruction
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or modification of the data items it contains through take and write, and a lossy

channel may throw away certain data items at the time of their write, etc.

As far as Reo is concerned, the effect of concurrently performing more than one I/O

operation on a channel end is undefined. For instance, if an I/O operation is already

pending on a channel end e and another active entity performs another I/O operation on

e, the channel to which e belongs can reject the second operation as an error, preempt

the first operation and perform the second, serialize the operations in some order, etc.,

or even even behave unpredictably. Reo simply does not depend on this aspect of the

behavior of its primitive channels. See Section 4.1.3 for concurrent I/O operations on

nodes.

3.1. Channel create

The create operation creates a channel and returns the identifiers of its pair of channel

ends†. The ends of a newly created channel are not initially connected to any compo-

nent instance. Like other values, channel end identifiers can be spread within or among

component instances by copying, parameter passing, or through writing/reading them

to/from channel ends. This way, channel ends created in an active entity within one

component instance can become known in other active entities in the same or another

component instance. There is no explicit operation in Reo to delete a channel. In prac-

tice, useless channels that can no longer be referred to by any (active entity in any)

component instance may be garbage collected.

3.2. Channel forget

The forget operation changes its e argument such that it no longer refers to the chan-

nel end it designates. An active entity that (indirectly) performs this operation (by

performing its corresponding Reo operation forget described in Section 4.1.2) causes

e to be forgotten by all active entities inside the same (immediately enclosing) compo-

nent instance. This contributes to the eligibility of a channel as a candidate for garbage

collection.

3.3. Channel move

The move operation moves the channel end identified by its e argument to the specified

location. Although mobility of channel ends has significant consequences both for the

applications as well as the implementation of channels, it is indeed transparent to Reo.

The only consequence of moving a channel end is that it may allow more efficient access

to the channel end and the data content of the channel by subsequent channel operations

performed by the active entities at the new location. The location or moving of a channel

end does not disrupt the state of or the flow of data through the channel.

† Earlier papers on Reo stipulated an optional pattern argument for create to specify a filter for the
new channel. This has now been dropped because the same effect can be obtained by join’ing an
appropriate Filter(pattern) channel with any arbitrary channel. See Section 6.2.
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3.4. Channel connect

The connect operation succeeds when the specified channel end is connected to the com-

ponent instance that contains the active entity performing it. Pending connect requests

on the same channel end are granted on a first-come-first-serve basis.

The connect operation allows the same channel end to be dynamically passed around

to be used by different component instances, while it preserves the one-to-one property

of channel connections: at any given time, there is at most one component instance

connected to each of the two ends of a channel. This way, Reo guarantees the soundness

and completeness properties that are shown to be required for compositionality (Arbab

et al., 2000b).

3.5. Channel disconnect

The disconnect operation succeeds when the specified channel end is disconnected from

the component instance that contains the active entity performing it. Disconnecting a

channel end pre-empts and retracts all read, take, and write operations that may

be pending on that channel end; as far as these operations are concerned, it is as if the

channel end were not connected to the component instance in the first place. One end of

a channel is oblivious to whether or not its opposite end is connected or moves.

3.6. Channel wait

The wait operation succeeds when its condition expression is true. The parameter conds

is a boolean combination (using and, or, negation, and parentheses for grouping) of a

set of predefined primitive conditions on channel ends. For our purposes in this paper,

the primitive channel conditions are the ones defined in Table 2. Although the primitive

conditions that appear in a wait expression may refer to different channels, a wait

operation preserves the atomicity of its expression: it succeeds only if the expression as

a whole is true.

Condition Description Complement

connected(e) channel end e is (not) connected notconnected(e)

empty(e) channel end e is (not) empty notempty(e)

full(e) channel end e is (not) full notfull(e)

contains(e,pat) data matching pat does (not) exist in channel end e notcontains(e,pat)

Table 2. Channel conditions

For completeness, Reo requires the negation of every channel condition xxx to also be

defined as notxxx. Thus, every condition in the first column of Table 2 has its comple-

ment condition also defined in the third column of this table. The relationship between

notempty(e) and full(e) depends on the specific semantics of different channel types.

The wait operation applies De Morgan’s law on its condition expression to push
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boolean negation operators all the way down to be “absorbed” by its primitive channel

conditions. Thus, for instance, ¬( connected(x )∧ full(y)) becomes ¬ connected(x )∨

¬ full(y), which allows the two negation operators to be absorbed by their respective

primitive conditions, yielding the simplified “positive” condition expression notconnected(x )∨

notfull(y).

3.7. Channel read

The read operation succeeds when a data item that matches with the specified pattern

pat is available for reading through the sink channel end inp and it is read into the

specified variable v. If no explicit pattern is specified, the default wild-card pattern * is

assumed. When no variable is specified, no actual reading takes place, but the operation

succeeds when a suitable data item is available for reading. Observe that the read

operation is non-destructive, i.e., the data item is only copied but not removed from the

channel.

3.8. Channel take

The take operation is the destructive version of read, i.e., the data item is actually

removed from the channel. When no variable is specified as the destination in a take

operation, the operation succeeds when a suitable data item is available for taking and

it is removed through the specified channel end.

3.9. Channel write

The write operation succeeds when the content of the specified variable is consumed

by the channel to which outp belongs.

4. Connectors

A connector is a set of channel ends and their connecting channels organized in a graph

of nodes and edges such that:

— Zero or more channel ends coincide on every node.

— Every channel end coincides on exactly one node.

— There is an edge between two (not necessarily distinct) nodes if and only if there is

a channel whose ends coincide on those nodes.

We use x 7→ N to denote that the channel end x coincides on the node N , and x̂ to

denote the unique node on which the channel end x coincides. For a node N , we define

the set of all channel ends coincident on N as [N ] = {x | x 7→ N }, and disjointly partition

it into the sets Src(N ) and Snk(N ), denoting the sets of source and sink channel ends

that coincide on N , respectively.

Observe that nodes are not locations. A node is a fundamental concept in Reo rep-

resenting an important topological property: all channel ends x ∈ [N ] coincide on the

same node N . This property entails specific implications in Reo regarding the flow of
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data among the channel ends x ∈ [N ], irrespective of concern for any location. While

in practice, an implementation of Reo should try to internally move all channel ends

x ∈ [N ] to the same location in order to improve the efficiency of data-flow operations

through a node N , strictly speaking, this is unnecessary and the semantics of a node in

Reo does not require it to correspond to or reside on any specific location.

A node N is called a source node if Src(N ) 6= ∅ ∧ Snk(N ) = ∅. Analogously, N is

called a sink node if Src(N ) = ∅ ∧ Snk(N ) 6= ∅. A node N is called a mixed node if

Src(N ) 6= ∅ ∧ Snk(N ) 6= ∅.

The graph representing a connector is not directed. However, for each channel end xc of

a channel c, we use the directionality of xc to assign a local direction in the neighborhood

of x̂c to the edge that represents c. The local direction of the edge representing a channel

c in the neighborhood of the node of its source xc is presented as an arrow emanating from

x̂c . Likewise, the local direction of the edge representing a channel c in the neighborhood

of the node of its sink xc is presented as an arrow pointing to x̂c .

By definition, every channel represents a (simple) connector. More complex connec-

tors are constructed in Reo out of simpler ones using the join operation described in

Section 4.1.7.

4.1. Node Operations

Table 3 shows the node counterparts of the operations in Table 1. The names of the

operations in Table 3 do not have underscore prefixes: they are meant to be used by

components. The operations in Table 3 that modify nodes are defined only on non-

hidden nodes (see Section 4.1.9). They all fail with an appropriate error if any of their

node arguments is hidden. As in Table 1, the second column in Table 3 shows whether the

connectivity of (all channel ends coincident on) the node argument(s) of each operation

is a prerequisite for that operation.

Observe that although syntactically the operations in Table 1 have channel end argu-

ments, semantically they operate on nodes, not on channel ends. In other words, seman-

tically, these operations are truly node operations, in spite of the fact that syntactically,

their arguments are channels ends. A channel end e is merely a shorthand for the node

ê. It is convenient to use channel ends as arguments for Reo operations to indirectly

designate their corresponding nodes, instead of requiring direct syntactic references to

those nodes. This indirection alleviates the need for components to deal with nodes ex-

plicitly as separate entities. The components know and manipulate only channel ends.

These are created by the create operation, and are passed as arguments to the other

operations in Table 3, where they actually represent the nodes that they coincide on,

rather than the specific channel ends that they are. This makes components immune to

the dynamic creation and destruction of the nodes, while third parties perform join and

split operations on those nodes. In effect, a node operation (e.g., connect, wait, or an

I/O operation) involving a channel end e is an operation on the node ê, although the

actual node designated by ê may change between the time when the operation is issued

and when it is eventually performed.

For example, suppose a component instance C1 knows a channel end e, which at the
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moment happens to topologically coincide on the node N1. Because components are

denied any direct means to refer to nodes, the only way C1 can refer to N1 is as ê (or

ê ′ if it also knows another channel end e ′ that happens to currently coincide on N1 as

well). A component cannot rely on any property of ê other than the trivial property

e ∈ [ê] (specifically, it cannot generally depend on ê and ê ′ to actually be the same

node). C1 is thus unaffected by any change of topology that may occur at N1 (although

not necessarily by the consequences of this change). For instance, if another component

instance, C2, performs a join or a split operation on N1, making e coincide on another

node, N2, C1 remains oblivious to this topological change and can still refer to ê, which

now designates the node N2.

Defining Reo operations such that an operation op is written as op(e) instead of op(ê)

accommodates a convenient short-hand and makes it unnecessary for components to even

have a data type for nodes. However, placing nodes in a semantic domain that is beyond

the realm of direct syntactic access and manipulation by components is a subtle design

decision with somewhat more profound implications on the conduct of coordination.

Coordination can be conducted endogenously, or exogenously (Arbab, 1998). In en-

dogenous coordination models the primitives that cause and affect the coordination of an

entity with others can reside only inside of that entity itself. For instance, this is the case

for models based on object oriented message passing paradigms. In exogenous coordina-

tion models the primitives that cause and affect the coordination of an entity with others

generally reside inside of other entities. Exogenous coordination models allow third par-

ties to orchestrate the interactions among others. An underlying exogenous coordination

model is essential for a component model in which components are building blocks to be

(dynamically) composed together by other entities. This is the case in Reo: topologies

of connectors (i.e., coincidence of channel ends on nodes) can generally be manipulated

by (active entities inside) component instances that are not (necessarily) subjects of the

coordination protocols they impose. The fact that component instances have no direct

access to nodes allows topological manipulations to take place without their knowledge

or involvement. This facilitates exogenous coordination, making it possible to change a

node without having to interfere with or update any part of the component instances

that (only indirectly) refer to that node (through its coincident channel ends).

4.1.1. Node Create A create operation (1) performs its corresponding create opera-

tion, (2) creates a node for each of the two new resulting channel ends, and (3) returns

these same channel ends.

4.1.2. Node Forget A forget operation performed by (an active entity inside) a compo-

nent instance on the node ê, atomically performs the set of channel operations forget(x ),

for all channel ends x ∈ [ê]. When (an active entity inside) a component instance per-

forms a forget operation on one of the nodes that it is connected to, all I/O operations

pending on that node are retracted (i.e., they fail).

Strictly speaking, the forget operation itself does not directly affect the connection

status of its operand node. However, forget’ing a connected node always makes it eligible
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Operation Con. Description

create(chantype) - This operation performs create(chantype), creates a node for
each of the two resulting channel ends, and returns the identi-
fiers of the two channel ends.

forget(e) N This operation atomically performs the set of operations
forget(x), ∀x ∈ [̂e].

move(e, loc) Y This operation atomically performs the set of operations
move(x , loc), ∀x ∈ [̂e].

connect([t,] e) N If ê is not a mixed node, this operation atomically performs the
set of operations connect([t,] x), ∀x ∈ [̂e].

disconnect(e) N This operation atomically performs the set of operations
disconnect(x), ∀x ∈ [̂e].

wait([t,] nconds) N This operation succeeds when the conditions specified in nconds

become true.

read([t,] e[, v[, pat]]) Y If ê is a sink node connected to the component instance, this
operation succeeds when a value compatible with pat is non-
destructively read from any one of the channel ends x ∈ [̂e] into
the variable v.

take([t,] e[, v[, pat]]) Y If ê is a sink node connected to the component instance, this
operation succeeds when a value compatible with pat is taken
from any one of the channel ends x ∈ [̂e] and read into the
variable v.

write([t,] e, v) Y If ê is a source node connected to the component instance, this
operation succeeds when a copy of the value v is written to every
channel end x ∈ [̂e] atomically.

join(e1, e2) Y If at least one of the nodes ê1 and ê2 is connected to the com-
ponent instance, this operation merges them into a new node
(i.e., after the join, ê1 and ê2 become synonyms for the same
node).

split(e[, quoin]) N This operation produces a new node N and splits the set of
channel ends in [̂e] between the old ê and N , according to the
set of edges specified in quoin.

hide(e) N This operation hides the node ê such that it cannot be modified
in any other operation.

Table 3. Node operations

for the implicit disconnect rule described in Section 4.1.10, which promptly disconnects

the node.

4.1.3. Node I/O Operations A read, take, or write operation performed by (an active

entity inside) a component instance on a channel end e becomes and remains pending on

the node ê (although the actual node ê may change while the operation is pending, as

described in Sections 4.1.7 and 4.1.8) until either its time-out expires, or the conditions

are right for the execution of its corresponding channel end operation(s). The node I/O

operations can succeed only if the nodes they refer to are connected to the component

instances that (contain the active entities that) perform them. Because mixed nodes

cannot be connected to any component instance (see Sections 4.1.5 and 4.1.7), read,

take, and write cannot be performed on mixed nodes.

The precise semantics of read, take, and write, as well as the semantics of mixed
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nodes, depends on the generic properties of the channels that coincide on their involved

nodes. This is described in Section 8.

Intuitively, read and take operations nondeterministically obtain one of the suitable

values available from the sink channel ends that coincide on their respective nodes. The

write operation, on the other hand, replicates its value and atomically writes a copy to

every source channel end that coincides on the node of its channel-end parameter.

A component instance C may include more than one active entity. Each of such active

entity can concurrently issue an I/O operation on a node N connected to C , specifying

the same or different channel ends in [N ]. Reo defines the semantics of concurrent node

I/O operations consistently with the semantics of its mixed nodes. When multiple write

operations are concurrently pending on a source node N , they can succeed only one at

a time: whenever a value can be replicated to all source channel ends in [N ], a pending

write operation is selected to succeed nondeterministically. When multiple take opera-

tions are concurrently pending on a sink node N , they can succeed only simultaneously:

any nondeterministically selected value available through one of the sink channel ends in

[N ] that matches with the read-patterns of all pending take operations is removed from

its channel end and replicated to all pending take operations to make them succeed.

4.1.4. Node Move The move operation in Reo exists only to accommodate efficient perfor-

mance in distributed systems: it enables physical relocation of channel ends, but entails

no semantic consequences. As defined in Table 3, the move operation performed on a

channel end e atomically moves all channel ends that coincide on ê to its location ar-

gument, loc. This may allow more efficient access to these channel ends by subsequent

operations performed at the specified location.

There are three occasions where moving a node may be useful. First, when a compo-

nent instance connects to a node, it typically intends to subsequently perform some I/O

operations on that node. Thus, often a move operation immediately follows a connect.

Second, when a component instance moves from one location to another, all of its cur-

rently connected nodes should also move together with it to preserve the efficiency of

its subsequent channel end operations at its new location. In this case, the (non-Reo)

component-instance-move operation should perform the respective node move operations

as well. Third, a distributed component instance may move a node to a location in order

to allow more efficient operations on that node by its internal active entities.

4.1.5. Node Connection As defined in Table 3, the connect and disconnect operations

performed on a channel end e atomically connect and disconnect all channel ends that

coincide on ê to their respective component instances. Only source and sink nodes (not

mixed nodes) can be connected to component instances. Thus, a connect fails if the node

of its argument channel end is a mixed node.

When a node is disconnected from a component instance, all read, take, and write

operations pending on that node are pre-empted and retracted; as far as these operations

are concerned, it is as if the node were not connected to the component instance in the

first place when those operations were attempted.

The only way in Reo to connect a node N to a component instance C is through
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(an active entity inside) C performing a connect operation on N . There are three ways

in Reo in which a node N connected to a component instance C can be disconnected:

(1) an active entity inside C performs an explicit disconnect operation on N ; (2) an

active entity inside C performs a join operation that relinquishes its connection to N

(Section 4.1.7); and (3) the node N becomes eligible for the implicit disconnect rule

(Section 4.1.10).

4.1.6. Node Conditions The nconds in wait is a boolean combination of primitive node

conditions, which are the counterparts of the primitive channel end conditions of wait

in Table 1. For every primitive condition xxx(e) on a channel end e, Reo defines two

corresponding primitive conditions on its node ê: xxx(e) and xxxAll(e). A primitive node

condition without the All suffix is true for a node ê when its corresponding channel end

condition is true for some channel end x ∈ [ê]. Analogously, a primitive node condition

that ends with the suffix All, is true for a node ê if its corresponding channel end

condition is true for all channel ends x ∈ [ê]. Table 4 summarizes the node conditions

corresponding to the channel end conditions of Table 1.

Condition Description Complement

connected(e) some channel end in [̂e] is (not) connected notconnected(e)

connectedAll(e) every channel end in [̂e] is (not) connected notconnectedAll(e)

empty(e) some channel end in [̂e] is (not) empty notempty(e)

emptyAll(e) every channel end in [̂e] is (not) empty notemptyAll(e)

full(e) some channel end in [̂e] is (not) full notfull(e)

fullAll(e) every channel end in [̂e] is (not) full notfullAll(e)

contains(e,pat) some channel end in [̂e] does (not) contain data
matching pat

notcontains(e,pat)

containsAll(e,pat) every channel end in [̂e] does (not) contain data
matching pat

notcontainsAll(e,pat)

Table 4. Node conditions

Note the precedence of not, which is applicable at the channel end level, over All,

which applies at the node level: the condition notemptyAll(e), for instance, is true if

all channel ends that coincide on the node ê are non-empty. The situation where not

all channel ends coincident on a node ê are empty can be expressed as the condition

notempty(e), which holds if there exists at least one channel end coincident on ê that

is non-empty.

A wait operation thus translates its node condition expression into a channel end con-

dition expression, and uses it to perform a wait operation. Observe that the above syntax

rules for deriving node condition names from channel-end condition names yield node

condition names connected(e) and connectedAll(e) from the channel-end condition

name connected(e), and node conditions notconnected(e) and notconnectedAll(e)

from the channel-end condition notconnected(e). On the other hand, the semantics

of the connect operation guarantees that connected(e) =⇒ connectedAll(e) and
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notconnected(e) =⇒ notconnectedAll(e), respectively making each a synonym for

the other.

4.1.7. Node Composition The composition operation join(e1, e2) succeeds only if at

least one of the two nodes ê1 and ê2 is connected to the component instance, p, containing

the active entity that performs this operation. The effect of join is the merge of the two

nodes ê1 and ê2 into a new common node, N ; i.e., for all channel ends x ∈ [ê1]∪ [ê2], we

have x̂ = N .

Types of ê1 and ê2 Connection of the other node Connection status of the result

connected to p not connected
different not connected not connected

connected to q 6= p join fails

connected to p connected to p

same not connected not connected
connected to q 6= p connected to q

Table 5. p performs join(e1, e2) while at least one of the nodes ê1, ê2 is

connected to p

Table 5 summarizes the rules for node composition when an active entity inside a

component instance p performs a join(e1, e2). This operation can succeed only if at

least one of the two nodes ê1 and ê2 is connected to p. The other node may be connected

to p, not connected to any component instance, or connected to another component

instance, q , distinct from p. Depending on the connection status of the other node, and

whether or not the two nodes are of the same type, the join operation may fail or

succeed, and the resulting node may or may not remain connected to p. Observe that

join never affects the connectivity of a component instance other than p with any node.

If the two nodes are of different types, then the resulting merged node would be a mixed

node, which cannot be connected to any component instance. Table 5 shows that this

constraint is preserved because in this case either p relinquishes its connection, or the

join operation fails, when this is not enough.

The rationale for having connection to a node as a prerequisite for the join operation

is to ensure a simple, deterministic, local contention resolution scheme in distributed

systems. If two component instances attempt composition operations at the same time,

conflicts and/or race conditions may arise. If at least one of the two nodes in a composition

is connected to the component instance that attempts the composition, the conflict can

be resolved by requiring it to relinquish its (exclusive) connection. The rationale for

not requiring both nodes to be connected to the component instance that attempts the

join is to avoid crippling the conduct of exogenous coordination. If ê2 is connected to

a component instance q , assuming that it is not a hidden node (see Section 4.1.9), an

active entity in another component instance, p, should be able to modify the topology

of ê2, e.g., by merging it with ê1, without the involvement or the knowledge of q . This

would not be possible if to perform join, p were required to be connected to both nodes.
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When a component instance p loses its previous connection with any of the nodes ê1

and ê2, all read, take, and write operations pending on that node are retracted; i.e.,

they fail as if their respective nodes were not connected to the component instance in

the first place. Otherwise, all operations pending on ê1 and ê2 remain pending on their

common heir, N . Specifically, observe that if, e.g., ê1 is connected to p and ê2 is connected

to another component instance, q , then a join(e1, e2) performed by an active entity

inside p does not disrupt any operation (issued by an active entity inside q) that may be

pending on ê2. See Section 8 for the semantics of mixed nodes and the semantics of I/O

operations on other nodes.

4.1.8. Node Splitting A split operation performed on a node N = ê produces a new

node N ′ and divides the set of channel ends [N ] between the two nodes N and N ′. The

split operation does not require its node argument, ê, to be connected to the component

instance (that contains the active entity) that performs it. Furthermore, strictly speaking,

it does not directly affect the connection of ê to any component instance that it may

be connected to. However, the node ê may become eligible for the implicit disconnect

rule after the split operation (see Section 4.1.10). The newly created node, N ′, initially

shares the same connection status as that of ê before the split. However, it too can

become eligible for the implicit disconnect rule after the split operation. Consequently,

any I/O operation that may be pending on ê before the split, remains unaffected and

pending on either N or N ′ after the split.

Different versions of the split operation, with different signatures, allow different ways

of specifying how the channel ends in [N ] are to be split between N and N ′. One way or

the other, the ends of the channels that form the “exterior angle” at the splitting node

constitute the quoin of the split operation, and they are the ones that are moved to the

new node.

(a)

(d) (f) (g)

(c)(b) 

(e)

Fig. 3. Examples of join and split

In split(e, S), the parameter S is a set of channel ends and every channel end

x ∈ [ê]∩S is moved to the new node, N ′. The operation split(e) moves all sink channel

ends x ∈ Snk(ê) to the new node N ′, leaving only source channel ends to coincide on N .

The quoin of the split in split(e1, e2) is defined through the set Q of channels with

one end on each of the two nodes ê1 and ê2: the ends of the channels in Q that are in

[ê1] are moved to N ′.
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Figure 3 shows a few examples of join and split operations. By joining the sink and

the source ends of the two channels in Figure 3.a, we obtain the connector in Figure 3.b. A

split performed on the mixed node in Figure 3.b inverses the join operation and produces

the two independent channels of Figure 3.a. Joining the source and the sink nodes of the

connector in Figure 3.b, produces the connector in Figure 3.c. Similarly, the connector

in Figure 3.b can be obtained by splitting one of the mixed nodes of the connector in

Figure 3.c. Analogously, the pairs of Figures 3.d and e and f and g show connectors that

are related to each other through a one-node join and split operations, respectively.

4.1.9. Hiding Nodes The hide(e) operation is an important abstraction mechanism in

Reo: hiding a node N = ê ensures that the topology of N can no longer be modified

in any other operation (by any active entity in any component instance). Any operation

that may entail a change to x̂ for any x ∈ [N ] fails after this hide operation. This

guarantees that the topology of channels coincident on N can no longer be modified by

anyone. Observe that hidden nodes can still be used in Reo operations (e.g., for I/O)

that do not modify nodes.

4.1.10. Implicit Disconnection The implicit disconnection rule in Reo states that a com-

ponent instance C cannot remain connected to a node N if no active entity in C knows

a channel end e ∈ [N ]. If N is not connected to C and no active entity in C knows any

channel end in [N ], then N cannot become connected to C because, clearly, no connect

operation can be performed to connect N to C . However, there are situations when C

loses its reference to (i.e., its knowledge of) a node N to which it is already connected.

The implicit disconnection rule ensures that in such cases N is disconnected from C ,

because otherwise N would remain connected for good to a component instance which

has no way to refer to it, while other component instances may be waiting to connect to

and use this node.

A simple case of the application of this rule is when (an active entity inside) C performs

a forget on a node N that it is already connected to. After the forget operation, there

is no way for any entity inside C to refer to N . Losing its last reference to (channel ends

in) N triggers an implicit disconnect operation on behalf of C on this node.

A more subtle case of the application of the implicit disconnection rule is when a

split operation performed on a connected node produces a connected node none of

whose coincident channel ends is known to the component instance it is connected to.

For example, suppose a component instance, C , is connected to a node N where [N ] =

{a, b, c} out of which C knows only the channel end a. If a split operation (perhaps

performed by a third party) splits N into N1 and N2 such that [N1] = {a} and [N2] =

{b, c}, C cannot remain connected to N2 because it has no reference to this node.

5. Patterns

Reo uses patterns to regulate channel input/output operations. A pattern is an expres-

sion that matches a data item when it is written to, read from, or simply flows through

a channel. The operations take and read can specify patterns that must match the
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items they read. Furthermore, some channel types may require patterns as their creation

parameters that influence their behavior.

We write d 3 p to denote that the data item d matches with the pattern p, and d 63 p

to denote otherwise. The precise syntax of patterns is not important in this paper. We

illustrate the utility of patterns with some examples.

The atomic patterns are type identifiers (e.g., int, real, string, number, etc.) that

match with any one of their instances, plus the wild-card pattern (*). A specific value is

a pattern that matches only itself. Patterns can be composed into tuple structures using

angular brackets (< and >). Thus, <int, string> is a pattern that matches any pair

that consists of an integer and a string. Matched patterns can bind free variables, which

in turn can be used to enforce additional constraints. For instance, <int*x, 2.4, x>

matches any triplet consisting of the same integer as its first and third element, with the

real value 2.4 as its second.

A pattern can be augmented with additional constraints in square brackets. For in-

stance, <int*x, *, int*y>[x > y] matches with any triplet with two integers as its first

and third elements, as long as the first element is numerically greater than the third. The

pattern <int*x, string[a+b*c], real*y> [y >= 3*x] matches triplets consisting of

an integer, a string, and a real number, where the real number is greater than or equal

to 3 times the integer, and the string consists of one or more occurrences of “a” followed

by zero or more occurrences of “b” with a single “c” at its end.

6. Channel Types

Reo assumes the availability of an arbitrary set of channel types, each with its well-defined

behavior. A channel is called synchronous if it delays the success of the appropriate

pairs of operations on its two ends such that they can succeed only simultaneously;

otherwise, it is called asynchronous. An asynchronous channel may have a bounded or

an unbounded buffer (to hold the data items it has already consumed through its source,

but not yet dispensed through its sink) and may or may not impose a certain order on

the delivery of its contents. A lossy channel may deliver only some of the data items

that it receives, and lose the rest.

Although every channel in Reo has exactly two ends, they may or may not be of

different types. Thus, a channel may have a source and a sink end, two source ends,

or two sink ends. The behavior of a channel may depend on such parameters as its

synchronizing properties, the number of its source and sink ends, the size of its buffer,

its ordering scheme, its loss policy, etc.

While Reo assumes no particular fixed set of channel types, it is reasonable to expect

that a certain number of commonly used channel types will be available in all implemen-

tations and applications of Reo. Tables 6 and 7 show a non-exhaustive set of interesting

channel types and their properties. A larger set of channel types are described in (Arbab,

2002). Most of these channel types are indicative examples only. The few that appear in

Tables 6 and 7 are those that are used further in this paper as the building blocks for

more complex connectors to demonstrate the expressiveness of Reo.
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Type Description

Sync has a source and a sink. The pair of I/O operations on its two ends can succeed
only simultaneously.

Filter(pat) has a source and a sink. Writing a data item that does not match with the specified
pattern pat always succeeds immediately and the data item is lost. For data items
that match the pattern pat this channel behaves the same way as a Sync channel.

SyncDrain has two source ends. The pair of I/O operations on its two ends can succeed only
simultaneously. All data items written to this channel are lost.

SyncSpout(pat) has two sink ends. The pair of I/O operations on its two ends can succeed only
simultaneously. Each sink of this channel acts as an unbounded source of data
items that match with the pattern pat. Data items are produced in a nondeter-
ministic order. The data items taken out of the two sinks of this channel are not
related to each other.

LossySync has a source and a sink. The source end always accepts all data items. If there
is no matching I/O operation on the sink end of the channel at the time that a
data item is accepted, then the data item is lost; otherwise, the channel transfers
the data item exactly the same as a Sync channel, and the I/O operation at the
sink end succeeds.

Table 6. Examples of synchronous channel types

6.1. Channel Type Sync

The Sync channel type represents the typical synchronous channels. A read(t , yc, v , p)

on the sink yc of a channel c of this type succeeds only if there is a write(t ′, xc , d)

operation pending on the source xc of this channel and the data item d matches the

read-pattern p. In this case, d is copied into the read-variable v , the read operation

succeeds, but the write remains pending.

A write(t ′, xc , d) operation succeeds only if there is a take(t , yc , v , p) operation

pending on the sink yc of the channel c, and the data item d matches the take-pattern

p. In that case, d is copied into the read-variable v , and the take operation succeeds

simultaneously as well.

6.2. Channel Type Filter(pat)

A Filter(pat) channel type is a special lossy synchronous channel. It transfers only

those data items that match with its specified filter pattern pat and loses the rest. A

read(t , yc, v , p) on the sink yc of a channel c of this type succeeds only if there is a

write(t ′, xc , d) operation pending on the source xc of this channel and the data item d

matches both with the filter pattern pat as well as the read-pattern p. In this case, d is

copied into the read-variable v , the read operation succeeds, but the write remains

pending.

A write(t ′, xc , d) operation succeeds only if either (1) d does not match with the

filter pattern pat ; or (2) there is a take(t , yc , v , p) operation pending on the sink yc of

the channel c, and the data item d matches both with the filter pattern pat as well as

the take-pattern p. In the former case, the data item d is lost. In the latter case, d is

copied into the read-variable v , and the take operation succeeds simultaneously as well.
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Type Description

FIFO has a source and a sink, and an unbounded buffer. The source end always accepts
all data items. The accepted data items are kept in the internal FIFO buffer of
the channel. The appropriate operations on the sink end of the channel obtain
the contents of the buffer in the FIFO order.

FIFOn is the bounded version of FIFO with the channel buffer capacity of n data items.
AsyncDrain has two source ends. The channel guarantees that two operations on its two ends

never succeed simultaneously. The channel is fair by alternating between its two

ends and giving each a chance to dispose of a data item. All data items written
to this channel are lost.

AsyncSpout(pat) has two sink ends. The channel guarantees that two operations on its two ends
never succeed simultaneously. The channel is fair by alternating between its two
ends and giving each a chance to obtain a data item from the channel. The
values obtained from the two ends of the channel are not related to each other,
but match with the specified pattern pat .

ShiftFIFOn is the lossy version of FIFOn, where the arrival of a data item when the channel
buffer is full, triggers the loss of the oldest data item in the buffer, to make room
for the new arrival.

LossyFIFOn is the lossy version of FIFOn, where all newly arrived data items when the channel
buffer is full, are lost.

Table 7. Examples of asynchronous channel types

6.3. Channel Type SyncDrain

A SyncDrain is a lossy channel that allows pairs of write operations pending on its

opposite ends to succeed simultaneously, thus, synchronizing them. All written values

are lost.

6.4. Channel Type SyncSpout

A SyncSpout(pat) channel is an unbounded source of data items that match with its

specified pattern, pat , and can be taken from its opposite ends only simultaneously

in some nondeterministic order. While the pair of take operations performed on the

opposite ends of a SyncSpout(pat) are synchronized by the channel, the two data

items taken by these operations are independent of each other. For example, <x, y>

= create(SyncSpout(int*x[0 <= x, x <= 10])) creates a SyncSpout channel each

of whose two sink ends x and y produces an unbounded sequence of integers between 0

and 10 in some nondeterministic order. Read operations on x and y succeed immediately

independent of each other and successive read operations on the same end, of course,

produce the same integer (read is non-destructive). However, a take operation on one

end can succeed only simultaneously with another take operation at the other end.

6.5. Channel Types FIFO and FIFOn

The FIFO, and FIFOn channel types, where n is an integer greater than zero, represent the

typical unbounded asynchronous and bounded asynchronous FIFO channels. A write

to a FIFO channel always succeeds, and a write to a FIFOn channel succeeds only if
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the number of data items in its buffer is less than its bounded capacity, n. A read or

take from a FIFO or FIFOn channel suspends until the first (i.e., oldest) data item in the

channel buffer matches with the read or take pattern, in which case, it is (destructively)

obtained and the operation succeeds.

6.6. Channel Types AsyncDrain and AsyncSpout

AsyncDrain and AsyncSpout(pat) are analogous to SyncDrain and SyncSpout(pat),

respectively, except that they guarantee that, respectively, the pairs of write and the

pairs of take operations on their opposite ends never succeed simultaneously.‡ These

channel types are important basic synchronization building blocks for the construction

of more complex connectors.

6.7. Lossy Channels

An important class of channel types is the so-called lossy channels. These are the channels

that do not necessarily deliver through their sinks every data item that they consume

through their sources. For instance, SyncDrain and AsyncDrain channels are lossy chan-

nels that lose every data item written to them. Filter(pat) is a lossy channel that passes

only those data items that match its specified pattern pat and loses the rest.

A channel can be lossy because when its bounded capacity becomes full, it follows a

policy to, e.g., drop the new arrivals (overflow policy) or the oldest arrivals (shift policy).

ShiftFIFOn is a bounded capacity FIFO channel that loses the oldest data item in its

buffer when its capacity is full and a new data item is to be written to the channel.

Thus, (up to) the last n arrived data items are kept in its channel buffer. A LossyFIFOn

channel, on the other hand, loses the newly arrived data items when its capacity is full.

An asynchronous channel may be lossy because it requires an expiration date for every

data item it consumes, and loses any data item that remains in its buffer beyond its

expiration date. Other channels may be lossy because they implement other policies to

drop some of the data items they consume.

A LossySync channel behaves the same as a Sync channel, except that a write oper-

ation on its source always succeeds immediately. If a compatible read or take operation

is already pending on the sink of a LossySync channel, then the written data item is

transferred to the pending operation and both succeed. Otherwise, the write operation

succeeds and the data item is lost.

‡ Excluding the possibility of simultaneous success of the operations at the two ends of these channels
may seem more rigid than what the usual connotation of the term “asynchronous” implies. However,
observe that there is nothing sacrosanct about these or any other channel names or definitions in Reo,
and users can (re)define their own sets of channels as they please. These specific channels, as defined
here, simply turn out to be useful, e.g., in the connector of Figure 5.f.
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7. Channel Behavior

The channel types described in Section 6 are indicative of the richness and the diversity

of the behavior of channels allowed in Reo. However, Reo is not directly aware of the

behavior of any particular channel. Reo expects every channel type to be able to pro-

vide a “reasonable implementation” of the operations in Table 1. We state “reasonable

implementation” rather than imposing a rigid semantics here, because we do not wish

to preclude such reasonable possibilities as, for instance, a “read-only” channel type for

which take becomes a synonym for read.

The set of operations in Table 1, thus, describes the common behavior of all channels

in Reo. However, the operations in Table 1 are not sufficient to describe the full behavior

of different channel types. As far as Reo is concerned, the generic behavior of a channel

c, whose source and sink are xc and yc , respectively, is defined indirectly through the

following (state-dependent) functions:§

— offers(yc, p) is the multi-set of pairs 〈yc, d〉 for each d in the multi-set of values that

may be assigned to a variable v in a take(0, yc, v , p).

— accepts(xc , d) is true for a data item d if the state of c allows write(0, xc, d) to

succeed.

For completeness, we define offers(xc , p) = ∅, for all patterns p, and accepts(yc , d) =

false, for all data items d .

In addition to its common and generic behavior, each channel type also has a specific

behavior. The specific behavior of a channel type is the precise semantics that relates

its generic behavior, its common behavior, and its internal state. Although the specific

behavior of a channel is important wherever it is used, the Reo operations are semantically

independent of the specific behavior of channels. Reo and its operations depend only

on the returned results of the functions offers(), and accepts(), which under Reo’s

interpretation, above, comprise the generic behavior of channels. The actual definitions

of these functions which relate them to the internal states and other specific details of

various channels constitute their specific behavior.

8. Dataflow Through Nodes

The (active entities inside) component instances can write data values to source nodes and

read/take them from sink nodes, using the node operations defined in Table 3. Generally,

everything flows in Reo from source nodes through channels and mixed nodes down to

sink nodes. Some data items get lost in the flow, and some settle as sediments in certain

channels for a while before they flow through, if ever. It is the composition of channels

into connectors, together with the node operations read, take, and write, that yield this

intuitive behavior in Reo. In this section, we informally describe the operational semantics

of mixed nodes and the read, take, and write operations on nodes. Our exposition is

§ The simplified versions of these functions and equations 1, 2, and 3 presented here suffice for our illus-
trative purposes in this paper. These functions become more complicated to accommodate topologies
that include closed loops of synchronous channels, etc.
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intended to show the fundamentals of a truly distributed implementation of Reo. We

ignore certain aspects of timing and all locking issues here to simplify our presentation.

We use the predicate Π(O) to designate whether or not the operation O is pending

(on its respective node). From the point of view of an entity that is about to write a data

item d to a node it may be useful to know if the write operation will suspend or succeed

immediately. For a node N and a data item d , we define:

accepts(N , d) =

{ ∧
p : Π(take(t,N ,v ,p)) d 3 p if N is a sink node∧
x∈Src(N ) accepts(x , d) otherwise

(1)

Equation 1 states that if N is a sink node, it accepts a data item d only if d matches

with the read-patterns p of all take operations currently pending on N (observe that in

this case, there are no source channel ends in [N ]). Otherwise, N accepts d only if all

source channel ends in [N ] accept d .

The semantics of write’ing a data item d to a node N with a time-out of 0 ≤ t ≤ ∞

can now be defined as follows.

Definition 1. A write operation write(t ,N , d) remains pending on the node N , until

either (1) its time-out t expires, in which case the write operation fails; or (2) the

predicate accepts(N , d) is true, and the set of operations { write(∞, x , d) | x ∈ Src(N )}

atomically succeeds, in which case the write operation succeeds.

Observe that a write operation in Definition 1 is performed only if accepts(x , d) is

true for all channel ends x ∈ Src(N ). Channels’ compliance with Reo’s interpretation of

the accepts predicate (Section 7) implies that every such write operation immediately

succeeds.

From the point of view of an entity that is about to take a data item from a node it

may be useful to know the multi-set of data items available through that node. For a

node N and a pattern p, we define:

offers(N , p) =

{ ⊎
d : Π(write(t,N ,d)){〈ε, d〉 | d 3 p} if N is a source node⊎
x∈Snk(N ) offers(x , p) otherwise

(2)

Analogous to the offers function for the channel ends (Section 7), this function too

returns a multi-set of pairs each containing a data item that matches with the pattern

p, together with its producing channel end. The special symbol ε represents “no channel

end” and marks the data items obtained directly from the write operations pending on

the node.

According to this definition, a source node offers only the multi-set of values proposed

by the write operations pending on that node that match the specified pattern p. If N

is not a source node, it is either a mixed node or a sink node. A mixed node cannot be

involved in any write operation in Reo. Therefore, equation 2 defines the multi-set of the

values offered by a mixed or a sink node to be the (multi-set) union of all values offered

by all of its coincident sinks.

The semantics of take’ing a value that matches with a pattern p from a node N into

a variable v before the time-out 0 ≤ t ≤ ∞, can now be defined as follows.
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Definition 2. A take operation take(t ,N , v , p) remains pending on the node N , until

either (1) its time-out t expires, in which case the take operation fails; or (2) ∃〈y , d〉 ∈

offers(N , p) and the operation take(∞, x , v , d) succeeds on a nondeterministically (but

fairly) selected channel end x ∈ [N ] such that 〈y , d〉 ∈ offers(x , p), in which case the

take operation succeeds.

Observe that a take operation is performed in Definition 2 only on a channel end x for

which offers(x , p) contains an appropriately matching data item. Compliance with Reo’s

interpretation of the offers predicate (Section 7) implies that such a take operation

succeeds in finite time.

Semantically, a read(t ,N , v , p) operation is similar to take(t ,N , v , p), but we skip its

details in this paper.

Because mixed nodes cannot be connected to components, the possibility of having a

mixed node involved in a read, take, or write operation is precluded. A mixed node

automatically transfers all eligible data items from its coincident sinks to its coincident

sources. The multi-set τ(N ) of the pairs representing the data items that are eligible for

transfer at a mixed node N is defined as

τ(N ) = {〈y , d〉 | 〈y , d〉 ∈ offers(N , ∗) ∧ accepts(N , d)}. (3)

Definition 3. The semantics of a mixed node N in Reo is defined as the execution of

the infinite loop in Table 8 by an independent process dedicated to N . The actions in

each iteration of the for-loop on line 3, starting with the selection of a 〈y , d〉 ∈ τ(N ), are

performed atomically.

Observe that the contents of τ(N ) may change between the two lines 2 and 3, and,

of course, from one iteration of the for-loop on line 3 to the next. However, once a

〈y , d〉 ∈ τ(N ) is selected on line 3, all operations in the iteration of the loop (up to line

8) are performed atomically. This means that the channels whose ends coincide on N

are properly locked for the duration of each iteration to ensure that their states do not

change by any action other than those in that iteration.

Furthermore, note that the take on line 4 specifies the pre-selected data item d as its

take-pattern, which can match only with d . Observe that d is selected on line 3 such that

〈y , d〉 ∈ offers(y , ∗), which guarantees that (1) the take operation on line 4 succeeds

in finite time; and (2) the take operation on line 4 indeed takes the value d out of the

channel y (and assigns it to the take-variable v). Moreover, because accepts(x , d) is

true, the write(∞, x , d) operation on line 6 succeeds in finite time.

When a mixed node is created by a join or split operation, a new dedicated process

is created to reify its semantics. Analogously, when a mixed node is destroyed by a join

or split operation, its corresponding dedicated process is destroyed.

The behavior of a source node N is analogous to that of a mixed node represented

by the loop in Table 8, except that instead of the take operation on line 4, it releases

a write(t ,N , d) operation pending on N to succeed. The behavior of a sink node N is

also described by the same loop as in Table 8, except that the lines 5-7 are replaced by

a loop that releases all take(t ,N , v , p) operations pending on N to succeed.
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1 while (true) do

2 suspend until τ(N ) is non-empty

3 for each 〈y , d〉 ∈ τ(N ) do

4 take(∞, y , v , d)
5 for each x ∈ Src(N ) do

6 write(∞, x , d)
7 done

8 done

9 done

Table 8. Semantics of a mixed node

9. Generic Behavior of Channels

It is instructive to consider a few common channel types as examples to see how their

generic behavior in Reo can be defined in terms of their specific behavior. In this section,

we describe the behavior of some of the channels in Tables 6 and 7.

9.1. Generic Behavior of Asynchronous Channels

The existence of buffers in asynchronous channels means that the behavior of one end of

an asynchronous channel is decoupled from that of its other end and, instead, depends

on its buffer. This makes the behavior of asynchronous channels simpler to describe. For

instance, the behavior of some of the channels presented in Table 7 is described in the

rest of this section.

9.1.1. Generic Behavior of FIFO Consider a FIFO channel c (as described in Table 7)

and let xc and yc be its source and sink ends, respectively. Let the sequence B(c) =

〈Bk ,Bk−1, ...B2,B1〉 represent the buffer of the channel c, where B1 is its oldest element.

The generic behavior of c is defined by the following two functions.

offers(yc, p) =

{
{〈yc ,B1〉} if B(c) 6= 〈〉 ∧ B1 3 p

∅ otherwise
(4)

accepts(xc , d) = true (5)

This states that what the sink end of c offers (for reading or taking) is the empty set if

the buffer of c is empty, and a singleton (containing the first data element to be taken),

otherwise. Observe that if the first element in the buffer does not match the specified

pattern, the sink of a FIFO channel offers no value.

9.1.2. Generic Behavior of FIFOn The behavior of a FIFOn channel is identical to that

of a FIFO, except that its bounded capacity may prevent it from accepting values when

its bounded capacity is full. Let c be a FIFOn channel with B(c) = 〈Bk ,Bk−1, ...B2,B1〉

representing its buffer, as in Section 9.1.1. Clearly, the constraint |B(c)| ≤ n must be

maintained by this channel, where |α| represents the length of the sequence α. The generic
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behavior of c is defined by the following two functions.

offers(yc, p) =

{
{〈yc ,B1〉} if B(c) 6= 〈〉 ∧ B1 3 p

∅ otherwise
(6)

accepts(xc , d) = |B(c)| < n (7)

This states that accepts(xc , d) succeeds as long as the number of data items in the

(bounded) buffer of c is less than its capacity, n.

9.1.3. Generic Behavior of ShiftFIFOn and LossyFIFOn The generic behavior of chan-

nel types ShiftFIFOn and LossyFIFOn is identical to that of a FIFO channel: the fact

that they may lose their contents when their capacity is full, and the different policies

they use to determine which data item to lose, are all part of the details of their specific

behavior. As far as the Reo operations are concerned, these channel types behave as if

they were FIFO channels.

9.2. Generic Behavior of Synchronous Channels

The generic behavior of synchronous channels can be defined in terms of the properties

of the nodes on which their ends coincide. For instance, we define the behavior of some

of the channels presented in Table 6.

9.2.1. Generic Behavior of Sync The generic behavior of a Sync channel c whose source

and the sink ends are, respectively, xc and yc , is defined by the following two functions.

accepts(xc , d) = accepts(ŷc, d) (8)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (9)

9.2.2. Generic Behavior of Filter(pat) The generic behavior of a Filter(pat) channel

c whose source and the sink ends are, respectively, xc and yc , is defined by the following

two functions.

accepts(xc , d) = d 63 pat ∨ accepts(ŷc , d) (10)

offers(yc, p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p) ∧ d 3 pat}. (11)

9.2.3. Generic Behavior of LossySync The generic behavior of a LossySync c whose

source and sink ends are, respectively, xc and yc , is defined by the following two functions.

accepts(xc , d) = true (12)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (13)

This reflects the fact that the state of a LossySync channel allows it to consume a data

item regardless of whether or not a matching I/O operation is pending on its opposite

end, and either transfers or loses the data item.



Farhad Arbab 28

10. Channel Composition

The utility of channel composition in Reo can be demonstrated through a number of

simple examples. For convenience, we represent a channel by the pair of its source and

sink ends, i.e., ab represents the channel whose source and sink ends are, respectively, a,

and b. Two channels, ab and cd can be joined in one of the three configurations shown

in Figures 4.a-c. For instance, the connectors in Figures 4.a-c can be created as follows.

We can create two channels of types t1 and t2 by <a, b> = create(t1) and <c, d> =

create(t2). The connectors in Figures 4.a-c are constructed out of such two channels

by performing the operations join(b, c), join(b, d), and join(a, c), respectively.

Observe that the channel ends a, b, c, and d used in these join operations (or any other

operation that expects a node rather than a channel end) are merely short-hand for the

nodes â, b̂, ĉ, and d̂, respectively.

a b

g h i

a b,c d
a

b,d

c

a,c

b a d a d

a d

g j

a b

c

a b

c d

f

c d e

b,e,c

f fd

b,e,c

b,e,c

h,f,i

Fig. 4. Examples of channel composition and connectors

10.1. Flow-through Connectors

In this section we show how the informal semantics of Reo supports our intuitive expec-

tation of the behavior of the connector in Figure 4.a: that it simply allows data items to

flow through the junction node, from the channel ab to the channel cd. Let

N = b̂ = ĉ. (14)

Because N is not a source node and Snk(N ) = {b}, from equation 2 we have

offers(N , ∗) = offers(b, ∗). (15)

Similarly, because N is not a sink node and Src(N ) = {c}, equation 1 gives

accepts(N , d) = accepts(c, d). (16)

Equations 15 and 16 together simplify equation 3 into

τ(N ) = {〈y , d〉 | 〈y , d〉 ∈ offers(b, ∗) ∧ accepts(c, d)}. (17)

Consider the semantics of the mixed node N as presented in Table 8. The behavior of
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the channels defined in Section 7 shows that offers(b, ∗) can contain only pairs of the

form 〈b, z 〉. Thus, 〈y , d〉 on line 3 can match only if y = b.

By equation 17, the take operation on line 4 in Table 8 removes every data item

d for which 〈b, d〉 ∈ offers(b, ∗) and accepts(c, d) holds. This removes every data

item d from the channel ab for which accepts(c, d) is true. Because Src(ĉ) = {c}, the

only value that the variable x can assume on line 5 is x = c, which means the write

operation on line 6 executes only once for this value of x . Because accepts(c, d) is true,

the write(∞, c, d) operation on line 6 succeeds in finite time to write the data item d

into the channel cd.

10.2. Merger

The configuration of channels in Figure 4.b allows write operations on a and c, and read

or take operations on b and d; the channel ends b and d can be used interchangeably,

because they both stand for their common node. A read or take from this common

node delivers a value out of ab or cd, chosen nondeterministically, if both are non-empty.

Thus, assuming the channels are not lossy, this connector produces through the common

node of b and d, a nondeterministic merge of the values that arrive on a and b.

10.3. Replicator

The configuration of channels in Figure 4.c allows write operations on a and c, wherein

the two channel ends are interchangeable, and read or take operations on b and d. A

write on (the common node of) a (and c) succeeds only if both channels are capable of

consuming a copy of the written data (see the definition of write in Table 3). If they are

both of type FIFO, of course, all writes succeed. However, if even one is not prepared to

consume the data, the write suspends.

10.4. Take-Cue Regulator

The significance of the “replication on write” property in Reo can be seen in the compo-

sition of the three channels ab, cd, and ef in the configuration of Figure 4.d. Assume ab

and cd are of type FIFO and ef is of type Sync. The configuration in Figure 4.d, then,

shows one of the most basic forms of exogenous coordination: the number of data items

that flow from ab to cd is the same as the number of take operations that succeeds on f.

Compared to the configuration in Figure 4.a, what we have in Figure 4.d is a connector

where an entity can count and regulate the flow of data between the two channels ab and

cd by the number of take operations it performs on f. The entity that regulates and/or

counts the number of data items through f need not know anything about the entities

that write to a and/or take from d, and the latter two entities need not know anything

about the fact that they are communicating with each other, or the fact that the volume

of their communication is regulated and/or measured.
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10.5. Write-Cue Regulator

The composition of channels in Figure 4.e is identical to the one in Figure 4.d, except

that now ef is of type SyncDrain. The functionality of this configuration of channels is

identical to that of the one in Figure 4.d, except that now write operations on f regulate

the flow, instead of takes.

10.6. Barrier Synchronizers

We can use this fact to construct a barrier synchronization connector, as in Figure 4.f.

Here, the SyncDrain channel ef ensures that a data item passes from ab to cd only

simultaneously with the passing of a data item from gh to ij (and vice versa). If the

four channels ab, cd, gh, and ij are all of type Sync, our connector directly synchronizes

write/take pairs on the pairs of channels a and d, and g and j. This simple barrier

synchronization connector can be trivially extended to any number of pairs, as shown in

Figure 4.g.

10.7. Encapsulation and Abstraction

Figure 4.h shows the same configuration as in Figure 4.e. The enclosing box in Figure 4.h

introduces our graphical notation for presenting the encapsulation abstraction effect of

the hide operation in Reo. The box conveys that a hide operation has been performed on

all nodes inside the box (in this case, just the one that corresponds to the common node

of the channel ends b, c, and e in Figure 4.e). As such, the topology inside the box is

immutable, and can be abstracted away: the whole box can be used as a “connector

component” that provides only the connection points on its boundary. In this case,

assuming that the channels connected to a and b are of type Sync, the function of

the connector can be described as “every write to c enables the transfer of a data item

from a to b.

Through parameterization, the configuration and the functionality of such connector

components can be adjusted to fit the occasion. For instance, Figure 4.i shows a variant

of the connector in Figure 4.h, where a write to either c or d enables the transfer of a

data item from a to b. The Reo code that instantiates a generic connector of this type

is shown in Table 9. The parameter n specifies the number of desired regulator points.

The return value of a call to this function is a triple that contains the identities of the

connector’s primary input and output nodes, followed by a sequence of the identifiers

for its n regulator nodes. A WCRegulator(1) call produces (a slightly modified version

of) the connector shown in Figure 4.h. A WCRegulator(2) call produces the connector

shown in Figure 4.i.

10.8. Ordering

The connector in Figure 5.a consists of three channels: ab, ac, and bc. The channels

ab and ac are SyncDrain and Sync, respectively. The channel bc is of type FIFO1.

Let us consider the behavior of this connector, assuming a number of eager producers
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1 WCRegulator(n)

2 〈a, x1〉 = create(Sync)

3 〈x2, b〉 = create(Sync)

4 〈x, y〉 = create(SyncDrain)

5 connect(x1)

6 connect(x2)

7 join(x, x1)

8 join(x1, x2)

9 hide(x)

10 c = 〈〉
11 for i = 1 to n do

12 〈u, w〉 = create(Sync)

13 c = c ◦ 〈u〉
14 connect(w)

15 join(y, w)

16 done

17 hide(y)

18 return 〈a, b, c〉

Table 9. Reo code for a generic Write-Cue Regulator connector

and consumers are to perform write and take operations on the three nodes in this

connector. Observe that it is irrelevant whether the producers and consumers in question

are component instances that perform write and take operations, or alternatively, other

channels with available data items and available channel capacities. However, to simplify

our presentation, we assume the nodes of our connector are connected to appropriate

component instances that are prepared to perform suitable write and take operations

on them.

The nodes a and b can be used (successfully) in write operations only; and the node c

can be used (successfully) only in take operations. A write on either a or b will remain

pending at least until there is a write on both of these nodes; it is only then that both of

these operations can succeed simultaneously (because of the SyncDrain between a and

b). For a write on a to succeed, there must be a matching take pending on c, at which

time the value written to a is transferred and consumed by the take on c. Simultaneously,

the value written to b is transferred into the FIFO1 channel bc (which is initially empty,

and thus can consume and hold one data item). As long as this data item remains in

bc, no other write operations can succeed on a or b; the only possible transition is for

another take on c to consume the contents of the bc channel. Once this happens, we

return to the initial state and the cycle can repeat itself.

The behavior of this connector can be seen as imposing an order on the flow of the

data items written to a and b, through c: the data items obtained by successive take

operations on c consist of the first data item written to a, followed by the first data

item written to b, followed by the second data item written to a, followed by the second

data item written to b, etc. We can summarize the behavior of our connector as c =

(ab)∗, meaning the sequence of values that appear through c consist of zero or more

repetitions of the pairs of values written to a and b, in that order. Observe that the a

and the b in the expression (ab)∗ do not represent specific values; rather, they refer to
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Fig. 5. Connectors for more complex coordination

the write operations performed on their respective nodes, irrespective of the actual data

items that they write. In other words, we may consider the expression (ab)∗ not as a

regular expression over values, but rather as a meta-level regular expression over the I/O

operations that produce (isomorphic) sequences or streams of values on their respective

nodes.

11. Expressiveness

The producers and consumers connected to the nodes a, b, and c of the connector in

Figure 5.a are completely unaware of the fact that this connector coordinates them

through their innocent take and write operations to impose a specific ordering on them.

This interesting coordination protocol emerges due to the composition of the specific

channels that comprise this connector in Reo. It is natural at this point to wonder about

the expressiveness of the composition paradigm of Reo, i.e., given a (small) set of primitive
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channel types, what coordination patterns can be implemented in Reo by composition

of such channel types?

In this section we demonstrate, by examples, that Reo connectors composed out of only

five simple basic channel types can (exogenously) impose coordination patterns that can

be expressed as regular expressions over I/O operations on their nodes. These five channel

types consist of Sync, SyncDrain, LossySync, AsyncDrain, and an asynchronous channel

with the bounded capacity of 1 (e.g., FIFO1).¶

11.1. Sequencer

Consider the connector in Figure 5.b. As before, the enclosing box represents the fact

that the details of this connector are abstracted away and it provides only the four nodes

a, b, c, and d for other entities (connectors and/or component instances) to (in this case)

take from. Inside this connector, we have four Sync and four FIFO1 channels connected

together. The first (leftmost) FIFO1 channel is initialized to have a data item in its buffer,

as indicated by the presence of the symbol “o” in the box representing its buffer. The

actual value of this data item is irrelevant. The take operations on the nodes a, b, c, and

d can succeed only in the strict left to right order. This connector implements a generic

sequencing protocol: we can parameterize this connector to have as many nodes as we

want, simply by inserting more (or fewer) Sync and FIFO1 channel pairs, as required.

What we have here is a generic sequencer connector.

Figure 5.c shows a simple example of the utility of our sequencer. The connector in this

figure consists of a two-node sequencer, plus a pair of Sync channels and a SyncDrain

channel connecting each of the nodes of the sequencer to the nodes a and c, and b and c,

respectively. The connector in Figure 5.c is another connector for the coordination pattern

expressed as c = (ab)∗. However, there is a subtle difference between the connectors in

Figures 5.a and c: the one in Figure 5.a never allows a write to a succeed without a

matching write to b, whereas the one in Figure 5.c allows a write to a succeed (if “its

turn has come”) regardless of the availability of a value on b.

It takes little effort to see that the connector in Figure 5.d corresponds to the meta-

regular expression c = (aab)∗. Figures 5.c and d show how easily we can construct

connectors that correspond to the Kleen-closure of any “meta-word” using a sequencer

of the appropriate size. To have the expressive power of regular expressions, we need the

“or” as well.

11.2. Inhibitor

The connector in Figure 5.e is an inhibitor: values written to d flow freely through to c,

until some value is written to i, after which the flow stops for good.

¶ Observe that with capacity of 1, the (FIFO or any other) ordering becomes irrelevant. Our specific
choice of FIFO1 here is merely due to the fact that it is the only capacity 1 channel mentioned in this
paper.
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11.3. Or Selector

Our “or” selector can now be constructed out of two inhibitors and two LossySync chan-

nels, plus some other connector for nondeterministic choice. The connector in Figure 5.f is

a particular instance of such an “or” connector. The channel connecting the nodes a and

b in this connector is an AsyncDrain. It implements a nondeterministic choice between

a and b if both have a value to offer, and otherwise it selects whichever one arrives first.

Each of the nodes a and b is connected to the inhibitor node of the inhibitor connector

that regulates the flow of the values from the other node to c. Thus, if a value arrives

on a before any value arrives on b, this connector blocks the flow from b to c for good

and we have c = a∗. Symmetrically, we have c = b∗, and we can thus write, in general,

c = a ∗ |b∗.

Observe that the simultaneity-preventing semantics of AsyncDrain excludes the possi-

bility of both inhibitors blocking, even if the two initial data items arrive simultaneously

at a and b.

12. Formal Semantics

The informal description of the operational semantics of Reo presented in this paper hints

at its implementation on a distributed platform. It is, of course, possible to formalize this

operational semantics, e.g., in terms of transition systems. An interesting alternative to

such a formal semantics, is Rutten’s work on a coalgebraic semantics for Reo (Arbab and

Rutten, 2002). This work currently covers the core of Reo and we present an overview

of its essential features in this section to give a flavor of the types of reasoning that is

possible in Reo’s coinductive calculus of connectors. In Rutten’s model, Reo connectors

are relations on timed data streams, which consist of twin pairs of separate data and time

streams. Coinduction is the main reasoning principle used to prove properties such as

connector equivalence.

A stream (over A) is an infinite sequence of elements of some set A. Streams over

sets of (uninterpreted) data items are called data streams and are typically denoted as

α, β, γ, etc. Zero-based indices are used to denote the individual elements of a stream,

e.g., α(0), α(1), α(2), ... denote the first, second, third, etc., elements of the stream α.

Following the conventions of stream calculus (Rutten, 2001), the well-known operations

of head and tail on streams are called initial value and derivative: the initial value of a

stream α (i.e., its head) is α(0), and its (first) derivative (i.e., its tail) is denoted as α′.

Relational operators on streams apply pairwise to their respective elements, e.g., α ≥ β

means α(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥ β(2), .... Time streams are constrained streams

over (positive) real numbers, representing moments in time, and are typically denoted

as a, b, c, etc. To qualify as a time stream, a stream of real numbers must be strictly

increasing, i.e., if a is a time stream, then the constraint a < a ′ holds.

A timed data stream is a pair, 〈α, a〉, of time (a) and data (α) streams with the

interpretation that ∀i ≥ 0, the data item α(i) appears at its corresponding time moment

a(i). Timed data streams are used to model the flows of data through channel ends. A

channel itself is just a (binary) relation between the two timed data streams associated
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with its two ends. A more complex connector is simply an n-ary relation among n timed

data streams, each representing the flow of data through one of the (non-hidden) n nodes

of the connector.

The simplest channel, Sync, is formally defined as the relation:

〈α, a〉 Sync 〈β, b〉 ≡ α = β ∧ a = b (18)

The equation α = β states that every data item that goes into a Sync channel comes out

in the exact same order. The equation a = b states that the arrival and the departure

times of each data item are the same: there is no buffer in the channel for a data item

to linger on for any length of time.

A FIFO channel is defined as the relation:

〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b (19)

As in a synchronous channel, every data item that goes in, comes out of a FIFO channel

in exactly the same order (α = β). However, the departure time of each data item is

necessarily after its arrival time (a < b): every data item must necessarily spend some

non-zero length of time in the buffer of a FIFO channel.

A FIFO1 channel is very similar to a FIFO:

〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a ′ (20)

Not only the departure time of every data item, α(i) = β(i), is necessarily after its arrival

time (a(i) < b(i)), but since the channel can contain no more than 1 element, the arrival

time a(i + 1) of the next data item, α(i + 1), must be after the departure time b(i) of

its preceding element (b < a ′).

A SyncDrain channel merely relates the timing of the operations on its two ends:

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b (21)

The replication that takes place at Reo nodes can be defined in terms of the ternary

relation R:

R(〈α, a〉;〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c (22)

The semicolon delimiter separates “input” and “output” arguments of the relation. The

relation R represents the replication of the single “input” timed data stream 〈α, a〉 into

two “output” timed data streams 〈β, b〉 and 〈γ, c〉.

The nondeterministic merge that happens at Reo nodes is defined in terms of the

ternary relation M :

M (〈α, a〉, 〈β, b〉;〈γ, c〉) ≡

a(0) 6= b(0) ∧

{
α(0) = γ(0) ∧ a(0) = c(0) ∧ M (〈α′, a ′〉, 〈β, b〉;〈γ′, c′〉) if a(0) < b(0)

β(0) = γ(0) ∧ b(0) = c(0) ∧ M (〈α, a〉, 〈β ′, b′〉;〈γ′, c′〉) otherwise
(23)

The notion of “dense time” represented by real numbers, is more abstract than “discrete

time” represented by natural numbers (H. Barringer et al., 1986). In our formal model

of Reo, time is strictly local and as such the actual numeric values in time streams do

not matter; only their relations are significant. The equality of time moments does not
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necessarily imply simultaneity, but merely denotes atomicity. This means that if for some

〈α, a〉 and 〈β, b〉, we have a(i) = b(j ), then α(i) and β(j ) must appear atomically, but one

may follow the other; they may actually appear in any order, as well as simultaneously,

so long as their appearance is not interleaved with the appearance of an unrelated data

item. This relaxed interpretation of time enables us to break strict simultaneity, whenever

necessary, by shifting the numeric values in selected time streams, as long as atomicity

is preserved. For instance, the a(0) 6= b(0) required by our merger, above, can easily be

satisfied by nondeterministically shifting one of the two time streams a and b.

Such a simple set of concepts is sufficient to formally derive the properties of the non-

trivial connectors presented in this paper (Arbab and Rutten, 2002). For instance, the

properties of the regulators of Figures 4.d and e, the barrier synchronizer connector of

Figure 4.f, the ordering imposed by the connector in Figure 5.a, the sequencing property

of the connector in Figure 5.b, etc., all can be formally derived in this coalgebraic model.

Furthermore, this formalism enables us to prove interesting results such as “the pipeline

composition of k individual FIFO1 channels is equivalent to a single FIFOk channel,” etc.

The reader in encouraged to see (Arbab and Rutten, 2002) for details.

13. Conclusion

Reo is an exogenous coordination model wherein complex coordinators, called connectors,

are constructed by composing simpler ones. The simplest connectors correspond to a set

of channels supplied to Reo. As long as these channels comply with a non-restrictive

set of requirements defined by Reo, the semantics of Reo operations, specifically its

composition, is independent of the specific behavior of channels. These requirements

define the generic aspects of the behavior of channels that Reo cares about, ignoring the

details of their specific behavior.

The semantics of composition of connectors in Reo and their resulting coordination

protocols can be explained and understood intuitively because of their strong correspon-

dence to a metaphor of physical flow of data through channels. This metaphor naturally

lends itself to an intuitive graphical representation of connectors and their composition

that strongly resembles (asynchronous) electronic circuit diagrams. Reo connector dia-

grams can be used as the “glue code” that supports and coordinates inter-component

communication in a component based system. As such, drawing Reo connector diagrams

constitutes a visual programming paradigm for coordination and component composition.

The topology of connectors in Reo is inherently dynamic and it accommodates mobility.

Moreover, Reo supports a very liberal notion of channels. As such, Reo is more general

than dataflow models, Kahn-networks, and Petri-nets, all of which can be viewed as

specialized channel-based models that incorporate certain specific primitive coordination

constructs. Broy’s work on timed dataflow channels (Broy and Stefanescu, 2001; Broy and

Stolen, 2001) is perhaps closest to Reo. Nevertheless, Reo’s more general notion of chan-

nels, its inherent dynamic topology, and the fundamental notion of channel/connector

composition distinguish it from this model as well.

Connector composition in Reo is very flexible and powerful. Our examples in this paper

demonstrate that exogenous coordination protocols that can be expressed as regular
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expressions over I/O operations correspond to Reo connectors composed out of a small

set of only five primitive channel types.

Our on-going work on Reo in our group includes the formalization of its semantics

based on the coalgebraic methodology, which has been developed as a general behavioral

theory for dynamical systems. Moreover, we are working on an implementation of Reo to

support composition of component based software systems in Java, and the development

of logics for reasoning about connectors.
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